1
|
Cleret de Langavant C, Oh J, Lochon F, Tusseau-Nenez S, Ponsinet V, Baron A, Gacoin T, Kim J. Near-Infrared Dual-Band LSPR Coupling in Oriented Assembly of Doped Metal Oxide Nanocrystal Platelets. NANO LETTERS 2024; 24:3074-3081. [PMID: 38412556 DOI: 10.1021/acs.nanolett.3c04849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Coupling effects of localized surface plasmon resonance (LSPR) represent an efficient means to tune the plasmonic modes and to enhance the near-field. While LSPR coupling in metal nanoparticles has been extensively explored, limited attention has been given to heavily doped semiconductor nanocrystals. Here, we investigate the LSPR coupling behavior of Cs-doped tungsten oxide (CsxWO3-δ) nanocrystal platelets as they undergo an oriented assembly into parallel stacks. The oriented assembly was achieved by lowering the dispersion stability of the colloidal nanoplatelets, of which the basal surface was selectively ligand-functionalized. This assembly induces simultaneous blue-shifts and red-shifts of dual-mode LSPR peaks without compromising the intensity and quality factor. This stands in contrast to the significant damping, broadening, and overall red-shift of the LSPR observed in random assemblies. Computational simulations successfully replicate the experimental observations, affirming the potential of this coupling phenomenon of near-infrared dual-mode LSPR in diverse applications including solar energy, bio-optics, imaging, and telecommunications.
Collapse
Affiliation(s)
- Capucine Cleret de Langavant
- Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Jisoo Oh
- Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Florian Lochon
- Université de Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| | - Sandrine Tusseau-Nenez
- Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Virginie Ponsinet
- Université de Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| | - Alexandre Baron
- Université de Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
- Institut Universitaire de France, 1 Rue Descartes, 75231 Paris Cedex 05, France
| | - Thierry Gacoin
- Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Jongwook Kim
- Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
2
|
Jia XM, Zhou J. Anomalous segmental dynamics of supercooled polyrotaxane melts: A computer simulation study. J Chem Phys 2023; 159:244901. [PMID: 38131486 DOI: 10.1063/5.0180375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Polyrotaxanes, which consist of mechanically interlocked bonds with rings threaded onto soft polymer chains, exhibit unique mechanical properties and find applications in diverse fields. In this study, we investigate the anomalous segmental dynamics of supercooled polyrotaxane melts using coarse-grained molecular dynamics simulations. Our simulations reveal that the presence of rings effectively reduces the packing efficiency, resulting in well-contained local motion even below the glass transition temperature. We also observe variations in dynamical free volume, characterized by the Debye-Waller factor, which shows a minimum at a ring coverage of 0.1 on threading chains. Such a non-monotonic dependence on coverage shows great consistency in structural relaxation time and dynamic heterogeneity. Specifically, the high segmental mobility of threading linear chains at large coverage can be attributed to the increased dynamical free volume due to supported rigid rings. However, such anomalous segmental dynamics is limited to length scales smaller than one ring size. Beyond this characteristic length scale, the diffusion is dominated by topological constraints, which significantly reduce the mobility of polyrotaxanes and enhance the dynamic heterogeneity. These findings offer microscopic insights into the unique packing structures and anomalous segmental dynamics of supercooled polyrotaxane melts, facilitating the design of advanced materials based on mechanical interlocking polymers for various applications.
Collapse
Affiliation(s)
- Xiang-Meng Jia
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jiajia Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Gómez-Graña S, Pérez-Juste J, Hervés P. Cyclodextrins and inorganic nanoparticles: Another tale of synergy. Adv Colloid Interface Sci 2021; 288:102338. [PMID: 33383472 DOI: 10.1016/j.cis.2020.102338] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022]
Abstract
In this review, we summarize the recent research focused on the combination of inorganic nanoparticles and α-, β- and γ- cyclodextrins. Our intention is to highlight the most relevant publications on the synthesis of nanoparticle-cyclodextrin (NP-CD) nanohybrids, with CDs acting as reducing agents or through the post-synthetic modification of inorganic nanoparticles with CDs. We also discuss the new or enhanced properties that arise from the host-guest capabilities of the CDs and inorganic nanoparticles. Finally, we illustrate the potential applications of these materials in numerous research fields.
Collapse
Affiliation(s)
- Sergio Gómez-Graña
- CINBIO, Departamento de Química Física, Universidade de Vigo, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain.
| | - Jorge Pérez-Juste
- CINBIO, Departamento de Química Física, Universidade de Vigo, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Pablo Hervés
- CINBIO, Departamento de Química Física, Universidade de Vigo, Campus Universitario Lagoas, Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| |
Collapse
|
4
|
Díaz-Núñez P, García-Martín JM, González MU, González-Arrabal R, Rivera A, Alonso-González P, Martín-Sánchez J, Taboada-Gutiérrez J, González-Rubio G, Guerrero-Martínez A, Bañares L, Peña-Rodríguez O. On the Large Near-Field Enhancement on Nanocolumnar Gold Substrates. Sci Rep 2019; 9:13933. [PMID: 31558753 PMCID: PMC6763449 DOI: 10.1038/s41598-019-50392-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/31/2019] [Indexed: 11/08/2022] Open
Abstract
One of the most important and distinctive features of plasmonic nanostructures is their ability to confine large electromagnetic fields on nanometric volumes; i.e., the so-called hot spots. The generation, control and characterization of the hot spots are fundamental for several applications, like surface-enhanced spectroscopies. In this work, we characterize the near-field distribution and enhancement of nanostructured gold thin films fabricated by glancing angle deposition magnetron sputtering. These films are composed of columnar nanostructures with high roughness and high density of inter-columnar gaps, where the electromagnetic radiation can be confined, generating hot spots. As expected, the hot spots are localized in the gaps between adjacent nanocolumns and we use scattering-type scanning near-field optical microscopy to image their distribution over the surface of the samples. The experimental results are compared with finite-difference time-domain simulations, finding an excellent agreement between them. The spectral dependence of the field-enhancement is also studied with the simulations, together with surface-enhanced Raman spectroscopy at different excitation wavelengths in the visible-NIR range, proving a broad-band response of the substrates. These findings may result in interesting applications in the field of surface-enhanced optical spectroscopies or sensing.
Collapse
Affiliation(s)
- Pablo Díaz-Núñez
- Instituto de Fusión Nuclear "Guillermo Velarde", Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, E-28006, Madrid, Spain.
| | - José Miguel García-Martín
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, 28760, Tres Cantos, Spain
| | - María Ujué González
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, 28760, Tres Cantos, Spain
| | - Raquel González-Arrabal
- Instituto de Fusión Nuclear "Guillermo Velarde", Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, E-28006, Madrid, Spain
- Departamento de Ingeniería Energética, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, E-28006, Madrid, Spain
| | - Antonio Rivera
- Instituto de Fusión Nuclear "Guillermo Velarde", Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, E-28006, Madrid, Spain
- Departamento de Ingeniería Energética, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, E-28006, Madrid, Spain
| | - Pablo Alonso-González
- Departamento de Física, Universidad de Oviedo, E-33007, Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), El Entrego, 33940, Spain
| | - Javier Martín-Sánchez
- Departamento de Física, Universidad de Oviedo, E-33007, Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), El Entrego, 33940, Spain
| | - Javier Taboada-Gutiérrez
- Departamento de Física, Universidad de Oviedo, E-33007, Oviedo, Spain
- Center of Research on Nanomaterials and Nanotechnology, CINN (CSIC-Universidad de Oviedo), El Entrego, 33940, Spain
| | - Guillermo González-Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, E-28040, Madrid, Spain
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia, San Sebastián, Spain
| | - Andrés Guerrero-Martínez
- Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, E-28040, Madrid, Spain
| | - Luis Bañares
- Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, E-28040, Madrid, Spain
- Centro de Láseres Ultrarrápidos, Universidad Complutense de Madrid, Avenida Complutense s/n, E-28040, Madrid, Spain
| | - Ovidio Peña-Rodríguez
- Instituto de Fusión Nuclear "Guillermo Velarde", Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, E-28006, Madrid, Spain
- Departamento de Ingeniería Energética, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, E-28006, Madrid, Spain
| |
Collapse
|
5
|
Extra Surfactant-Assisted Self-Assembly of Highly Ordered Monolayers of BaTiO₃ Nanocubes at the Air⁻Water Interface. NANOMATERIALS 2018; 8:nano8090739. [PMID: 30231568 PMCID: PMC6164249 DOI: 10.3390/nano8090739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 11/16/2022]
Abstract
Assembly of nanocrystals into ordered two- or three-dimensional arrays is an essential technology to achieve their application in novel functional devices. Among a variety of assembly techniques, evaporation-induced self-assembly (EISA) is one of the prospective approaches because of its simplicity. Although EISA has shown its potential to form highly ordered nanocrystal arrays, the formation of uniform nanocrystal arrays over large areas remains a challenging subject. Here, we introduce a new EISA method and demonstrate the formation of large-scale highly ordered monolayers of barium titanate (BaTiO₃, BT) nanocubes at the air-water interface. In our method, the addition of an extra surfactant to a water surface assists the EISA of BT nanocubes with a size of 15⁻20 nm into a highly ordered arrangement. We reveal that the compression pressure exerted by the extra surfactant on BT nanocubes during the solvent evaporation is a key factor in the self-assembly in our method. The BT nanocube monolayers transferred to substrates have sizes up to the millimeter scale and a high out-of-plane crystal orientation, containing almost no microcracks and voids.
Collapse
|
6
|
Serres-Gómez M, González-Gaitano G, Kaldybekov DB, Mansfield EDH, Khutoryanskiy VV, Isasi JR, Dreiss CA. Supramolecular Hybrid Structures and Gels from Host-Guest Interactions between α-Cyclodextrin and PEGylated Organosilica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10591-10602. [PMID: 30095271 DOI: 10.1021/acs.langmuir.8b01744] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polypseudorotaxanes are polymer chains threaded by molecular rings that are free to unthread; these "pearl-necklace" can self-assemble further, leading to higher-order supramolecular structures with interesting functionalities. In this work, the complexation between α-cyclodextrin (α-CD), a cyclic oligosaccharide of glucopyranose units, and poly(ethylene glycol) (PEG) grafted to silica nanoparticles was studied. The threading of α-CD onto the polymeric chains leads to their aggregation into bundles, followed by either the precipitation of the inclusion complex or the formation of a gel phase, in which silica nanoparticles are incorporated. The kinetics of threading, followed by turbidimetry, revealed a dependence of the rate of complexation on the following parameters: the concentration of α-CD, temperature, PEG length (750, 4000, and 5000 g mol-1), whether the polymer is grafted or free in solution, and the density of grafting. Complexation is slower, and temperature has a higher impact on PEG grafted on silica nanoparticles compared to PEG free in solution. Thermodynamic parameters extracted from the transition-state theory showed that inclusion complex formation is favored with grafted PEG compared to free PEG and establishes a ratio of complexation of five to six ethylene oxide units per cyclodextrin. The complexation yields, determined by gravimetry, revealed that much higher yields are obtained with longer chains and higher grafting density. Thermogravimetric analysis and Fourier transform infrared spectroscopy on the inclusion complex corroborate the number of macrocycles threaded on the chains. A sol-gel transition was observed with the longer PEG chain (5k) at specific mixing ratios; oscillatory shear rheology measurements confirmed a highly solid-like behavior, with an elastic modulus G' of up to 25 kPa, higher than that in the absence of silica. These results thus provide the key parameters dictating inclusion complex formation between cyclodextrin and PEG covalently attached to colloidal silica and demonstrate a facile route toward soft nanoparticle gels based on host-guest interactions.
Collapse
Affiliation(s)
- Mariana Serres-Gómez
- Department of Chemistry , University of Navarra , 31080 Pamplona , Spain
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences , King's College London , Franklin-Wilkins Building, 150 Stamford Street , SE1 9NH London , U.K
| | | | - Daulet B Kaldybekov
- Reading School of Pharmacy , University of Reading , Whiteknights, P.O. Box 224, RG6 6AD Reading , U.K
- Faculty of Chemistry and Chemical Technology , Al-Farabi Kazakh National University , Almaty 050040 , Kazakhstan
| | - Edward D H Mansfield
- Reading School of Pharmacy , University of Reading , Whiteknights, P.O. Box 224, RG6 6AD Reading , U.K
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy , University of Reading , Whiteknights, P.O. Box 224, RG6 6AD Reading , U.K
| | - José Ramón Isasi
- Department of Chemistry , University of Navarra , 31080 Pamplona , Spain
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences , King's College London , Franklin-Wilkins Building, 150 Stamford Street , SE1 9NH London , U.K
| |
Collapse
|