1
|
Yamaki Y, Seo H, Hatano A, Suzuki M, Niikura K. Structure-dependent detection of polyphenols using crown ether-immobilized gold nanoparticles. RSC Adv 2024; 14:16870-16875. [PMID: 38799214 PMCID: PMC11123615 DOI: 10.1039/d4ra02182g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Gold nanoparticles functionalized with 18-crown 6-ether (18C6-AuNPs) can be used for detection of tannic acid, epigallocatechin gallate, and epicatechin gallate by color change in the μg mL-1 range. 18C6-AuNPs were insensitive to l-ascorbic acid and l-tyrosine unlike conventional detection methods, such as Folin & Ciocalteu assay, whose principle is based on the redox reaction of polyphenols. Although 18C6-AuNPs did not respond to some polyphenols, such as gallic acid and epicatechin, if the polyphenols of interest are responsive to this approach, these are expected to be effective nanomaterial for simple sensing of polyphenols.
Collapse
Affiliation(s)
- Yuto Yamaki
- Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology Japan
| | - Hiroki Seo
- Graduate School of Environmental Symbiotic System Major, Nippon Institute of Technology Minamisaitama-Gun Saitama 345-8501 Japan
| | - Akihiko Hatano
- Department of Materials Science and Engineering, Shibaura Institute of Technology Fukasaku, Minuma-ku, Saitama-City Saitama 337-8570 Japan
| | - Manabu Suzuki
- Research & Development Center for Advanced Materials and Technology, Nippon Institute of Technology Japan
| | - Kenichi Niikura
- Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology Japan
- Graduate School of Environmental Symbiotic System Major, Nippon Institute of Technology Minamisaitama-Gun Saitama 345-8501 Japan
| |
Collapse
|
2
|
Dridi N, Jin Z, Perng W, Mattoussi H. Probing Protein Corona Formation around Gold Nanoparticles: Effects of Surface Coating. ACS NANO 2024; 18:8649-8662. [PMID: 38471029 DOI: 10.1021/acsnano.3c08005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
There has been much interest in integrating various inorganic nanoparticles (nanoscale colloids) in biology and medicine. However, buildup of a protein corona around the nanoparticles in biological media, driven by nonspecific interactions, remains a major hurdle for the translation of nanomedicine into clinical applications. In this study, we investigate the interactions between gold nanoparticles and serum proteins using a series of dihydrolipoic acid (DHLA)-based ligands. We employed gel electrophoresis combined with UV-vis absorption and dynamic light scattering to correlate protein adsorption with the nature and size of the ligand used. For instance, we found that AuNPs capped with DHLA alone promote nonspecific protein adsorption. In comparison, capping AuNPs with polyethylene glycol- or zwitterion-appended DHLA essentially prevents corona formation, regardless of ligand charge and size. Our results highlight the crucial role of surface chemistry and core material in protein corona formation and offer valuable information for the design of colloidal nanomaterials for biological applications.
Collapse
Affiliation(s)
- Narjes Dridi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Zhicheng Jin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Woody Perng
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
3
|
Davarci G, Wängler C, Eberhardt K, Geppert C, Schirrmacher R, Freudenberg R, Pretze M, Wängler B. Radiosynthesis of Stable 198Au-Nanoparticles by Neutron Activation of α vβ 3-Specific AuNPs for Therapy of Tumor Angiogenesis. Pharmaceuticals (Basel) 2023; 16:1670. [PMID: 38139797 PMCID: PMC10747377 DOI: 10.3390/ph16121670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
This paper reports on the development of stable tumor-specific gold nanoparticles (AuNPs) activated by neutron irradiation as a therapeutic option for the treatment of cancer with high tumor angiogenesis. The AuNPs were designed with different mono- or dithiol-ligands and decorated with different amounts of Arg-Gly-Asp (RGD) peptides as a tumor-targeting vector for αvβ3 integrin, which is overexpressed in tissues with high tumor angiogenesis. The AuNPs were evaluated for avidity in vitro and showed favorable properties with respect to tumor cell accumulation. Furthermore, the therapeutic properties of the [198Au]AuNPs were evaluated in vitro on U87MG cells in terms of cell survival, suggesting that these [198Au]AuNPs are a useful basis for future therapeutic concepts.
Collapse
Affiliation(s)
- Güllü Davarci
- Molecular Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany;
| | - Carmen Wängler
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany;
- Mannheim Institute for Intelligent Systems in Medicine MIISM, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany
| | - Klaus Eberhardt
- Research Reactor TRIGA Mainz, Institute for Nuclear Chemistry, Johannes-Gutenberg-Universität Mainz, 55128 Mainz, Germany; (K.E.); (C.G.)
| | - Christopher Geppert
- Research Reactor TRIGA Mainz, Institute for Nuclear Chemistry, Johannes-Gutenberg-Universität Mainz, 55128 Mainz, Germany; (K.E.); (C.G.)
| | - Ralf Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Robert Freudenberg
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany;
| | - Marc Pretze
- Molecular Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany;
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany;
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, 68167 Mannheim, Germany;
| |
Collapse
|
4
|
Riccardi C, Platella C, Musumeci D, Montesarchio D. Design, Synthesis, and Characterization of an Amphiphilic Lipoic Acid-Based Ru(III) Complex as a Versatile Tool for the Functionalization of Different Nanosystems. Molecules 2023; 28:5775. [PMID: 37570744 PMCID: PMC10420320 DOI: 10.3390/molecules28155775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Ru-based chemotherapy is emerging as an effective alternative to the well-established Pt-based one, typically associated with high toxicity. In this context, our recent efforts were devoted to the preparation of nucleolipid-based Ru(III) complexes able to form, under physiological conditions, supramolecular aggregates which can efficiently prevent metal deactivation and convey Ru(III) inside the cells where it exerts its activity. Within an interdisciplinary program for the development of multifunctional nanoparticles for theranostic applications, we here report the design, synthesis, and characterization of a novel functionalized Ru(III) salt, carrying a lipoic acid moiety in the nucleolipid-based scaffold to allow its incorporation onto metal-based nanoparticles.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy; (C.R.); (C.P.); (D.M.)
| | - Chiara Platella
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy; (C.R.); (C.P.); (D.M.)
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy; (C.R.); (C.P.); (D.M.)
- Institute of Biostructure and Bioimaging (IBB), CNR, 80145 Napoli, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Napoli Federico II, 80126 Napoli, Italy; (C.R.); (C.P.); (D.M.)
- CINMPIS—Consorzio Interuniversitario Nazionale di Ricerca in Metodologie e Processi Innovativi di Sintesi, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
5
|
Abdelkader NF, El-Batal AI, Amin YM, Hawas AM, Hassan SHM, Eid NI. Neuroprotective Effect of Gold Nanoparticles and Alpha-Lipoic Acid Mixture against Radiation-Induced Brain Damage in Rats. Int J Mol Sci 2022; 23:ijms23179640. [PMID: 36077035 PMCID: PMC9456030 DOI: 10.3390/ijms23179640] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
The current study aims to evaluate the possible neuroprotective impact of gold nanoparticles (AuNPs) and an alpha-lipoic acid (ALA) mixture against brain damage in irradiated rats. AuNPs were synthesized and characterized using different techniques. Then, a preliminary investigation was carried out to determine the neuroprotective dose of AuNPs, where three single doses (500, 1000, and 1500 µg/kg) were orally administrated to male Wistar rats, one hour before being exposed to a single dose of 7Gy gamma radiation. One day following irradiation, the estimation of oxidative stress biomarkers (malondialdehyde, MDA; glutathione peroxidase, GPX), DNA fragmentation, and histopathological alterations were performed in brain cortical and hippocampal tissues in both normal and irradiated rats. The chosen neuroprotective dose of AuNPs (1000 µg/kg) was processed with ALA (100 mg/kg) to prepare the AuNPs-ALA mixture. The acute neuroprotective effect of AuNPs-ALA in irradiated rats was determined against valproic acid as a neuroprotective centrally acting reference drug. All drugs were orally administered one hour before the 7Gy-gamma irradiation. One day following irradiation, animals were sacrificed and exposed to examinations such as those of the preliminary experiment. Administration of AuNPs, ALA, and AuNPs-ALA mixture before irradiation significantly attenuated the radiation-induced oxidative stress through amelioration of MDA content and GPX activity along with alleviating DNA fragmentation and histopathological changes in both cortical and hippocampal tissues. Notably, the AuNPs-ALA mixture showed superior effect compared to that of AuNPs or ALA alone, as it mitigated oxidative stress, DNA damage, and histopathological injury collectively. Administration of AuNPs-ALA resulted in normalized MDA content, increased GPX activity, restored DNA content in the cortex and hippocampus besides only mild histopathological changes. The present data suggest that the AuNPs-ALA mixture may be considered a potential candidate for alleviating radiation-associated brain toxicity.
Collapse
Affiliation(s)
- Noha F. Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
- Correspondence: ; Tel.: +20-223624917
| | - Ahmed I. El-Batal
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT)—Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - Yara M. Amin
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT)—Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - Asrar M. Hawas
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT)—Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - Seham H. M. Hassan
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology (NCRRT)—Egyptian Atomic Energy Authority, Cairo 11787, Egypt
| | - Nihad I. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
6
|
Regenerative antibacterial hydrogels from medicinal molecule for diabetic wound repair. Bioact Mater 2022; 25:541-554. [PMID: 37056262 PMCID: PMC10087079 DOI: 10.1016/j.bioactmat.2022.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Hydrogel products for chronic diabetic wounds, a serious and prevalent complication of diabetes, show limited effects on disability and remain nonspecific. Thus, improvements in the usage of pharmaceutical molecule in the hydrogels are highly desirable to increase the therapeutic effect of hydrogels. In this study, thioctic acid (a common medicine molecule in diabetes treatment) is used for preparing regenerative antibacterial hydrogels (RAH) which contains in situ synthesized silver nanoparticles (AgNPs). The RAH shows regenerative, self-healing and injectable ability, because of the reversible hydrogen and coordination bonds. With good regenerative capacity, RAH can be stored as powder to avoid the water loss and facilitate storage availability. Owing to the antioxidant properties of thioctic acid, the RAH can decrease the oxidative damage and retain cell proliferation efficiency. Due to the in situ synthesized AgNPs, the RAH also exhibits extraordinary antimicrobial capacities against MDR bacteria. All of these superiorities enable RAH to be a promising therapy for chronic diabetic wounds.
Collapse
|
7
|
|
8
|
Hajtuch J, Santos-Martinez MJ, Wojcik M, Tomczyk E, Jaskiewicz M, Kamysz W, Narajczyk M, Inkielewicz-Stepniak I. Lipoic Acid-Coated Silver Nanoparticles: Biosafety Potential on the Vascular Microenvironment and Antibacterial Properties. Front Pharmacol 2022; 12:733743. [PMID: 35153735 PMCID: PMC8831385 DOI: 10.3389/fphar.2021.733743] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/26/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose: To study and compare the antibacterial properties and the potential cytotoxic effects of commercially available uncoated silver nanoparticles (AgNPs) with lipoic acid coated silver nanoparticles (AgNPsLA) developed by our group. The antibacterial, cytotoxic, and hemolytic properties of those NPs were assessed with the main objective of investigating if AgNPsLA could maintain their antibacterial properties while improving their biosafety profile over uncoated AgNPs within the blood vessel's microenvironment. Methods: Comercially available uncoated 2.6 nm AgNPs and 2.5 nm AgNPsLA synthesized and characterized as previously described by our group, were used in this study. Antimicrobial activity was assessed on a wide range of pathogens and expressed by minimal inhibitory concentrations (MIC). Assessment of cytotoxicity was carried out on human umbilical vein endothelial cells (HUVEC) using an MTT test. Detection of reactive oxygen species, cell apoptosis/necrosis in HUVEC, and measurement of mitochondrial destabilization in HUVEC and platelets were performed by flow cytometry. The potential harmful effect of nanoparticles on red blood cells (RBCs) was investigated measuring hemoglobin and LDH released after exposure to NPs. Transmission electron microscopy was also used to determine if AgNPs and AgNPsLA could induce any ultrastructural changes on HUVEC cells and Staphylococcus aureus bacteria. Results: AgNPs and AgNPsLA had antimicrobial properties against pathogens associated with catheter-related bloodstream infections. AgNPs, in contrast to AgNPsLA, induced ROS production and apoptosis in HUVEC, ultrastructural changes in HUVEC and S. aureus, depolarization of mitochondrial membrane in HUVEC and platelets, and also hemolysis. Conclusion: AgNPsLA synthesized by our group have antimicrobial activity and a better biosafety profile than uncoated AgNPs of similar size. Those observations are of critical importance for the future in vivo investigations and the potential application of AgNPsLA in medical devices for human use.
Collapse
Affiliation(s)
- Justyna Hajtuch
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Maria Jose Santos-Martinez
- School of Pharmacy and Pharmaceutical Sciences and School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Michal Wojcik
- Department of Organic Chemistry and Chemical Technology, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Ewelina Tomczyk
- Department of Organic Chemistry and Chemical Technology, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Maciej Jaskiewicz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
9
|
Wang X, Zheng X, Liu X, Zeng B, Xu Y, Yuan C, Dai L. K+-Responsive Crown Ether-Based Amphiphilic Copolymer: Synthesis and Application in the Release of Drugs and Au Nanoparticles. Polymers (Basel) 2022; 14:polym14030406. [PMID: 35160395 PMCID: PMC8840459 DOI: 10.3390/polym14030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Due to unique chelating and macrocyclic effects, crown ether compounds exhibit wide application prospects. They could be introduced into amphiphilic copolymers to provide new trigger mode for drug delivery. In this work, new amphiphilic random polymers of poly(lipoic acid-methacrylate-co-poly(ethylene glycol) methyl ether methacrylate-co-N-isopropylacrylamide-co-benzo-18-crown-6-methacrylamide (abbrev. PLENB) containing a crown ether ring and disulphide bond were synthesized via RAFT polymerization. Using the solvent evaporation method, the PLENB micelles were formed and then used to load substances, such as doxorubicin hydrochloride (DOX) and gold nanoparticles. The results showed that PLENB exhibited a variety of lowest critical solution temperature (LCST) in response to the presence of different ions, such as K+, Na+ and Mg2+. In particular, the addition of 150 mM K+ increased the LCST of PLENB from 31 to 37 °C and induced the release of DOX from the PLENB@DOX assemblies with a release rate of 99.84% within 12 h under 37 °C. However, Na+ and Mg2+ ions could not initiate the same response. Furthermore, K+ ions drove the disassembly of gold aggregates from the PLENB-SH@Au assemblies to achieve the transport of Au NPs, which is helpful to construct a K+-triggered carrier system.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China; (X.W.); (X.Z.); (X.L.); (Y.X.); (C.Y.)
| | - Xianghong Zheng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China; (X.W.); (X.Z.); (X.L.); (Y.X.); (C.Y.)
| | - Xinyu Liu
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China; (X.W.); (X.Z.); (X.L.); (Y.X.); (C.Y.)
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen 361005, China
| | - Birong Zeng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China; (X.W.); (X.Z.); (X.L.); (Y.X.); (C.Y.)
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen 361005, China
- Correspondence: (B.Z.); (L.D.)
| | - Yiting Xu
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China; (X.W.); (X.Z.); (X.L.); (Y.X.); (C.Y.)
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen 361005, China
| | - Conghui Yuan
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China; (X.W.); (X.Z.); (X.L.); (Y.X.); (C.Y.)
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen 361005, China
| | - Lizong Dai
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China; (X.W.); (X.Z.); (X.L.); (Y.X.); (C.Y.)
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen 361005, China
- Correspondence: (B.Z.); (L.D.)
| |
Collapse
|
10
|
Novel Structures of Functionalized Graphene Oxide with Hydrazide: Characterization and Bioevaluation of Antimicrobial and Cytocompatibility Features. COATINGS 2021. [DOI: 10.3390/coatings12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Graphite was oxidized to graphene oxide and activated by thionyl chloride, for further covalently linking three hydrazides with potential biological activity. The obtained materials were characterized by scanning electron microscopy with energy dispersive spectroscopy, Fourier-transform infrared and Raman spectroscopies. The presence of various functional groups specific to graphene oxide (GO) functionalized with different hydrazides was confirmed by spectral data. The ratio between D- and G-bands, observed in Raman spectra, allowed for an evaluation of the disorder degree and the mean crystallite size of the samples. The micrographs highlighted that the samples lead to the occurrence of disorders, probably caused by the sp3 carbons, the formation of oxygen-containing functional groups in the basal planes, and by various structural defects. The new graphene oxide–hydrazide derivatives were tested for their antimicrobial and cytotoxicity activity. Their antimicrobial activity against planktonic and biofilm-embedded cells was inferior to that of free hydrazides, except for GO-3 against planktonic Escherichia coli and GO-2 against Pseudomonas aeruginosa biofilm, demonstrating that further optimization is needed to be able to exploit the huge potential of GO for developing potent antimicrobials.
Collapse
|
11
|
Gunupuru R, Mehrotra A, Sairam PS, Vyas G, Pandey JK, Sen A. Chitosan Matrix Encapsulation of α‐Lipoic Acid (LA) Anchored Gold Nanoparticles: A Combined Experimental and Theoretical Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ravi Gunupuru
- University of Petroleum and Energy Studies (UPES) Dehradun Uttarakhand
- Woxsen University Hyderabad, Telengana
| | | | | | - Gaurav Vyas
- CSIR-CSMCRI, Analytical and Environmental Science Division and Centralized Instrument Facility Bhavnagar
| | - Jitendra K Pandey
- Adamas University School of Basic and Applied Sciences Kolkata West Bengal
| | - Anik Sen
- Department of Chemistry GITAM Institute of Science GITAM (Deemed to be University) Gandhi Nagar, Rushikonda Andhra Pradesh 530045 India
| |
Collapse
|
12
|
Perzanowska O, Majewski M, Strenkowska M, Głowala P, Czarnocki-Cieciura M, Mazur M, Kowalska J, Jemielity J. Nucleotide-decorated AuNPs as probes for nucleotide-binding proteins. Sci Rep 2021; 11:15741. [PMID: 34344911 PMCID: PMC8333360 DOI: 10.1038/s41598-021-94983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
Gold nanoparticles (AuNPs) decorated with biologically relevant molecules have variety of applications in optical sensing of bioanalytes. Coating AuNPs with small nucleotides produces particles with high stability in water, but functionality-compatible strategies are needed to uncover the full potential of this type of conjugates. Here, we demonstrate that lipoic acid-modified dinucleotides can be used to modify AuNPs surfaces in a controllable manner to produce conjugates that are stable in aqueous buffers and biological mixtures and capable of interacting with nucleotide-binding proteins. Using this strategy we obtained AuNPs decorated with 7-methylguanosine mRNA 5' cap analogs and showed that they bind cap-specific protein, eIF4E. AuNPs decorated with non-functional dinucleotides also interacted with eIF4E, albeit with lower affinity, suggesting that eIF4E binding to cap-decorated AuNPs is partially mediated by unspecific ionic interactions. This issue was overcome by applying lipoic-acid-Tris conjugate as a charge-neutral diluting molecule. Tris-Lipo-diluted cap-AuNPs conjugates interacted with eIF4E in fully specific manner, enabling design of functional tools. To demonstrate the potential of these conjugates in protein sensing, we designed a two-component eIF4E sensing system consisting of cap-AuNP and 4E-BP1-AuNP conjugates, wherein 4E-BP1 is a short peptide derived from 4E-BP protein that specifically binds eIF4E at a site different to that of the 5' cap. This system facilitated controlled aggregation, in which eIF4E plays the role of the agent that crosslinks two types of AuNP, thereby inducing a naked-eye visible absorbance redshift. The reported AuNPs-nucleotide conjugation method based on lipoic acid affinity for gold, can be harnessed to obtain other types of nucleotide-functionalized AuNPs, thereby paving the way to studying other nucleotide-binding proteins.
Collapse
Affiliation(s)
- Olga Perzanowska
- Division of Biophysics, Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Stefana Banacha 2c, 02-097, Warsaw, Poland
| | - Maciej Majewski
- Division of Biophysics, Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093, Warsaw, Poland
| | - Malwina Strenkowska
- Division of Biophysics, Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093, Warsaw, Poland
| | - Paulina Głowala
- Faculty of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland
| | - Mariusz Czarnocki-Cieciura
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Maciej Mazur
- Faculty of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093, Warsaw, Poland.
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Stefana Banacha 2c, 02-097, Warsaw, Poland.
| |
Collapse
|
13
|
Zhou B, Guo X, Yang N, Huang Z, Huang L, Fang Z, Zhang C, Li L, Yu C. Surface engineering strategies of gold nanomaterials and their applications in biomedicine and detection. J Mater Chem B 2021; 9:5583-5598. [PMID: 34161402 DOI: 10.1039/d1tb00181g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanomaterials have potential applications in biosensors and biomedicine due to their controllable synthesis steps, high biocompatibility, low toxicity and easy surface modification. However, there are still various limitations including low water solubility and stability, which greatly affect their applications. In addition, some synthetic methods are very complicated and costly. Therefore, huge efforts have been made to improve their properties. This review mainly introduces the strategies for surface modification of gold nanomaterials, such as amines, biological small molecules and organic small molecules as well as the biological applications of these functionalized AuNPs. We aim to provide effective ideas for better functionalization of gold nanomaterials in the future.
Collapse
Affiliation(s)
- Bicong Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Zhongxi Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Lihua Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Zhijie Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| |
Collapse
|
14
|
Piersimoni ME, Teng X, Cass AEG, Ying L. Antioxidant lipoic acid ligand-shell gold nanoconjugates against oxidative stress caused by α-synuclein aggregates. NANOSCALE ADVANCES 2020; 2:5666-5681. [PMID: 36133855 PMCID: PMC9416995 DOI: 10.1039/d0na00688b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/21/2020] [Indexed: 05/13/2023]
Abstract
Gold nanoparticles are becoming a promising platform for the delivery of drugs to treat neurodegenerative diseases. Parkinson's disease, associated with the aggregation of α-synuclein, is a condition that results in dysfunctional neuronal cells leading to their degeneration and death. Oxidative stress has been strongly implicated as a common feature in this process. The limited efficacy of the traditional therapies and the development of associated severe side effects present an unmet need for preventive and adjuvant therapies. The organosulfur compound lipoic acid, naturally located in the mitochondria, plays a powerful antioxidative role against oxidative stress. However, the efficacy is limited by its low physiological concentration, and the administration is affected by its short half-life and bioavailability due to hepatic degradation. Here we exploited the drug delivery potential of gold nanoparticles to assemble lipoic acid, and administered the system into SH-SY5Y cells, a cellular model commonly used to study Parkinson's disease. We tested the nanoconjugates of GNPs-LA, under an oxidative environment induced by gold nanoparticle/α-synuclein conjugates (GNPs-α-Syn). GNPs-LA were found to be biocompatible and capable of restoring the cell damage caused by high-level reactive oxygen species generated by excessive oxidative stress in the cellular environment. We conclude that GNPs-LA may serve as promising drug delivery vehicles conveying antioxidant molecules for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Maria Elena Piersimoni
- National Heart and Lung Institute, Imperial College London, Molecular Sciences Research Hub London W12 0BZ UK
- Bio Nano Consulting London W1T 4TQ UK
| | - Xiangyu Teng
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub London W12 0BZ UK
| | - Anthony E G Cass
- Bio Nano Consulting London W1T 4TQ UK
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub London W12 0BZ UK
| | - Liming Ying
- National Heart and Lung Institute, Imperial College London, Molecular Sciences Research Hub London W12 0BZ UK
| |
Collapse
|
15
|
Caballero AB, Cardo L, Claire S, Craig JS, Hodges NJ, Vladyka A, Albrecht T, Rochford LA, Pikramenou Z, Hannon MJ. Assisted delivery of anti-tumour platinum drugs using DNA-coiling gold nanoparticles bearing lumophores and intercalators: towards a new generation of multimodal nanocarriers with enhanced action. Chem Sci 2019; 10:9244-9256. [PMID: 32055309 PMCID: PMC7003971 DOI: 10.1039/c9sc02640a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
New gold and lipoic based nanocarriers for the delivery of platinum(ii) and platinum(iv) drugs are developed, which allow enhanced loading of the drug on the surface of the nanocarriers and release in a pH-dependent fashion, with superior release at lower pHs which are associated with many tumours. The conjugate nanoparticles and their conjugates enter cells rapidly (within 3 hours). They tend to cluster in vesicles and are also observed by light and electron microscopies in the cytoplasm, endoplasmic reticulum and nucleus. We further incorporate aminoanthraquinone units that are both fluorophores and DNA intercalators. This results in nanocarriers that after drug release will remain surface decorated with DNA-binders challenging the conventional design of the nanocarrier as an inert component. The outcome is nanocarriers that themselves have distinctive, remarkable and unusual DNA binding properties being able to bind and wrap DNA (despite their anionic charge) and provide enhanced cytotoxic activity beyond that conferred by the platinum agents they release. DNA coiling is usually associated with polycations which can disrupt cell membranes; anionic nanoparticles that can cause novel and dramatic effects on DNA may have fascinating potential for new approaches to in-cell nucleic acid recognition. Our findings have implications for the understanding and interpretation of the biological activities of nanoparticles used to deliver other DNA-binding drugs including clinical drug doxorubicin and its formulations.
Collapse
Affiliation(s)
- Ana B Caballero
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK . ;
| | - Lucia Cardo
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK . ;
| | - Sunil Claire
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK . ;
| | - James S Craig
- Physical Sciences for Health Centre , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK
| | - Nikolas J Hodges
- School of Biosciences , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK
| | - Anton Vladyka
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK . ;
| | - Tim Albrecht
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK . ;
| | - Luke A Rochford
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK . ;
| | - Zoe Pikramenou
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK . ;
| | - Michael J Hannon
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK . ;
| |
Collapse
|
16
|
Hajtuch J, Hante N, Tomczyk E, Wojcik M, Radomski MW, Santos-Martinez MJ, Inkielewicz-Stepniak I. Effects of functionalized silver nanoparticles on aggregation of human blood platelets. Int J Nanomedicine 2019; 14:7399-7417. [PMID: 31571858 PMCID: PMC6750026 DOI: 10.2147/ijn.s213499] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We studied the effects of silver nanoparticles (AgNPs) on human blood platelet function. We hypothesized that AgNPs, a known antimicrobial agent, can be used as blood-compatible, "ideal material'' in medical devices or as a drug delivery system. Therefore, the aim of the current study was to investigate if functionalized AgNPs affect platelet function and platelets as well as endothelial cell viability in vitro. METHODS AgNPs, functionalized with reduced glutathione (GSH), polyethylene glycol (PEG) and lipoic acid (LA) were synthesized. Quartz crystal microbalance with dissipation was used to measure the effect of AgNPs on platelet aggregation. Platelet aggregation was measured by changes in frequency and dissipation, and the presence of platelets on the sensor surface was confirmed and imaged by phase contrast microscopy. Flow cytometry was used to detect surface abundance of platelet receptors. Lactate dehydrogenase test was used to assess the potential cytotoxicity of AgNPs on human blood platelets, endothelial cells, and fibroblasts. Commercially available ELISA tests were used to measure the levels of thromboxane B2 and metalloproteinases (MMP-1, MMP-2) released by platelets as markers of platelet activation. RESULTS 2 nm AgNPs-GSH, 3.7 nm AgNPs-PEG both at 50 and 100 µg/mL, and 2.5 nm AgNPs-LA at 100 µg/mL reduced platelet aggregation, inhibited collagen-mediated increase in total P-selectin and GPIIb/IIIa, TXB2 formation, MMP-1, and MMP-2 release. The tested AgNPs concentrations were not cytotoxic as they did not affect, platelet, endothelial cell, or fibroblast viability. CONCLUSION All tested functionalized AgNPs inhibited platelet aggregation at nontoxic concentrations. Therefore, functionalized AgNPs can be used as an antiplatelet agent or in design and manufacturing of blood-facing medical devices, such as vascular grafts, stents, heart valves, and catheters.
Collapse
Affiliation(s)
- Justyna Hajtuch
- Department of Medical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Nadhim Hante
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin2, Ireland
| | | | - Michal Wojcik
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Marek Witold Radomski
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
17
|
Kumar P, Shivam P, Mandal S, Prasanna P, Kumar S, Prasad SR, Kumar A, Das P, Ali V, Singh SK, Mandal D. Synthesis, characterization, and mechanistic studies of a gold nanoparticle-amphotericin B covalent conjugate with enhanced antileishmanial efficacy and reduced cytotoxicity. Int J Nanomedicine 2019; 14:6073-6101. [PMID: 31686803 PMCID: PMC6709383 DOI: 10.2147/ijn.s196421] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Background Amphotericin B (AmB) as a liposomal formulation of AmBisome is the first line of treatment for the disease, visceral leishmaniasis, caused by the parasite Leishmania donovani. However, nephrotoxicity is very common due to poor water solubility and aggregation of AmB. This study aimed to develop a water-soluble covalent conjugate of gold nanoparticle (GNP) with AmB for improved antileishmanial efficacy and reduced cytotoxicity. Methods Citrate-reduced GNPs (~39 nm) were functionalized with lipoic acid (LA), and the product GNP-LA (GL ~46 nm) was covalently conjugated with AmB using carboxyl-to-amine coupling chemistry to produce GNP-LA-AmB (GL-AmB ~48 nm). The nanoparticles were characterized by dynamic light scattering, transmission electron microscopy (TEM), and spectroscopic (ultraviolet–visible and infrared) methods. Experiments on AmB uptake of macrophages, ergosterol depletion of drug-treated parasites, cytokine ELISA, fluorescence anisotropy, flow cytometry, and gene expression studies established efficacy of GL-AmB over standard AmB. Results Infrared spectroscopy confirmed the presence of a covalent amide bond in the conjugate. TEM images showed uniform size with smooth surfaces of GL-AmB nanoparticles. Efficiency of AmB conjugation was ~78%. Incubation in serum for 72 h showed <7% AmB release, indicating high stability of conjugate GL-AmB. GL-AmB with AmB equivalents showed ~5-fold enhanced antileishmanial activity compared with AmB against parasite-infected macrophages ex vivo. Macrophages treated with GL-AmB showed increased immunostimulatory Th1 (IL-12 and interferon-γ) response compared with standard AmB. In parallel, AmB uptake was ~5.5 and ~3.7-fold higher for GL-AmB-treated (P<0.001) macrophages within 1 and 2 h of treatment, respectively. The ergosterol content in GL-AmB-treated parasites was ~2-fold reduced compared with AmB-treated parasites. Moreover, GL-AmB was significantly less cytotoxic and hemolytic than AmB (P<0.01). Conclusion GNP-based delivery of AmB can be a better, cheaper, and safer alternative than available AmB formulations.
Collapse
Affiliation(s)
- Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, India
| | - Pushkar Shivam
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Saptarshi Mandal
- Department of Chemistry, Indian Institute of Technology Patna, Patna, India
| | - Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, India
| | - Saurabh Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, India
| | - Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, India
| | - Ashish Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna, India
| | - Vahab Ali
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Shubhankar Kumar Singh
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, India
| |
Collapse
|
18
|
Venditti I. Engineered Gold-Based Nanomaterials: Morphologies and Functionalities in Biomedical Applications. A Mini Review. Bioengineering (Basel) 2019; 6:bioengineering6020053. [PMID: 31185667 PMCID: PMC6630817 DOI: 10.3390/bioengineering6020053] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022] Open
Abstract
In the last decade, several engineered gold-based nanomaterials, such as spheres, rods, stars, cubes, hollow particles, and nanocapsules have been widely explored in biomedical fields, in particular in therapy and diagnostics. As well as different shapes and dimensions, these materials may, on their surfaces, have specific functionalizations to improve their capability as sensors or in drug loading and controlled release, and/or particular cell receptors ligands, in order to get a definite targeting. In this review, the up-to-date progress will be illustrated regarding morphologies, sizes and functionalizations, mostly used to obtain an improved performance of nanomaterials in biomedicine. Many suggestions are presented to organize and compare the numerous and heterogeneous experimental data, such as the most important chemical-physical parameters, which guide and control the interaction between the gold surface and biological environment. The purpose of all this is to offer the readers an overview of the most noteworthy progress and challenges in this research field.
Collapse
Affiliation(s)
- Iole Venditti
- Department of Sciences, University of Roma Tre, via della Vasca Navale 79, 00146 Rome, Italy.
| |
Collapse
|
19
|
Ranjan Sarker S, Polash SA, Boath J, Kandjani AE, Poddar A, Dekiwadia C, Shukla R, Sabri Y, Bhargava SK. Functionalization of Elongated Tetrahexahedral Au Nanoparticles and Their Antimicrobial Activity Assay. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13450-13459. [PMID: 30869505 DOI: 10.1021/acsami.9b02279] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gold nanoparticles are inert for the human body, and therefore, they have been functionalized to provide them with antibacterial properties. Here, elongated tetrahexahedral (ETHH) Au nanoparticles were synthesized, characterized, and functionalized with lipoic acid (LA), a natural antioxidant with a terminal carboxylic acid and a dithiolane ring, to generate ETHH-LA Au nanoparticles. The antioxidant activity of Au nanoparticles was investigated in vitro, showing that LA enhances the 2,2-diphenyl-1-picrylhydrazyl free-radical scavenging and Fe3+ ion reducing activity of ETHH-LA at higher amounts. The antimicrobial propensities of the nanoparticles were investigated against Gram-positive ( Bacillus subtilis) and Gram-negative ( Escherichia coli) bacteria through propidium iodide assay as well as disk diffusion assay. ETHH-LA Au nanoparticles showed significantly higher antimicrobial activity against B. subtilis compared with E. coli. Furthermore, ETHH-LA Au nanoparticles also showed significantly better antimicrobial activity against both bacterial strains when compared with ETHH. ETHH Au nanoparticles also bring about the oxidation of bacterial cell membrane fatty acids and produce lipid peroxides. ETHH-LA showed higher lipid peroxidation potential than that of ETHH against both bacteria tested. The hemolytic potential of Au nanoparticles was investigated using human red blood cells and ETHH-LA showed reduced hemolytic activity than that of ETHH. The cytotoxicity of Au nanoparticles was investigated using human cervical cancer cells, HeLa, and ETHH-LA Au nanoparticles showed reduced cytotoxicity than that of ETHH. Taken together, LA enhances the antimicrobial activity of ETHH Au nanoparticles and Au nanoparticles interact with the bacteria through electrostatic interactions as well as hydrophobic interactions and damage the bacterial cell wall followed by oxidation of cell membrane fatty acids.
Collapse
Affiliation(s)
- Satya Ranjan Sarker
- Department of Biotechnology and Genetic Engineering , Jahangirnagar University , Savar , Dhaka 1342 , Bangladesh
| | - Shakil Ahmed Polash
- Department of Biotechnology and Genetic Engineering , Jahangirnagar University , Savar , Dhaka 1342 , Bangladesh
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Anticancer Effect of Intracellular-Delivered Doxorubicin Using a Redox-Responsive LMWSC-g-Lipoic Acid Micelles. Macromol Res 2018. [DOI: 10.1007/s13233-018-6113-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Vamanu E, Ene M, Biță B, Ionescu C, Crăciun L, Sârbu I. In Vitro Human Microbiota Response to Exposure to Silver Nanoparticles Biosynthesized with Mushroom Extract. Nutrients 2018; 10:E607. [PMID: 29757931 PMCID: PMC5986487 DOI: 10.3390/nu10050607] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/16/2022] Open
Abstract
The ability to orally administer silver nanoparticles (AgNPs) in enteric capsules implies a direct interaction with the colon microbiota. The in vitro effect provides a portrayal of the functional properties under in vivo conditions. The purpose of this study was to describe a green AgNP synthesis process, using aqueous extract from Lactarius piperatus mushroom, and to characterize the nanomaterial. We determined its antimicrobial and antioxidant effects in vitro in the microbiota of healthy individuals via the GIS1 system-a colon transit simulator. Per the quantitative polymerase chain reaction (qPCR) results, the antimicrobial properties of the AgNPs affected the initial share of different enteric species by decreasing the Bacteroides, Enterobacteriaceae, and Lactobacillus populations and favoring the Bifidobacterium group. The association between AgNPs and wild mushroom L. piperatus extract had a synergistic antibacterial activity against various pathogenic microorganisms while the mushroom extract reduced biofilm formation. Administration of AgNP maintained its constant antioxidant status, and it was correlated with a reduction in ammonium compounds. The physicochemical characterization of these NPs complemented their biochemical characterization. The maximum ultraviolet-visible spectroscopy (UV-VIS) absorbance was observed at 440 nm, while the Fourier transform infrared (FT-IR) spectrum reached a peak at 3296 cm⁻1, which was correlated with the high-performance liquid chromatographic analysis (HPLC). The major phenolic compound was homogentisic acid. The size (49 ± 16 nm in diameter) and spherical shape of the NPs were correlated with their biological effects in vitro.
Collapse
Affiliation(s)
- Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine, Bd. Mărăşti no. 59, district 1, 011464 Bucharest, Romania.
| | - Mihaela Ene
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului, 077125 Magurele, Romania.
| | - Bogdan Biță
- Faculty of Physics, University of Bucharest, 405 Atomistilor Blv., 077125 Magurele, Romania.
| | - Cristina Ionescu
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului, 077125 Magurele, Romania.
| | - Liviu Crăciun
- Horia Hulubei National Institute for Physics and Nuclear Engineering, 30 Reactorului, 077125 Magurele, Romania.
| | - Ionela Sârbu
- ICUB-Research Institute of the University of Bucharest 36-46 Bd. M. Kogalniceanu, 5th District, 050107 Bucharest, Romania.
| |
Collapse
|