1
|
Shoshin DE, Sizova EA, Kamirova AM. Morphological changes and luminescence of Escherichia coli in contact with Mn 2O 3 and Co 3O 4 ultrafine particles as components of a mineral feed additive. Vet World 2024; 17:1880-1888. [PMID: 39328447 PMCID: PMC11422638 DOI: 10.14202/vetworld.2024.1880-1888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/22/2024] [Indexed: 09/28/2024] Open
Abstract
Background and Aim The spread of antibiotic resistance and mineral depletion in soils encourages an intensive search for highly effective and environmentally safe bactericidal agents and sources of macro- and micro-elements. The most profitable solution would combine both the described tasks. Ultrafine particles (UFPs) have this functionality. Thus, this study aimed to analyze the bioluminescence and external morphological changes of Escherichia coli cells after contact with M2O3 and Co3O4 UFPs at effective concentrations (ECs). Materials and Methods The antibiotic properties of the studied samples were determined on a multifunctional microplate analyzer TECAN Infinite F200 (Tecan Austria GmbH, Austria) by fixing the luminescence value of the bacterial strain E. coli K12 TG11 (Ecolum, NVO Immunotech Closed Joint Stock Company, Russia). Morphological changes in the cell structure were evaluated using a Certus Standard EG-5000 atomic force microscope equipped with NSPEC software (Nano Scan Technology LLC, Russia). Results The obtained results indicate high bactericidal properties of Co3O4 and Mn2O3 UFPs (EC50 at 3.1 × 10-5 and 1.9 × 10-3 mol/L, respectively) due to the degradation of the cell wall, pathological increase in size, disruption of septic processes, and loss of cytoplasmic contents. Conclusion The prospects for the environmentally safe use of ultrafine materials are outlined. The limits of the dosages of Co3O4 and Mn2O3 UFPs recommended for further study in vitro and in vivo in feeding farm animals are established (no more than 4.9 × 10-4 mol/L for Mn2O3 UFPs and 1.5 × 10-5 mol/L for Co3O4 UFPs). The limitation of the work is the lack of experiments to determine the mechanisms of the toxic effect of UFP on bacteria, protein structures, and DNA and oxidative stress, which is planned to be performed in the future together with in situ and in vivo studies on animals.
Collapse
Affiliation(s)
- Daniil Evgenievich Shoshin
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
- Federal State Budgetary Educational Institution of Higher Education Orenburg State University, Orenburg, Russia
| | - Elena Anatolievna Sizova
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
- Federal State Budgetary Educational Institution of Higher Education Orenburg State University, Orenburg, Russia
| | - Aina Maratovna Kamirova
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, Orenburg, Russia
| |
Collapse
|
2
|
Prudente INR, Santos HCD, Fonseca JL, Barreto LS. Advancements in self-cleaning building materials: Photocatalysts, superhydrophobic surfaces, and biocides approaches. CONSTRUCTION AND BUILDING MATERIALS 2024; 434:136700. [DOI: 10.1016/j.conbuildmat.2024.136700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Pramanik SK, Bhuiyan M, Robert D, Roychand R, Gao L, Cole I, Pramanik BK. Bio-corrosion in concrete sewer systems: Mechanisms and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171231. [PMID: 38417509 DOI: 10.1016/j.scitotenv.2024.171231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
The deterioration of concrete sewer structures due to bio-corrosion presents critical and escalating challenges from structural, economic and environmental perspectives. Despite decades of research, this issue remains inadequately addressed, resulting in billions of dollars in maintenance costs and a shortened service life for sewer infrastructure worldwide. This challenge is exacerbated by the absence of standardized test methods and universally accepted mitigation strategies, leaving industries and stakeholders confronting an increasingly pressing problem. This paper aims to bridge this knowledge gap by providing a comprehensive review of the complex mechanisms of bio-corrosion, focusing on the formation and accumulation of hydrogen sulfide, its conversion into sulfuric acid and the subsequent deterioration of concrete materials. The paper also explores various factors affecting bio-corrosion rates, including environmental conditions, concrete properties and wastewater characteristics. The paper further highlights existing corrosion test strategies, such as chemical tests, in-situ tests and microbial simulations tests along with their general analytical parameters. The conversion of hydrogen sulfide into sulfuric acid is a primary cause of concrete decay and its progression is influenced by environmental conditions, inherent concrete characteristics, and the composition of wastewater. Through illustrative case studies, the paper assesses the practical implications and efficacy of prevailing mitigation techniques. Coating materials provide a protective barrier against corrosive agents among the discussed techniques, while optimised concrete mix designs enhance the inherent resistance and durability of the concrete matrix. Finally, this review also outlines the future prospects and challenges in bio-corrosion research with an aim to promote the creation of more resilient and cost-efficient materials for sewer systems.
Collapse
Affiliation(s)
| | - Muhammed Bhuiyan
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | - Dilan Robert
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Rajeev Roychand
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Li Gao
- South East Water, Frankston, Victoria 3199, Australia
| | - Ivan Cole
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | | |
Collapse
|
4
|
Toader G, Diacon A, Rusen E, Mangalagiu II, Alexandru M, Zorilă FL, Mocanu A, Boldeiu A, Gavrilă AM, Trică B, Pulpea D, Necolau MI, Istrate M. Peelable Alginate Films Reinforced by Carbon Nanofibers Decorated with Antimicrobial Nanoparticles for Immediate Biological Decontamination of Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2775. [PMID: 37887926 PMCID: PMC10609245 DOI: 10.3390/nano13202775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
This study presents the synthesis and characterization of alginate-based nanocomposite peelable films, reinforced by carbon nanofibers (CNFs) decorated with nanoparticles that possess remarkable antimicrobial properties. These materials are suitable for immediate decontamination applications, being designed as fluid formulations that can be applied on contaminated surfaces, and subsequently, they can rapidly form a peelable film via divalent ion crosslinking and can be easily peeled and disposed of. Silver, copper, and zinc oxide nanoparticles (NPs) were synthesized using superficial oxidized carbon nanofibers (CNF-ox) as support. To obtain the decontaminating formulations, sodium alginate (ALG) was further incorporated into the colloidal solutions containing the antimicrobial nanoparticles. The properties of the initial CNF-ox-NP-ALG solutions and the resulting peelable nanocomposite hydrogels (obtained by crosslinking with zinc acetate) were assessed by rheological measurements, and mechanical investigations, respectively. The evaluation of Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) for the synthesized nanoparticles (silver, copper, and zinc oxide) was performed. The best values for MIC and MBC were obtained for CNF-ox decorated with AgNPs for both types of bacterial strains: Gram-negative (MIC and MBC values (mg/L): E. coli-3 and 108; P. aeruginosa-3 and 54) and Gram-positive (MIC and MBC values (mg/L): S. aureus-13 and 27). The film-forming decontaminating formulations were also subjected to a microbiology assay consisting of the time-kill test, MIC and MBC estimations, and evaluation of the efficacity of peelable coatings in removing the biological agents from the contaminated surfaces. The best decontamination efficiencies against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa varied between 97.40% and 99.95% when employing silver-decorated CNF-ox in the decontaminating formulations. These results reveal an enhanced antimicrobial activity brought about by the synergistic effect of silver and CNF-ox, coupled with an efficient incorporation of the contaminants inside the peelable films.
Collapse
Affiliation(s)
- Gabriela Toader
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.D.); (D.P.)
| | - Aurel Diacon
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.D.); (D.P.)
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.M.); (M.I.N.)
| | - Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.M.); (M.I.N.)
| | - Ionel I. Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Blvd., 700506 Iasi, Romania
| | - Mioara Alexandru
- Microbiology Laboratory, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului St., 077125 Bucharest, Romania; (M.A.); (F.L.Z.)
| | - Florina Lucica Zorilă
- Microbiology Laboratory, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului St., 077125 Bucharest, Romania; (M.A.); (F.L.Z.)
- Department of Genetics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Indepententei, 050095 Bucharest, Romania
| | - Alexandra Mocanu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.M.); (M.I.N.)
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Adina Boldeiu
- National Institute for Research and Development in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania;
| | - Ana Mihaela Gavrilă
- National Institute of Research and Development for Chemistry and Petrochemistry, 202 Splaiul Independentei, 060041 Bucharest, Romania; (A.M.G.); (B.T.)
| | - Bogdan Trică
- National Institute of Research and Development for Chemistry and Petrochemistry, 202 Splaiul Independentei, 060041 Bucharest, Romania; (A.M.G.); (B.T.)
| | - Daniela Pulpea
- Military Technical Academy “Ferdinand I”, 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania; (G.T.); (A.D.); (D.P.)
| | - Mădălina Ioana Necolau
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; (A.M.); (M.I.N.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Marcel Istrate
- S.C. Stimpex S.A., 46-48 Nicolae Teclu Street, 032368 Bucharest, Romania;
| |
Collapse
|
5
|
Tilahun E, Adimasu Y, Dessie Y. Biosynthesis and Optimization of ZnO Nanoparticles Using Ocimum lamifolium Leaf Extract for Electrochemical Sensor and Antibacterial Activity. ACS OMEGA 2023; 8:27344-27354. [PMID: 37546677 PMCID: PMC10399153 DOI: 10.1021/acsomega.3c02709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
In this study, zinc oxide nanoparticles (ZnO NPs) were synthesized using an aqueous extract of the Ocimum lamifolium (O. lamifolium) plant. The I-optimal coordinate exchange randomized response surface methodology (RSM) was used to optimize the effect of the zinc acetate precursor, temperature, and time on ZnO NPs by designing nine runs. From ANOVA analysis, the significance and validity of the designed model showed that the optimal values of the zinc acetate precursor, temperature, and time during ZnO NPs synthesis were found to be ∼0.06 M, ∼30 °C, and ∼1.35 h, respectively. The obtained ZnO NPs under these optimized conditions were characterized and explored by UV-vis, TGA/DTA, FTIR, XRD, SEM-EDX, TEM, HRTEM, and SAED. Furthermore, the electrocatalytic performance of ZnO NPs was performed for sulfamethoxazole (SMZ) sensing activity with a 0.3528 μM (S/N = 3) limit of detection (LOD). In addition, an antibacterial study revealed that ZnO NPs confirmed an excellent zone of inhibition against E. coli, S. aureus, P. aeruginosa, and S. pyogen pathogenic drug resistance bacterial strains at concentrations of 50, 75, and 100 μg/mL. Thus, ZnO NPs synthesized using the O. lamifolium leaf have a potential electrocatalytic activity for diverse organic pollutant detection as well as a desirable material for such drug resistance antimicrobial strains.
Collapse
Affiliation(s)
- Eneyew Tilahun
- Department
of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama 0000, Ethiopia
| | - Yeshaneh Adimasu
- Department
of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama 0000, Ethiopia
| | - Yilkal Dessie
- Department
of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama 0000, Ethiopia
| |
Collapse
|
6
|
Ślosarczyk A, Klapiszewska I, Parus A, Balicki S, Kornaus K, Gapiński B, Wieczorowski M, Wilk KA, Jesionowski T, Klapiszewski Ł. Antimicrobial action and chemical and physical properties of CuO-doped engineered cementitious composites. Sci Rep 2023; 13:10404. [PMID: 37369694 DOI: 10.1038/s41598-023-37673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/26/2023] [Indexed: 06/29/2023] Open
Abstract
CuO nanoparticles (NPs) were added to cement matrices in quantities of 0.25, 0.50 and 1.00 wt% to inhibit the growth of Gram-positive (Bacillus cereus, Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa, Escherichia coli) bacteria. It was shown that CuO NPs, in all tested concentrations, improved the antibacterial properties of the cement matrix. Nevertheless, the best mechanical, structural and durability properties were obtained for cement composites doped with CuO NPs at 0.25 wt%. Larger amounts of NPs caused a decrease in all parameters relative to the reference mortar, which may be the result of a slight change in the porosity of the composite microstructure. For 0.50 wt% CuO NPs, a slight increase in the volume of micropores in the cement matrix was observed, and an increased number of larger pores was confirmed by non-invasive computed tomography (CT). The reduction in the mechanical parameters of composites with 0.50 and 1.00 wt% CuO NPs may also be due to the slower hydration of the cement binder, as confirmed by changes in the heat of hydration for these configurations, or agglomeration of NPs, especially for the 1.00 wt% concentration, which was manifested in a decrease in the plasticity of the mortars.
Collapse
Affiliation(s)
- Agnieszka Ślosarczyk
- Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, 60965, Poznan, Poland.
| | - Izabela Klapiszewska
- Institute of Building Engineering, Faculty of Civil and Transport Engineering, Poznan University of Technology, 60965, Poznan, Poland
| | - Anna Parus
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965, Poznan, Poland
| | - Sebastian Balicki
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University of Science and Technology, 50370, Wrocław, Poland
| | - Kamil Kornaus
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30059, Kraków, Poland
| | - Bartosz Gapiński
- Institute of Mechanical Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 60965, Poznan, Poland
| | - Michał Wieczorowski
- Institute of Mechanical Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 60965, Poznan, Poland
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wroclaw University of Science and Technology, 50370, Wrocław, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965, Poznan, Poland
| | - Łukasz Klapiszewski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965, Poznan, Poland.
| |
Collapse
|
7
|
Heidari G, Afruzi FH, Zare EN. Molecularly Imprinted Magnetic Nanocomposite Based on Carboxymethyl Dextrin for Removal of Ciprofloxacin Antibiotic from Contaminated Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:489. [PMID: 36770450 PMCID: PMC9921908 DOI: 10.3390/nano13030489] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 05/29/2023]
Abstract
Broad-spectrum antibiotics from the fluoroquinolone family have emerged as prominent water contaminants, among other pharmaceutical pollutants. In the present study, an antibacterial magnetic molecularly imprinted polymer (MMIP) composite was successfully fabricated using carboxy methyl dextrin grafted to poly(aniline-co-meta-phenylenediamine) in the presence of Fe3O4/CuO nanoparticles and ciprofloxacin antibiotic. The characteristics of obtained materials were investigated using FTIR, XRD, VSM, TGA, EDX, FE-SEM, zeta potential, and BETanalyses. Afterward, the MMIP's antibacterial activity and adsorption effectiveness for removing ciprofloxacin from aqueous solutions were explored. The results of the antibacterial tests showed that MMIP had an antibacterial effect against Escherichia coli, a Gram-negative pathogen (16 mm), and Staphylococcus aureus, a Gram-positive pathogen (22 mm). Adsorption efficacy was evaluated under a variety of experimental conditions, including solution pH, adsorbent dosage, contact time, and initial concentration. The maximum adsorption capacity (Qmax) of the MMIP for ciprofloxacin was determined to be 1111.1 mg/g using 3 mg of MMIP, with an initial concentration of 400 mg/L of ciprofloxacin at pH 7, within 15 min, and agitated at 25 °C, and the experimental adsorption results were well-described by the Freundlich isotherm model. The adsorption kinetic data were well represented by the pseudo-second-order model. Electrostatic interaction, cation exchange, π-π interactions, and hydrogen bonding were mostly able to adsorb the majority of the ciprofloxacin onto the MMIP. Adsorption-desorption experiments revealed that the MMIP could be retrieved and reused with no noticeable reduction in adsorption efficacy after three consecutive cycles.
Collapse
Affiliation(s)
- Golnaz Heidari
- School of Chemistry, Damghan University, Damghan 36716-45667, Iran
| | - Fereshte Hassanzadeh Afruzi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 13114-16846, Iran
| | | |
Collapse
|
8
|
Baláž M, Augustyniak A, Tatykayev B, Shalabayev Z, Burashev G, Dutková E, Daneu N, Briančin J, Balážová Ľ, Tkáčiková Ľ, Stahorský M, Achimovičová M, Baláž P. Mechanochemical synthesis of non-stoichiometric copper sulfide Cu 1.8S applicable as a photocatalyst and antibacterial agent and synthesis scalability verification. Faraday Discuss 2023; 241:367-386. [PMID: 36193820 DOI: 10.1039/d2fd00082b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An effort to prepare different non-stoichiometric CuxSy compounds starting from elemental precursors using mechanochemistry was made in this study. However, out of the 7 stoichiometries tested, it was only possible to obtain three phases: covellite CuS, chalcocite Cu2S and digenite Cu1.8S and their mixtures. To obtain the digenite phase with the highest purity, the Cu : S stoichiometric ratio needed to be fixed at 1.6 : 1. The reaction between copper and sulfur was completed within a second range, however, milling was performed for up to 15 minutes until the equilibrium in phase composition between digenite and covellite was reached. The possibility of preparing the product in a 300 g batch by eccentric vibratory milling in 30 minutes was successfully verified at the end. The estimated crystallite sizes for the digenite Cu1.8S obtained via lab-scale and scalable experiments were around 12 and 17 nm, respectively. The obtained products were found to be efficient photocatalysts under visible light irradiation in the presence of hydrogen peroxide, being capable of the complete degradation of the Methyl Orange dye in a concentration of 10 mg L-1 in 2 hours. Finally, the antibacterial potential of both lab-scale and large-scale industrial products was proven and, regardless of the manufacturing scale, the nanoparticles retained their properties against bacterial cells.
Collapse
Affiliation(s)
- Matej Baláž
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| | - Adrian Augustyniak
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.,Faculty of Chemical Technology and Engineering, The West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland
| | - Batukhan Tatykayev
- Al-Farabi Kazakh National University, Al-Farabi ave., 71, 050040 Almaty, Kazakhstan
| | - Zhandos Shalabayev
- Al-Farabi Kazakh National University, Al-Farabi ave., 71, 050040 Almaty, Kazakhstan
| | - Gairat Burashev
- Al-Farabi Kazakh National University, Al-Farabi ave., 71, 050040 Almaty, Kazakhstan
| | - Erika Dutková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| | - Nina Daneu
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Jaroslav Briančin
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| | - Ľudmila Balážová
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Ľudmila Tkáčiková
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, Slovakia
| | - Martin Stahorský
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| | - Marcela Achimovičová
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| | - Peter Baláž
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia.
| |
Collapse
|
9
|
Peyvandtalab M, Nazarzadeh Zare E, Jabbari M, Heidari G. Carboxymethyl dextrin-grafted-poly(aniline-co-m-phenylenediamine)@Fe3O4/CuO bionanocomposite: Physico-chemical characteristics and antioxidant, antibacterial, and cytotoxicity studies for potential biomedicine. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Self-Cleaning and Antibacterial Properties of the Cement Mortar with ZnO/Hydroxyapatite Powders. INORGANICS 2022. [DOI: 10.3390/inorganics10120241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
According to literature data, different micro- and nanopowders have been used as a partial substitute for cement mortar due to their small size and large specific surface area. The aim of the work is to develop innovative materials based on cement mortar with antibacterial and self-cleaning properties, which can be used in the long-term maintenance of clean spaces. First, zinc oxide/hydroxyapatite (ZnO/Hap) powder denoted as ZH was synthesized by the hydrothermal method; then it was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM)/ energy dispersive spectroscopy (EDS), and adsorption–desorption isotherms. The second step was the cement mortar preparation: one plain, denoted E, and one with ZH powder inside, denoted MZH. Both mortars were subjected to self-cleaning and antibacterial tests. In the self-cleaning tests, two concentrated solutions of rhodamine B and methylene blue were used. MZH showed a better decolorating after 24 h of UV light than plain cement mortar denoted E for both solutions. In order to highlight the antibacterial effect of cement mortars on some strains of Gram-positive and Gram-negative bacteria, the direct contact method was used. The study revealed that, after 24 h of incubation, the planktonic growth of the E. coli strain is significantly inhibited in the presence of the MZH sample, compared to the control strain. MZH cement mortar exhibits a better growth inhibitory property than the plain cement mortar E.
Collapse
|
11
|
Major R, Surmiak M, Kasperkiewicz K, Kaindl R, Byrski A, Major Ł, Russmueller G, Moser D, Kopernik M, Lackner JM. Antimicrobial materials with improved efficacy dedicated to large craniofacial bone defects after tumor resection. Colloids Surf B Biointerfaces 2022; 220:112943. [DOI: 10.1016/j.colsurfb.2022.112943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
|
12
|
Antimicrobial impacts of zinc oxide nanoparticles on shiga toxin-producing Escherichia coli (serotype O26). ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
The antibacterial activity of zinc oxide nanoparticles (ZnO NPs) has received significant attention worldwide due to the emergence of multidrug-resistant microorganisms. Shiga toxin-producing Escherichia coli is a major foodborne pathogen that causes gastroenteritis that may be complicated by hemorrhagic colitis or hemolytic uremic syndrome. Therefore, this study aimed to evaluate the antimicrobial effect of ZnO NPs against E. coli O26 and its Shiga toxin type 2 (Stx2). Multidrug resistance phenotype was observed in E. coli O26, with co-resistance to several unrelated families of antimicrobial agents. Different concentrations of ZnO NPs nanoparticles (20 nm) were tested against different cell densities of E. coli O26 (108, 106 and 105 CFU/ml). The minimum inhibitory concentration (MIC) value was 1 mg/ml. Minimum bactericidal concentration (MBC) was 1.5 mg/ml, 2.5 mg/ml and 3 mg/ml, respectively, depending on ZnO NPs concentrations and bacterial cell density. Results showed a significant (P≤0.05) decrease in Stx2 level in a response to ZnO NPs treatment. As detected by quantitative real-time PCR, ZnO NPs down-regulated the expression of the Stx2 gene (P≤0.05). Moreover, various concentrations of ZnO NPs considerably reduced the total protein content in E. coli O26. There was a significant reduction in protein expression with increased ZnO NPs concentration compared to the non-treated control. Scanning electron micrographs (SEM) of the treated bacteria showed severe disruptive effects on E. coli O26 with increasing ZnO NPs concentration. The results revealed a strong correlation between the antibacterial effect and ZnO NPs concentrations. ZnO NPs exert their antibacterial activities through various mechanisms and could be used as a potent antibacterial agent against E. coli O26.
Collapse
|
13
|
A Review on Cement-Based Composites for Removal of Organic/Heavy Metal Contaminants from Water. Catalysts 2022. [DOI: 10.3390/catal12111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Building materials are traditionally known for their mechanical and structural properties. As environmental pollution has risen as a huge global issue, functional building materials with environmental remediation capabilities are the demand for the present time. In this context, cement and concrete with photocatalytic and adsorbent additives were explored for air and water remediation. The usage of functional building materials for self-cleaning and air cleaning is well documented and reviewed in earlier reports. This article gives an overview of the functional building material composites used for water remediation. Numerous different approaches, such as photocatalysis, adsorption, and antimicrobial disinfection, are discussed. Among all, photocatalysis for the degradation of organic compounds and antimicrobial effect has been the most studied method, with TiO2 being the first choice for a photocatalyst. Furthermore, some reports illustrate the impact of photocatalytic filler on hydration and mechanical properties, which is important in case these are used in construction. Adsorption was most preferred for heavy metal removal from the water. This article rationalizes the current status and future scope of cement-based functional composites for water cleaning and discusses their use in water cleaning facilities or regular construction.
Collapse
|
14
|
Co-interaction of nitrofurantoin and saponins surfactants with biomembrane leads to an increase in antibiotic’s antibacterial activity. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Pirsa S, Mahmudi M, Ehsani A. Biodegradable film based on cress seed mucilage, modified with lutein, maltodextrin and alumina nanoparticles: Physicochemical properties and lutein controlled release. Int J Biol Macromol 2022; 224:1588-1599. [DOI: 10.1016/j.ijbiomac.2022.10.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
|
16
|
A Mini Review of Antibacterial Properties of Al2O3 Nanoparticles. NANOMATERIALS 2022; 12:nano12152635. [PMID: 35957067 PMCID: PMC9370748 DOI: 10.3390/nano12152635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022]
Abstract
Bacterial antibiotic resistance is one of the most serious modern biomedical problems that prioritizes the search for new agents to combat bacterial pathogens. It is known that nanoparticles of many metals and metal oxides can have an antibacterial effect. However, the antibacterial efficacy of aluminum oxide nanoparticles has been studied little compared to the well-known antimicrobial properties of nanoparticles of oxides of metals such as zinc, silver, iron, and copper. In this review, we have focused on the experimental studies accumulated to date demonstrating the antibacterial effect of aluminum oxide nanoparticles. The review discusses the main ways of synthesis and modification of these nanoparticles, provides the proposed mechanisms of their antibacterial action against gram-positive and gram-negative bacteria, and also compares the antibacterial efficacy depending on morphological characteristics. We have also partially considered the activity of aluminum oxide nanoparticles against water microalgae and fungi. In general, a more detailed study of the antibacterial properties of aluminum oxide nanoparticles is of great interest due to their low toxicity to eukaryotic cells.
Collapse
|
17
|
Dadari S, Rahimi M, Zinadini S. Removal of heavy metal from aqueous medium using novel high-performance, antifouling, and antibacterial nanofiltration polyethersulfone membrane modified with green synthesized Ni-doped Al2O3. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Li M, Chen Z, Yang L, Li J, Xu J, Chen C, Wu Q, Yang M, Liu T. Antibacterial Activity and Mechanism of GO/Cu 2O/ZnO Coating on Ultrafine Glass Fiber. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1857. [PMID: 35683713 PMCID: PMC9181844 DOI: 10.3390/nano12111857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022]
Abstract
A GO (graphene oxide)/ZnO/Cu2O antibacterial coating was successfully sprayed on the ultrafine glass fibers using room temperature hydrothermal synthesis and air spraying techniques. The microstructures of the antibacterial coating were characterized, and the results showed that the Cu2ONPs (nano particles)/ZnONPs were uniformly dispersed on the surface of GO. Then, the antibacterial properties of the GO/ZnO/Cu2O (GZC) antibacterial coating were evaluated using the disc diffusion test. It was found that the coating exhibits excellent antibacterial properties and stability against E. coli and S. aureus, and the antibacterial rate of each group of antibacterial powder against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was 100%. To explore the antibacterial mechanism of the GZC antibacterial powder on the ultrafine glass fibers based on the photocatalysis/oxidative stress method, the photoelectric coupling synergistic effect between GZC antibacterial coating was analyzed deeply. The results all showed that the photochemical activity of GZC antibacterial powder was significantly improved compared with pure component materials. The enhancement of its photochemical activity is beneficial to the generation of ROS (including hydroxyl radicals, superoxide anion radicals, etc.), which further confirms the speculation of the photocatalytic/oxidative stress mechanism.
Collapse
Affiliation(s)
- Manna Li
- International Laboratory for Insulation and Energy Efficiency Materials, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (M.L.); (J.L.); (J.X.); (C.C.); (Q.W.); (M.Y.); (T.L.)
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
- Suqian Kongtian New Materials Co., Ltd., Suqian 223800, China
| | - Zhaofeng Chen
- International Laboratory for Insulation and Energy Efficiency Materials, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (M.L.); (J.L.); (J.X.); (C.C.); (Q.W.); (M.Y.); (T.L.)
| | - Lixia Yang
- International Laboratory for Insulation and Energy Efficiency Materials, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (M.L.); (J.L.); (J.X.); (C.C.); (Q.W.); (M.Y.); (T.L.)
| | - Jiayu Li
- International Laboratory for Insulation and Energy Efficiency Materials, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (M.L.); (J.L.); (J.X.); (C.C.); (Q.W.); (M.Y.); (T.L.)
| | - Jiang Xu
- International Laboratory for Insulation and Energy Efficiency Materials, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (M.L.); (J.L.); (J.X.); (C.C.); (Q.W.); (M.Y.); (T.L.)
| | - Chao Chen
- International Laboratory for Insulation and Energy Efficiency Materials, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (M.L.); (J.L.); (J.X.); (C.C.); (Q.W.); (M.Y.); (T.L.)
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
- Suqian Kongtian New Materials Co., Ltd., Suqian 223800, China
| | - Qiong Wu
- International Laboratory for Insulation and Energy Efficiency Materials, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (M.L.); (J.L.); (J.X.); (C.C.); (Q.W.); (M.Y.); (T.L.)
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Mengmeng Yang
- International Laboratory for Insulation and Energy Efficiency Materials, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (M.L.); (J.L.); (J.X.); (C.C.); (Q.W.); (M.Y.); (T.L.)
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Tianlong Liu
- International Laboratory for Insulation and Energy Efficiency Materials, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; (M.L.); (J.L.); (J.X.); (C.C.); (Q.W.); (M.Y.); (T.L.)
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
19
|
Shalabayev Z, Baláž M, Khan N, Nurlan Y, Augustyniak A, Daneu N, Tatykayev B, Dutková E, Burashev G, Casas-Luna M, Džunda R, Bureš R, Čelko L, Ilin A, Burkitbayev M. Sustainable Synthesis of Cadmium Sulfide, with Applicability in Photocatalysis, Hydrogen Production, and as an Antibacterial Agent, Using Two Mechanochemical Protocols. NANOMATERIALS 2022; 12:nano12081250. [PMID: 35457958 PMCID: PMC9024533 DOI: 10.3390/nano12081250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 01/20/2023]
Abstract
CdS nanoparticles were successfully synthesized using cadmium acetate and sodium sulfide as Cd and S precursors, respectively. The effect of using sodium thiosulfate as an additional sulfur precursor was also investigated (combined milling). The samples were characterized by XRD, Raman spectroscopy, XPS, UV-Vis spectroscopy, PL spectroscopy, DLS, and TEM. Photocatalytic activities of both CdS samples were compared. The photocatalytic activity of CdS, which is produced by combined milling, was superior to that of CdS, and was obtained by an acetate route in the degradation of Orange II under visible light irradiation. Better results for CdS prepared using a combined approach were also evidenced in photocatalytic experiments on hydrogen generation. The antibacterial potential of mechanochemically prepared CdS nanocrystals was also tested on reference strains of E. coli and S. aureus. Susceptibility tests included a 24-h toxicity test, a disk diffusion assay, and respiration monitoring. Bacterial growth was not completely inhibited by the presence of neither nanomaterial in the growth environment. However, the experiments have confirmed that the nanoparticles have some capability to inhibit bacterial growth during the logarithmic growth phase, with a more substantial effect coming from CdS nanoparticles prepared in the absence of sodium thiosulfate. The present research demonstrated the solvent-free, facile, and sustainable character of mechanochemical synthesis to produce semiconductor nanocrystals with multidisciplinary application.
Collapse
Affiliation(s)
- Zhandos Shalabayev
- General and Inorganic Chemistry Department, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (N.K.); (Y.N.); (B.T.); (G.B.); (M.B.)
- Scientific Center for Anti-Infectious Drugs, Al-Farabi Ave. 75B, Almaty 050060, Kazakhstan;
- Correspondence: ; Tel.: +7-707-793-17-65
| | - Matej Baláž
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (M.B.); (E.D.)
| | - Natalya Khan
- General and Inorganic Chemistry Department, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (N.K.); (Y.N.); (B.T.); (G.B.); (M.B.)
| | - Yelmira Nurlan
- General and Inorganic Chemistry Department, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (N.K.); (Y.N.); (B.T.); (G.B.); (M.B.)
| | - Adrian Augustyniak
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany;
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Nina Daneu
- Jožef Stefan Institute, Jamova Cesta 39, 01000 Ljubljana, Slovenia;
| | - Batukhan Tatykayev
- General and Inorganic Chemistry Department, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (N.K.); (Y.N.); (B.T.); (G.B.); (M.B.)
| | - Erika Dutková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (M.B.); (E.D.)
| | - Gairat Burashev
- General and Inorganic Chemistry Department, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (N.K.); (Y.N.); (B.T.); (G.B.); (M.B.)
| | - Mariano Casas-Luna
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic; (M.C.-L.); (L.Č.)
- Department of Physics of Materials, Charles University, 121 16 Prague, Czech Republic
| | - Róbert Džunda
- Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia; (R.D.); (R.B.)
| | - Radovan Bureš
- Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia; (R.D.); (R.B.)
| | - Ladislav Čelko
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic; (M.C.-L.); (L.Č.)
| | - Aleksandr Ilin
- Scientific Center for Anti-Infectious Drugs, Al-Farabi Ave. 75B, Almaty 050060, Kazakhstan;
| | - Mukhambetkali Burkitbayev
- General and Inorganic Chemistry Department, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (N.K.); (Y.N.); (B.T.); (G.B.); (M.B.)
| |
Collapse
|
20
|
Augustyniak A, Dubrowska K, Jabłońska J, Cendrowski K, Wróbel RJ, Piz M, Filipek E, Rakoczy R. Basic physiology of Pseudomonas aeruginosa contacted with carbon nanocomposites. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractExperiments describing properties of nanomaterials on bacteria are frequently limited to the disk diffusion method or other end-point methods indicating viability or survival rate in plate count assay. Such experimental design does not show the dynamic changes in bacterial physiology, mainly when performed on reference microorganisms (Escherichia coli and Staphylococcus aureus). Testing other microorganisms, such as Pseudomonas aeruginosa, could provide novel insights into the microbial response to nanomaterials. Therefore, we aimed to test selected carbon nanomaterials and their components in a series of experiments describing the basic physiology of P. aeruginosa. Concentrations ranging from 15.625 to 1000 µg/mL were tested. The optical density of cultures, pigment production, respiration, growth curve analysis, and biofilming were tested. The results confirmed variability in the response of P. aeruginosa to tested nanostructures, depending on their concentration. The co-incubation with the nanostructures (in concentration 125 µg/mL) could inhibit the population growth (in most cases) or promote it in the case of graphene oxide. Furthermore, a specific concentration of a given nanomaterial could cause contradictory effects leading to stimulation or inhibition of pigmentation, an optical density of the cultures, or biofilm formation. We have found that particularly nanomaterials containing TiO2 could induce pigmentation in P. aeruginosa, which indicates the possibility of increased virulence. On the other hand, nanocomposites containing cobalt nanoparticles had the highest anti-bacterial potential when cobalt was displayed on the surface. Our approach revealed changes in respiration and growth dynamics that can be used to search for nanomaterials’ application in biotechnology.
Collapse
|
21
|
Jabłońska J, Dubrowska K, Augustyniak A, Wróbel RJ, Piz M, Cendrowski K, Rakoczy R. The influence of nanomaterials on pyocyanin production by Pseudomonas aeruginosa. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractPseudomonas aeruginosa is a bacterium producing industrially utile metabolites, such as rhamnolipids, biopolymers, and pigments. Pyocyanin, the most studied example of pigments, is a virulence factor that also shows the potential for application in, e.g., agriculture, anticancer therapy, and energy production. Therefore, potential inhibitors and stimulants of pyocyanin production by P. aeruginosa should be studied, and nanomaterials may cause both effects. The study aimed to examine the influence of zinc oxide and multi-walled carbon nanotubes (pristine or dispersed with alginic acid) on pyocyanin production by P. aeruginosa. First, the influence of different concentrations of nanomaterials (500.00–0.06 µg/mL) on culture optical density and biofilm formation was studied. These results helped select concentrations for further tests, i.e., growth curves and fluorescence measurements. Pyocyanin production was assessed by the chloroform–hydrochloric acid method. SEM analysis was conducted to assess the influence of nanomaterials on the cell's integrity and biofilm structure. Pristine multi-walled carbon nanotubes exhibited a stimulative effect on pigment production when applied in high concentrations (500.00 µg/mL), while dispersed material enhanced the production in lowered dosages (125.00 µg/mL). On the other hand, high concentrations of zinc oxide inhibited pyocyanin production, while minor increased bioproduct production. The research indicates the potential to use nanomaterials as the modulators of pyocyanin production and other metabolites.
Collapse
|
22
|
Baláž M, Casas-Luna M, Augustinyak A, Tkáčiková Ľ, Szmuc K, Kováčová M, Čelko L, Shpotyuk Y. Hybrid Ag0/Ag2CO3–eggshell–plant nanocomposites for antimicrobial action prepared by bio-mechanochemical synthesis. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Yan Y, Jiang N, Liu X, Pan J, Li M, Wang C, Camargo PHC, Wang J. Enhanced Spontaneous Antibacterial Activity of δ-MnO 2 by Alkali Metals Doping. Front Bioeng Biotechnol 2022; 9:788574. [PMID: 35059387 PMCID: PMC8764136 DOI: 10.3389/fbioe.2021.788574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Recently, the widespread use of antibiotics is becoming a serious worldwide public health challenge, which causes antimicrobial resistance and the occurrence of superbugs. In this context, MnO2 has been proposed as an alternative approach to achieve target antibacterial properties on Streptococcus mutans (S. mutans). This requires a further understanding on how to control and optimize antibacterial properties in these systems. We address this challenge by synthesizing δ-MnO2 nanoflowers doped by magnesium (Mg), sodium (Na), and potassium (K) ions, thus displaying different bandgaps, to evaluate the effect of doping on the bacterial viability of S. mutans. All these samples demonstrated antibacterial activity from the spontaneous generation of reactive oxygen species (ROS) without external illumination, where doped MnO2 can provide free electrons to induce the production of ROS, resulting in the antibacterial activity. Furthermore, it was observed that δ-MnO2 with narrower bandgap displayed a superior ability to inhibit bacteria. The enhancement is mainly attributed to the higher doping levels, which provided more free electrons to generate ROS for antibacterial effects. Moreover, we found that δ-MnO2 was attractive for in vivo applications, because it could nearly be degraded into Mn ions completely following the gradual addition of vitamin C. We believe that our results may provide meaningful insights for the design of inorganic antibacterial nanomaterials.
Collapse
Affiliation(s)
- Yali Yan
- College of Science, Donghua University, Shanghai, China
| | - Ning Jiang
- Department of Oral and Craniomaxillofacial Science, Shanghai Key Laboratory of Stomatology, College of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Liu
- Department of Dental Materials, Shanghai Key Laboratory of Stomatology, Shanghai Biomaterials Research and Testing Center, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Pan
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Mai Li
- College of Science, Donghua University, Shanghai, China
| | - Chunrui Wang
- College of Science, Donghua University, Shanghai, China
| | | | - Jiale Wang
- College of Science, Donghua University, Shanghai, China.,Shanghai Institute of Intelligent Electronics and Systems, Donghua University, Shanghai, China
| |
Collapse
|
24
|
Physicomechanical and Antimicrobial Characteristics of Cement Composites with Selected Nano-Sized Oxides and Binary Oxide Systems. MATERIALS 2022; 15:ma15020661. [PMID: 35057378 PMCID: PMC8779094 DOI: 10.3390/ma15020661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/26/2022]
Abstract
In recent years, increasing attention has been paid to the durability of building materials, including those based on cementitious binders. Important aspects of durability include the increase of the strength of the cement matrix and enhancement of material resistance to external factors. The use of nanoadditives may be a way to meet these expectations. In the present study, zinc, titanium and copper oxides, used in single and binary systems (to better the effect of their performance), were applied as additives in cement mortars. In the first part of this work, an extensive physicochemical analysis of oxides was carried out, and in the second, their application ranges in cement mortars were determined. The subsequent analyses were employed in determining the physicochemical properties of pristine oxides: Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray fluorescence (EDXRF), scanning electron microscopy (SEM), measurement of the particle size distribution, as well as zeta potential measurement depending on the pH values. Influence on selected physicomechanical parameters of the cement matrix and resistance to the action of selected Gram-positive and Gram-negative bacteria and fungi were also examined. Our work indicated that all nanoadditives worsened the mechanical parameters of mortars during the first 3 days of hardening, while after 28 days, an improvement was achieved for zinc and titanium(IV) oxides. Binary systems and copper(II) oxide deteriorated in strength parameters throughout the test period. In contrast, copper(II) oxide showed the best antibacterial activity among all the tested oxide systems. Based on the inhibitory effect of the studied compounds, the following order of microbial susceptibility to inhibition of growth on cement mortars was established (from the most susceptible, to the most resistant): E. coli < S. aureus < C. albicans < B. cereus = P. aeruginosa < P. putida.
Collapse
|
25
|
Novel Alkali-Activated Materials with Photocatalytic and Bactericidal Properties Based on Ceramic Tile Waste. COATINGS 2021. [DOI: 10.3390/coatings12010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ceramics tile wastes (CWs) were mechanically conditioned for the preparation of alkali-activated hybrid-cements from CW (90 wt.%) and Portland cement (10 wt.%) mixtures using sodium silicate (SS) + NaOH as alkaline activators. Molar ratios of SiO2/Al2O3 (6.3 to 7.7) and Na2O/SiO2 (0.07 to 0.16) were used. The cements were prepared at room temperature (25 °C) and characterized by mechanical and physical properties and microstructure. The optimized cement was used for the preparation of novel photoactivated composite materials by incorporating 5 and 10 wt.% TiO2 (Ti) and ZnO (Z) nanoparticles, and its self-cleaning and bactericidal properties were evaluated by means of the degradation of rhodamine-B (Rh-B) and the growth inhibition of Klebsiella pneumoniae and Pseudomonas aeruginosa bacteria. The results of this study showed that the 100SS-5Z and 50SS:50G-10Ti cements have an effective photocatalytic activity for Rh-B degradation of 98.4% and 76.4%, respectively, after 24 h. Additionally, the 100SS-5Z and 50SS:50G-10Ti cement pastes and their respective mortars were effective in inhibiting the growth of Pseudomonas Aeruginosa and Klebsiella pneumoniae bacterial strains, evidenced by the formation of bacterial inhibition halos around the sample discs. Finally, these results are novel, and open the possibility of using constructions and demolition tile waste in high proportions for the elaboration of new rendering mortar with innovative properties.
Collapse
|
26
|
Ielo I, Giacobello F, Castellano A, Sfameni S, Rando G, Plutino MR. Development of Antibacterial and Antifouling Innovative and Eco-Sustainable Sol-Gel Based Materials: From Marine Areas Protection to Healthcare Applications. Gels 2021; 8:26. [PMID: 35049561 PMCID: PMC8774406 DOI: 10.3390/gels8010026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Bacterial colonization of surfaces is the leading cause of deterioration and contaminations. Fouling and bacterial settlement led to damaged coatings, allowing microorganisms to fracture and reach the inner section. Therefore, effective treatment of surface damaged material is helpful to detach bio-settlement from the surface and prevent deterioration. Moreover, surface coatings can withdraw biofouling and bacterial colonization due to inherent biomaterial characteristics, such as superhydrophobicity, avoiding bacterial resistance. Fouling was a past problem, yet its untargeted toxicity led to critical environmental concerns, and its use became forbidden. As a response, research shifted focus approaching a biocompatible alternative such as exciting developments in antifouling and antibacterial solutions and assessing their antifouling and antibacterial performance and practical feasibility. This review introduces state-of-the-art antifouling and antibacterial materials and solutions for several applications. In particular, this paper focuses on antibacterial and antifouling agents for concrete and cultural heritage conservation, antifouling sol-gel-based coatings for filtration membrane technology, and marine protection and textile materials for biomedicine. In addition, this review discusses the innovative synthesis technologies of antibacterial and antifouling solutions and the consequent socio-economic implications. The synthesis and the related physico-chemical characteristics of each solution are discussed. In addition, several characterization techniques and different parameters that influence the surface finishing coatings deposition were also described.
Collapse
Affiliation(s)
- Ileana Ielo
- Institute for the Study of Nanostructured Materials, ISMN—CNR, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (A.C.); (S.S.)
| | - Fausta Giacobello
- Institute for the Study of Nanostructured Materials, ISMN—CNR, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (A.C.); (S.S.)
| | - Angela Castellano
- Institute for the Study of Nanostructured Materials, ISMN—CNR, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (A.C.); (S.S.)
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN—CNR, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (A.C.); (S.S.)
- Department of Engineering, University of Messina, Contrada di Dio, Vill. S. Agata, 98166 Messina, Italy
| | - Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy;
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy; (I.I.); (F.G.); (A.C.); (S.S.)
| |
Collapse
|
27
|
Smirnova VV, Chausov DN, Serov DA, Kozlov VA, Ivashkin PI, Pishchalnikov RY, Uvarov OV, Vedunova MV, Semenova AA, Lisitsyn AB, Simakin AV. A Novel Biodegradable Composite Polymer Material Based on PLGA and Silver Oxide Nanoparticles with Unique Physicochemical Properties and Biocompatibility with Mammalian Cells. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6915. [PMID: 34832317 PMCID: PMC8620072 DOI: 10.3390/ma14226915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
A method for obtaining a stable colloidal solution of silver oxide nanoparticles has been developed using laser ablation. The method allows one to obtain nanoparticles with a monomodal size distribution and a concentration of more than 108 nanoparticles per mL. On the basis of the obtained nanoparticles and the PLGA polymer, a nanocomposite material was manufactured. The manufacturing technology allows one to obtain a nanocomposite material without significant defects. Nanoparticles are not evenly distributed in the material and form domains in the composite. Reactive oxygen species (hydrogen peroxide and hydroxyl radical) are intensively generated on the surfaces of the nanocomposite. Additionally, on the surface of the composite material, an intensive formation of protein long-lived active forms is observed. The ELISA method was used to demonstrate the generation of 8-oxoguanine in DNA on the developed nanocomposite material. It was found that the multiplication of microorganisms on the developed nanocomposite material is significantly decreased. At the same time, the nanocomposite does not inhibit proliferation of mammalian cells. The developed nanocomposite material can be used as an affordable and non-toxic nanomaterial to create bacteriostatic coatings that are safe for humans.
Collapse
Affiliation(s)
- Veronika V. Smirnova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Denis N. Chausov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Valery A. Kozlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
- Department of Fundamental Science, Bauman Moscow State Technical University, 2-nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | - Petr I. Ivashkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Roman Y. Pishchalnikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Oleg V. Uvarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| | - Maria V. Vedunova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
- Institute of Biology and Biomedicine, Lobachevsky State, University of Nizhni Novgorod, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia
| | - Anastasia A. Semenova
- V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Andrey B. Lisitsyn
- V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, 109316 Moscow, Russia; (A.A.S.); (A.B.L.)
| | - Alexander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia; (V.V.S.); (D.N.C.); (D.A.S.); (V.A.K.); (P.I.I.); (R.Y.P.); (O.V.U.); (M.V.V.)
| |
Collapse
|
28
|
Vavouraki AI, Gounaki I, Venieri D. Properties of Inorganic Polymers Based on Ground Waste Concrete Containing CuO and ZnO Nanoparticles. Polymers (Basel) 2021; 13:polym13172871. [PMID: 34502911 PMCID: PMC8433799 DOI: 10.3390/polym13172871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
The effect of copper oxide and zinc oxide nanoparticles (NPs) on the mechanical and thermal properties of ground waste concrete inorganic polymers (GWC IPs) has been investigated. NPs are added to GWC IPs at loadings of 0.1, 0.5, 1, and 2% w/w. The phase composition and microstructure of NPs GWC IPs have also been examined using X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscope (SEM/EDS) techniques. Results show that the mechanical properties of GWC IPs are improved (23 MPa) due to addition of NPs (1% ZnO). In particular, GWC IPs embedded with 0.5% CuO and 1% ZnO NPs exhibited relatively improved compressive strength. The addition of NPs decreases the macroporosity and increases the mesoporosity of IPs matrix and decreases relatively the ability of IPs matrix to water absorption. The antimicrobial activity of GWC IPs doped with 0.5 and 1% CuO NPs against E. coli was also determined.
Collapse
Affiliation(s)
- Aikaterini I. Vavouraki
- School of Mineral Resources Engineering, University Campus, Technical University of Crete, GR-73100 Chania, Greece
- Department of Agriculture, School of Agricultural Science, Hellenic Mediterranean University, GR-71004 Heraklion, Greece
- Correspondence:
| | - Iosifina Gounaki
- School of Chemical and Environmental Engineering, University Campus, Technical University of Crete, GR-73100 Chania, Greece; (I.G.); (D.V.)
| | - Danae Venieri
- School of Chemical and Environmental Engineering, University Campus, Technical University of Crete, GR-73100 Chania, Greece; (I.G.); (D.V.)
| |
Collapse
|
29
|
Puranen S, Riekkinen K, Korhonen J. Antibiofilm Effects of Nanoparticles and Visible Light Illumination Against Listeria monocytogenes. Front Microbiol 2021; 12:710954. [PMID: 34326829 PMCID: PMC8313959 DOI: 10.3389/fmicb.2021.710954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes bacteria pose a particular risk to the food industry as the species is known to form biofilm and to survive in a wide range of challenging environmental conditions. L. monocytogenes can cause listeriosis, a serious food-borne disease, and effective and safe antibiofilm materials and sanitary methods for food processing environments are intensively sought. A variety of nanoparticle materials have been recognized as safe to use in food environments, which allows the application of nanomaterials also for food safety purposes. Nanoparticles together with light illumination generate reactive oxygen species which inactivate bacteria by breaking down cell membranes, proteins, and DNA. The main objective of this study was to evaluate the efficacy of nanomaterials and blue light illumination for L. monocytogenes ATCC 7644 biofilm inactivation. Biofilm was allowed to form for 72 h on nanocoated stainless steel and aluminum plates, after which the plates were illuminated. Non-coated control plates were used to evaluate the antibiofilm efficacy of nanocoating. Plate count method was used to evaluate bacteria counts after illumination. Nanocoating did not affect initial biofilm formation compared to the control plates. Biofilm was significantly (p < 0.05) reduced on stainless steel, aluminum, and TiO2-coated aluminum plates after 72-h illumination by 1.9, 3.2, and 5.9 log, respectively. Nanocoating with visible light illumination could be an effective and safe method for enhancing food safety in food processing facilities to control biofilm formation. Evidence of antibiofilm properties of nanomaterials together with visible light illumination is limited; hence, future studies with variable light intensities and nanomaterials are needed.
Collapse
Affiliation(s)
- Sanna Puranen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Kati Riekkinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jenni Korhonen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
30
|
Jabłońska J, Onyszko M, Konopacki M, Augustyniak A, Rakoczy R, Mijowska E. Fabrication of Paper Sheets Coatings Based on Chitosan/Bacterial Nanocellulose/ZnO with Enhanced Antibacterial and Mechanical Properties. Int J Mol Sci 2021; 22:7383. [PMID: 34299003 PMCID: PMC8305840 DOI: 10.3390/ijms22147383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Here, we designed paper sheets coated with chitosan, bacterial cellulose (nanofibers), and ZnO with boosted antibacterial and mechanical activity. We investigated the compositions, with ZnO exhibiting two different sizes/shapes: (1) rods and (2) irregular sphere-like particles. The proposed processing of bacterial cellulose resulted in the formation of nanofibers. Antimicrobial behavior was tested using E. coli ATCC® 25922™ following the ASTM E2149-13a standard. The mechanical properties of the paper sheets were measured by comparing tearing resistance, tensile strength, and bursting strength according to the ISO 5270 standard. The results showed an increased antibacterial response (assigned to the combination of chitosan and ZnO, independent of its shape and size) and boosted mechanical properties. Therefore, the proposed composition is an interesting multifunctional mixture for coatings in food packaging applications.
Collapse
Affiliation(s)
- Joanna Jabłońska
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 42, 71-065 Szczecin, Poland; (M.K.); (A.A.); (R.R.)
| | - Magdalena Onyszko
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 49, 71-065 Szczecin, Poland; (M.O.); (E.M.)
| | - Maciej Konopacki
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 42, 71-065 Szczecin, Poland; (M.K.); (A.A.); (R.R.)
| | - Adrian Augustyniak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 42, 71-065 Szczecin, Poland; (M.K.); (A.A.); (R.R.)
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 42, 71-065 Szczecin, Poland; (M.K.); (A.A.); (R.R.)
| | - Ewa Mijowska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 49, 71-065 Szczecin, Poland; (M.O.); (E.M.)
| |
Collapse
|
31
|
Self-Cleaning Coatings and Surfaces of Modern Building Materials for the Removal of Some Air Pollutants. MATERIALS 2021; 14:ma14092161. [PMID: 33922766 PMCID: PMC8123039 DOI: 10.3390/ma14092161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022]
Abstract
Air quality is one of the most important problems of the modern world, as it determines human health and changes occurring in other elements of nature, including climate change. For this reason, actions are taken to reduce the amount of harmful substances in the air. One such action is the use of building materials with special properties achieved by the application of self-cleaning coatings and photocatalytic additives. This article presents achievements in the field of additives and modifiers for building materials, whose task is to improve air quality. Concrete, cement, paints, and facade coatings modified based on the achievements of nanotechnology have been analyzed in terms of new properties and the possibility of their application in the area of modern environmental requirements. Both positive aspects and doubts were described in the scope of the effective reduction of the amount of gases such as VOC, NOx, dust and microorganisms.
Collapse
|
32
|
Augustyniak A, Jablonska J, Cendrowski K, Głowacka A, Stephan D, Mijowska E, Sikora P. Investigating the release of ZnO nanoparticles from cement mortars on microbiological models. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01695-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractIncorporating zinc oxide nanoparticles (ZnO NPs) into cement mortars may provide additional functions, e.g., self-cleaning and antibacterial or electroconductive ability. However, these NPs are also known for their potential toxicity. During the life cycle of a cement mortar, various abrasive forces cause the release of admixtures to the natural environment. The effect of the released NPs on model microorganisms has not been extensively studied. Previous studies have shown that nanomaterials may affect various microorganisms’ physiological responses, including changes in metabolic activity, biofilming, or growth rate. In this study, we have focused on evaluating the response of model microorganisms, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans, towards ZnO nanoparticles released from cement mortars in different deterioration scenarios. The addition of ZnO nanoparticles to cement mortars had a noticeable effect on impeding the strength development. We have also detected that depending on the deterioration scenario, the release of ZnO nanoparticles was varied. Our studies have also shown that even though the release of nanoform ZnO could be limited by poor dispersion or the used filtration technique, the eluates have caused slight but statistically significant changes in the physiological features of studied microorganisms showing relatively low toxicity.
Collapse
|
33
|
The effects of calcium–silicate–hydrate (C–S–H) seeds on reference microorganisms. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01347-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractBuilding materials are constantly improved with various additives and admixtures in order to achieve goals ranging from obtaining increased durability or antimicrobial activity up to reducing the carbon footprint left by the cement production. Since nanomaterials were proposed for cement products, many studies explored the possibilities for their incorporation. One of the novel trends in studying these materials is evaluating their impact on living organisms, with the focus not only on toxicology but also on the application potential. Therefore, in this study, we investigated the effects of three types of calcium–silicate–hydrate (C–S–H) seeds on reference microorganisms in the scope of their basic physiology and primary metabolism. Shape, size and elemental composition of C–S–H seeds were also evaluated. The tests on the reference microorganisms have shown that the reaction to these nanomaterials can be specific and depends on the strain as well as the type of used nanomaterial. Furthermore, the presence of C–S–H seeds in the growth environment led to metabolic stimulation that resulted in faster growth, higher biochemical activity, and increased biofilm formation. Based on our findings, we conclude that even though C–S–H seeds have antimicrobial potential, they can be potentially used to promote the growth of selected microbial strains. This phenomenon could be further investigated towards the formation of beneficial biofilms on building materials.
Collapse
|
34
|
Qiu L, Dong S, Ashour A, Han B. Antimicrobial concrete for smart and durable infrastructures: A review. CONSTRUCTION AND BUILDING MATERIALS 2020; 260:120456. [PMID: 32904479 PMCID: PMC7455550 DOI: 10.1016/j.conbuildmat.2020.120456] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 05/23/2023]
Abstract
Concrete structures in sewer systems, marine engineering, underground engineering and other humid environments are easily subjected to microbial attachment, colonization and, eventually, deterioration. With careful selection and treatment, some additives including inorganic and organic antimicrobial agents were found to be able to endow concrete with excellent antimicrobial performance. This paper reviews various types of antimicrobial concrete fabricated with different types of antimicrobial agents. The classification and methods of applying antimicrobial agents into concrete are briefly introduced. The antimicrobial and mechanical properties as well as mass/weight loss of concrete incorporating antimicrobial agents are summarized. Applications reported in this field are presented and future research opportunities and challenges of antimicrobial concrete are also discussed in this review.
Collapse
Affiliation(s)
- Liangsheng Qiu
- School of Civil Engineering, Dalian University of Technology, Dalian 116024 China
| | - Sufen Dong
- School of Material Science and Engineering, Dalian University of Technology, Dalian 116024 China
| | - Ashraf Ashour
- Faculty of Engineering & Informatics, University of Bradford, Bradford BD7 1DP, UK
| | - Baoguo Han
- School of Civil Engineering, Dalian University of Technology, Dalian 116024 China
| |
Collapse
|
35
|
Konopacki M, Augustyniak A, Grygorcewicz B, Dołęgowska B, Kordas M, Rakoczy R. Single Mathematical Parameter for Evaluation of the Microorganisms' Growth as the Objective Function in the Optimization by the DOE Techniques. Microorganisms 2020; 8:microorganisms8111706. [PMID: 33142809 PMCID: PMC7692173 DOI: 10.3390/microorganisms8111706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022] Open
Abstract
The cultivation of bacteria sets a ground for studying biological processes in many scientific disciplines. The development of the bacterial population is commonly described with three factors that can be used to evaluate culture conditions. However, selecting only one of them for the optimization protocol is rather problematic and may lead to unintended errors. Therefore, we proposed a novel mathematical approach to obtain a single factor that could be used as the objective function to evaluate the whole growth dynamic and support the optimization of the biomass production process. The sigmoidal-shape curve, which is the commonly used function to plot the amount of biomass versus time, was the base for the mathematical analysis. The key process parameters, such as maximal specific growth rate and lag-phase duration were established with the use of mathematical coefficients of the model curve and combined to create the single growth parameter. Moreover, this parameter was used for the exemplary optimization of the cultivation conditions of Klebsiella pneumoniae that was cultured to be further used in the production of lytic bacteriophages. The proposed growth parameter was successfully validated and used to calculate the optimal process temperature of the selected bacterial strain. The obtained results indicated that the proposed mathematical approach could be effortlessly adapted for a precise evaluation of growth curves.
Collapse
Affiliation(s)
- Maciej Konopacki
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland; (A.A.); (M.K.); (R.R.)
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Avenue 72, 70-111 Szczecin, Poland; (B.G.); (B.D.)
- Correspondence:
| | - Adrian Augustyniak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland; (A.A.); (M.K.); (R.R.)
- Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer Allee 25, 13355 Berlin, Germany
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Avenue 72, 70-111 Szczecin, Poland; (B.G.); (B.D.)
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Avenue 72, 70-111 Szczecin, Poland; (B.G.); (B.D.)
| | - Marian Kordas
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland; (A.A.); (M.K.); (R.R.)
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland; (A.A.); (M.K.); (R.R.)
| |
Collapse
|
36
|
Augustyniak A, Cendrowski K, Grygorcewicz B, Jabłońska J, Nawrotek P, Trukawka M, Mijowska E, Popowska M. The Response of Pseudomonas aeruginosa PAO1 to UV-activated Titanium Dioxide/Silica Nanotubes. Int J Mol Sci 2020; 21:E7748. [PMID: 33092046 PMCID: PMC7590050 DOI: 10.3390/ijms21207748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas aeruginosa is a bacterium of high clinical and biotechnological importance thanks to its high adaptability to environmental conditions. The increasing incidence of antibiotic-resistant strains has created a need for alternative methods to increase the chance of recovery in infected patients. Various nanomaterials have the potential to be used for this purpose. Therefore, we aimed to study the physiological response of P. aeruginosa PAO1 to titanium dioxide/silica nanotubes. The results suggest that UV light-irradiated nanomaterial triggers strong agglomeration in the studied bacteria that was confirmed by microscopy, spectrophotometry, and flow cytometry. The effect was diminished when the nanomaterial was applied without initial irradiation, with UV light indicating that the creation of reactive oxygen species could play a role in this phenomenon. The nanocomposite also affected biofilm formation ability. Even though the biomass of biofilms was comparable, the viability of cells in biofilms was upregulated in 48-hour biofilms. Furthermore, from six selected genes, the mexA coding efflux pump was upregulated, which could be associated with an interaction with TiO2. The results show that titanium dioxide/silica nanotubes may alter the physiological and metabolic functions of P. aeruginosa PAO1.
Collapse
Affiliation(s)
- Adrian Augustyniak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland;
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów Avenue 45, 70-311 Szczecin, Poland;
| | - Krzysztof Cendrowski
- Department of Nanomaterials Physicochemistry, West Pomeranian University of Technology, Szczecin, Piastów Avenue 45, 70-311 Szczecin, Poland; (K.C.); (M.T.); (E.M.)
| | - Bartłomiej Grygorcewicz
- Chair of Microbiology, Immunology and Laboratory Medicine, Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Avenue 72, 70-111 Szczecin, Poland
| | - Joanna Jabłońska
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów Avenue 42, 71-065 Szczecin, Poland;
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów Avenue 45, 70-311 Szczecin, Poland;
| | - Paweł Nawrotek
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastów Avenue 45, 70-311 Szczecin, Poland;
| | - Martyna Trukawka
- Department of Nanomaterials Physicochemistry, West Pomeranian University of Technology, Szczecin, Piastów Avenue 45, 70-311 Szczecin, Poland; (K.C.); (M.T.); (E.M.)
| | - Ewa Mijowska
- Department of Nanomaterials Physicochemistry, West Pomeranian University of Technology, Szczecin, Piastów Avenue 45, 70-311 Szczecin, Poland; (K.C.); (M.T.); (E.M.)
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Miecznikowa Street 1, 02-096 Warsaw, Poland;
| |
Collapse
|
37
|
A new method for single step sonosynthesis and incorporation of ZnO nanoparticles in cotton fabrics for imparting antimicrobial property. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01358-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Environmentally benign production of cupric oxide nanoparticles and various utilizations of their polymeric hybrids in different technologies. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213378] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Ahmed DS, Mohammed MKA. Studying the bactericidal ability and biocompatibility of gold and gold oxide nanoparticles decorating on multi-wall carbon nanotubes. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01223-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Evaluation of the Antibacterial Activity of a Geopolymer Mortar Based on Metakaolin Supplemented with TiO2 and CuO Particles Using Glass Waste as Fine Aggregate. COATINGS 2020. [DOI: 10.3390/coatings10020157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metakaolin-based geopolymer cements were produced by alkaline activation with a potassium hydroxide and potassium silicate solution. To produce the geopolymer composites, 10 wt.% titanium oxide (TiO2) and 5 wt.% copper oxide (CuO) nanoparticles were used. The geopolymer mortar was prepared using glass waste as fine aggregate. The raw materials and materials produced were characterized by X-ray diffraction, electron microscopy, and Fourier-transform infrared spectroscopy techniques. Likewise, the geopolymer samples were characterized to determine their physical properties, including their density, porosity, and absorption. The photocatalytic activity of the materials was evaluated by activating the nanoparticles in a chamber with UV–Vis light during 24 h; then, different tests were performed to determine the growth inhibition of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa bacteria in nutrient agar for times of up to 24 h. The study results showed that a geopolymer mortar containing glass waste as fine aggregate (GP-G) exhibited a water absorption 56.73% lower than that of the reference geopolymer paste without glass (GP). Likewise, glass particles allowed the material to have a smoother and more homogeneous surface. The pore volume and density of the GP-G were 37.97% lower and 40.36% higher, respectively, than those of the GP. The study with bacteria showed that, after 24 h in the culture media, the GP-G mortars exhibited a high inhibition capacity for the growth of P. aeruginosa from solutions of 10−4 mL and in solutions of 10−6 mL for E. coli and S. aureus. These results indicate the possibility of generating antibacterial surfaces by applying geopolymer composite.
Collapse
|
41
|
Hosny AEDM, Farrag HA, Helmy OM, Hagras SA, El-Hag Ali A. In-vitro evaluation of antibacterial and antibiofilm efficiency of radiation-modified polyurethane–ZnO nanocomposite to be used as a self-disinfecting catheter. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1719328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Liu Z, Zhu J, Wei P, Zhu W, Zhao W, Xia A, Xu D, Lei Y, Yu J. Candidate for Magnetic Doping Agent and High-Temperature Thermoelectric Performance Enhancer: Hard Magnetic M-type BaFe 12O 19 Nanometer Suspension. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45875-45884. [PMID: 31738501 DOI: 10.1021/acsami.9b16309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
How to prevent the agglomeration of nanoparticles in nanocomposites remains a key challenge. Using nanometer suspension as a doping agent provides an effective approach to solve this challenge. A new technique that consists of chemical coprecipitation, ball milling and sedimentation separation metheds was developed for preparing hard magnetic M-type BaFe12O19 nanometer suspension. The single-phase BaFe12O19 nanoparticles dispersed uniformly in alcohol have been prepared by this new technique. Magnetic nanocomposite thermoelectric materials with a homogeneous dispersion of BaFe12O19 nanoparticles were prepared through a combination process of an ultrasonic mixing of BaFe12O19 nanometer suspension and In-filled CoSb3 thermoelectric matrix material and spark plasma sintering. The microstructure analysis of magnetic nanocomposite thermoelectric materials confirmed that using the nanometer suspension as a doping agent is an effective way to solve the agglomeration phenomenon of nanoparticles in nanocomposites. In addition, the decline of thermoelectric performance in the high-temperature intrinsic excitation region of In-filled CoSb3 can be effectively suppressed by the magnetic phase transition of BaFe12O19 nanoparticles dried by nanometer suspension from ferromagnetism to paramagnetism. It is also confirmed that using the BaFe12O19 nanometer suspension as a thermoelectric performance enhancer is an effective way to solve the challenging problem of performance deterioration of thermoelectric materials at high temperature.
Collapse
Affiliation(s)
| | | | - Ping Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , Wuhan 430070 , China
| | - Wanting Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , Wuhan 430070 , China
| | - Wenyu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , Wuhan 430070 , China
| | | | | | | | - Jian Yu
- Jiangxi Province Engineering Research Center of Materials Surface Enhancing and Remanufacturing, School of Mechanical and Materials Engineering , Jiujiang University , Jiujiang 332005 , China
| |
Collapse
|
43
|
Bautista-Gutierrez KP, Herrera-May AL, Santamaría-López JM, Honorato-Moreno A, Zamora-Castro SA. Recent Progress in Nanomaterials for Modern Concrete Infrastructure: Advantages and Challenges. MATERIALS 2019; 12:ma12213548. [PMID: 31671868 PMCID: PMC6861922 DOI: 10.3390/ma12213548] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022]
Abstract
Modern concrete infrastructure requires structural components with higher mechanical strength and greater durability. A solution is the addition of nanomaterials to cement-based materials, which can enhance their mechanical properties. Some such nanomaterials include nano-silica (nano-SiO2), nano-alumina (nano-Al2O3), nano-ferric oxide (nano-Fe2O3), nano-titanium oxide (nano-TiO2), carbon nanotubes (CNTs), graphene and graphene oxide. These nanomaterials can be added to cement with other reinforcement materials such as steel fibers, glass, rice hull powder and fly ash. Optimal dosages of these materials can improve the compressive, tensile and flexural strength of cement-based materials, as well as their water absorption and workability. The use of these nanomaterials can enhance the performance and life cycle of concrete infrastructures. This review presents recent researches about the main effects on performance of cement-based composites caused by the incorporation of nanomaterials. The nanomaterials could decrease the cement porosity, generating a denser interfacial transition zone. In addition, nanomaterials reinforced cement can allow the construction of high-strength concrete structures with greater durability, which will decrease the maintenance requirements or early replacement. Also, the incorporation of nano-TiO2 and CNTs in cementitious matrices can provide concrete structures with self-cleaning and self-sensing abilities. These advantages could help in the photocatalytic decomposition of pollutants and structural health monitoring of the concrete structures. The nanomaterials have a great potential for applications in smart infrastructure based on high-strength concrete structures.
Collapse
Affiliation(s)
- Karla P Bautista-Gutierrez
- Maestría en Ingeniería Aplicada, Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Río, Veracruz 94294, Mexico.
| | - Agustín L Herrera-May
- Maestría en Ingeniería Aplicada, Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Río, Veracruz 94294, Mexico.
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Río, Veracruz 94294, Mexico.
| | - Jesús M Santamaría-López
- Maestría en Ingeniería Aplicada, Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Río, Veracruz 94294, Mexico.
| | - Antonio Honorato-Moreno
- Maestría en Ingeniería Aplicada, Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Río, Veracruz 94294, Mexico.
| | - Sergio A Zamora-Castro
- Maestría en Ingeniería Aplicada, Facultad de Ingeniería de la Construcción y el Hábitat, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Río, Veracruz 94294, Mexico.
| |
Collapse
|
44
|
TiO 2-based Photocatalytic Cementitious Composites: Materials, Properties, Influential Parameters, and Assessment Techniques. NANOMATERIALS 2019; 9:nano9101444. [PMID: 31614556 PMCID: PMC6836224 DOI: 10.3390/nano9101444] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 01/02/2023]
Abstract
Applications of heterogeneous photocatalytic processes based on semiconductor particles in cement-based materials have received great attention in recent years in enhancing the aesthetic durability of buildings and reducing global environmental pollution. Amongst all, titanium dioxide (TiO2) is the most widely used semiconductor particle in structural materials with photocatalytic activity because of its low cost, chemically stable nature, and absence of toxicity. Utilization of TiO2 in combination with cement-based materials would plunge the concentration of urban pollutants such as NOx. In fact, cementitious composites containing TiO2 have already found applications in self-cleaning buildings, antimicrobial surfaces, and air-purifying structures. This paper aims to present a comprehensive review on TiO2-based photocatalysis cement technology, its practical applications, and research gaps for further progression of cementitious materials with photocatalytic activity.
Collapse
|
45
|
Ishida N, Hosokawa Y, Imaeda T, Hatanaka T. Reduction of the Cytotoxicity of Copper (II) Oxide Nanoparticles by Coating with a Surface-Binding Peptide. Appl Biochem Biotechnol 2019; 190:645-659. [PMID: 31422560 DOI: 10.1007/s12010-019-03108-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Abstract
Copper (II) oxide nanoparticles (CuO-NPs) have been studied as potential antimicrobial agents, similar to silver or platinum nanoparticles. However, the use of excess NPs is limited by their safety and toxicity in beneficial microflora and human cells. In this study, we evaluated the cytotoxicity of CuO-NPs by coating with a novel cyclic peptide, CuO binding peptide 1 (CuBP1), cyclic-SCATPFSPQVCS, which binds to the surface of CuO-NPs. CuBP1 was identified using biopanning of a T7 phage display system and was found to promote the aggregation of CuO-NPs under mild conditions. The treated CuO-NPs with CuBP1 caused the reduction of the cytotoxicity against Escherichia coli, Lactobacillus helveticus, and five other microorganisms, including bacteria and eukaryotes. Similar effects were also demonstrated against human embryonic kidney (HEK293) cells in vitro. Our findings suggested that the CuO-NPs coated with a surface-binding peptide may have applications as a safe antimicrobial agent without excessive cytotoxic activity against beneficial microflora and human cells. Moreover, a similar tendency may be achieved with other metal particles, such as silver or platinum NPs, by using optimal metal binding peptides.
Collapse
Affiliation(s)
- Nobuhiro Ishida
- Strategic Research Division, TOYOTA Central R&D Labs, Inc., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan.
| | - Yoichi Hosokawa
- Strategic Research Division, TOYOTA Central R&D Labs, Inc., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Takao Imaeda
- Strategic Research Division, TOYOTA Central R&D Labs, Inc., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan
| | - Takaaki Hatanaka
- Strategic Research Division, TOYOTA Central R&D Labs, Inc., 41-1, Yokomichi, Nagakute, Aichi, 480-1192, Japan
| |
Collapse
|
46
|
Badetti E, Calgaro L, Falchi L, Bonetto A, Bettiol C, Leonetti B, Ambrosi E, Zendri E, Marcomini A. Interaction between Copper Oxide Nanoparticles and Amino Acids: Influence on the Antibacterial Activity. NANOMATERIALS 2019; 9:nano9050792. [PMID: 31126084 PMCID: PMC6566567 DOI: 10.3390/nano9050792] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 11/16/2022]
Abstract
The increasing concern about antibiotic-resistance has led to the search for alternative antimicrobial agents. In this effort, different metal oxide nanomaterials are currently under investigation, in order to assess their effectiveness, safety and mode of action. This study focused on CuO nanoparticles (CuO NPs) and was aimed at evaluating how the properties and the antimicrobial activity of these nanomaterials may be affected by the interaction with ligands present in biological and environmental media. Ligands can attach to the surface of particles and/or contribute to their dissolution through ligand-assisted ion release and the formation of complexes with copper ions. Eight natural amino acids (L-Arg, L-Asp, L-Glu, L-Cys, L-Val, L-Leu, L-Phe, L-Tyr) were chosen as model molecules to investigate these interactions and the toxicity of the obtained materials against the Gram-positive bacterium Staphylococcus epidermidis ATCC 35984. A different behavior from pristine CuO NPs was observed, depending on the aminoacidic side chain. These results were supported by physico-chemical and colloidal characterization carried out by means of Fourier-Transform Infrared spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Thermo-Gravimetric Analysis (TGA), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and light scattering techniques (Dynamic Light Scattering (DLS), Electrophoretic Light Scattering (ELS) and Centrifugal Separation Analysis (CSA).
Collapse
Affiliation(s)
- Elena Badetti
- DAIS-Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice Mestre, Italy.
| | - Loris Calgaro
- DAIS-Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice Mestre, Italy.
| | - Laura Falchi
- DAIS-Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice Mestre, Italy.
| | - Alessandro Bonetto
- DAIS-Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice Mestre, Italy.
| | - Cinzia Bettiol
- DAIS-Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice Mestre, Italy.
| | - Benedetta Leonetti
- DMSN-Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155/b, 30172 Venice Mestre, Italy.
- ECLT Lab-European Centre for Living Technology, University Ca' Foscari of Venice, Via Torino 155/b, 30172 Venice Mestre, Italy.
| | - Emmanuele Ambrosi
- DMSN-Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155/b, 30172 Venice Mestre, Italy.
- ECLT Lab-European Centre for Living Technology, University Ca' Foscari of Venice, Via Torino 155/b, 30172 Venice Mestre, Italy.
| | - Elisabetta Zendri
- DAIS-Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice Mestre, Italy.
| | - Antonio Marcomini
- DAIS-Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice Mestre, Italy.
| |
Collapse
|
47
|
Interaction of Ethylene with Ir n (n = 1⁻10): From Bare Clusters to γ-Al₂O₃-Supported Nanoparticles. NANOMATERIALS 2019; 9:nano9030331. [PMID: 30832299 PMCID: PMC6473975 DOI: 10.3390/nano9030331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 11/17/2022]
Abstract
Comprehending the bond nature of ethylene-metal clusters at the atomic level is important for the design of nanocatalysts and their applications in the fields of fine chemistry and petroleum refining. The growth of Irn (n = 1–10) on γ–Al2O3(110) and ethylene adsorption on bare and γ–Al2O3(110)-supported Irn (n = 1–10) clusters were investigated using the density functional theory (DFT) approach. The mode stability of ethylene adsorption on the bare Irn clusters followed the order π > di-σ > B-T, with the exception of Ir8 where the π structure was less stable than the di-σ configuration. On supported Irn (n = 4–7 and 10) the stability sequence was π > di-σ > di-σ′ (at interface), while on supported Irn (n = 2, 3, 8, and 9) the sequence changed to di-σ > π > di-σ′ (at interface). Two-thirds of ethylene adsorption on the supported Irn clusters were weaker than its adsorption on the bare Irn clusters. The pre-adsorbed ethylene at the interface was found to facilitate the nucleation from the even-sized supported Irn to odd-sized Irn clusters, but hindered the nucleation from the odd-sized Irn to even-sized Irn clusters.
Collapse
|
48
|
Horszczaruk E. Properties of Cement-Based Composites Modified with Magnetite Nanoparticles: A Review. MATERIALS 2019; 12:ma12020326. [PMID: 30669637 PMCID: PMC6356830 DOI: 10.3390/ma12020326] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/08/2019] [Accepted: 01/12/2019] [Indexed: 12/18/2022]
Abstract
Despite the many available studies on the evaluation of the influence of nanomaterials on the properties of cement-based composites, the effects of some nanoparticles have not yet been fully recognized. Among the unrecognized nanomaterials are magnetite nanoparticles (MN). The literature devoted to this subject is limited. This paper reviews state-of-the-art research carried out on the effect of MN on the properties of cement-based composites. Detailed descriptions of the processing, microstructures (hydration products), properties (hydration, workability, mechanical and functional properties, and durability), and probability applications of MN-engineered cementitious composites are presented. Particular attention has been paid to MN application methods to the cement composite. Finally, the risks, challenges, and future development of MN-modified cement-based composites is discussed.
Collapse
Affiliation(s)
- Elżbieta Horszczaruk
- Faculty of Civil Engineering and Architecture, West Pomeranian University of Technology Szczecin, Al. Piastow 50, 70-311 Szczecin, Poland.
| |
Collapse
|
49
|
Sikora P, Abd Elrahman M, Stephan D. The Influence of Nanomaterials on the Thermal Resistance of Cement-Based Composites-A Review. NANOMATERIALS 2018; 8:nano8070465. [PMID: 29949903 PMCID: PMC6070830 DOI: 10.3390/nano8070465] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 12/30/2022]
Abstract
Exposure to elevated temperatures has detrimental effects on the properties of cementitious composites, leading to irreversible changes, up to total failure. Various methods have been used to suppress the deterioration of concrete under elevated temperature conditions. Recently, nanomaterials have been introduced as admixtures, which decrease the thermal degradation of cement-based composites after exposure to high temperatures. This paper presents a comprehensive review of recent developments related to the effects of nanoparticles on the thermal resistance of cementitious composites. The review provides an updated report on the effects of temperature on the properties of cement-based composites, as well as a detailed analysis of the available literature regarding the inclusion of nanomaterials and their effects on the thermal degradation of cementitious composites. The data from the studies reviewed indicate that the inclusion of nanoparticles in composites protects from strength loss, as well as contributing to a decrease in disruptive cracking, after thermal exposure. From all the nanomaterials presented, nanosilica has been studied the most extensively. However, there are other nanomaterials, such as carbon nanotubes, graphene oxide, nanoclays, nanoalumina or nano-iron oxides, that can be used to produce heat-resistant cementitious composites. Based on the data available, it can be concluded that the effects of nanomaterials have not been fully explored and that further investigations are required, so as to successfully utilize them in the production of heat-resistant cementitious composites.
Collapse
Affiliation(s)
- Pawel Sikora
- Building Materials and Construction Chemistry, Technische Universität Berlin, Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
- Faculty of Civil Engineering and Architecture, West Pomeranian University of Technology, Szczecin, Al. Piastow 50, 70-311 Szczecin, Poland.
| | - Mohamed Abd Elrahman
- Building Materials and Construction Chemistry, Technische Universität Berlin, Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
- Structural Engineering Department, Mansoura University, Elgomhouria St., Mansoura 35516, Egypt.
| | - Dietmar Stephan
- Building Materials and Construction Chemistry, Technische Universität Berlin, Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| |
Collapse
|
50
|
Díez-Pascual AM. Antibacterial Activity of Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E359. [PMID: 29882933 PMCID: PMC6027337 DOI: 10.3390/nano8060359] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Ana María Díez-Pascual
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, Institute of Chemistry Research "Andrés M. del Río" (IQAR), University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.6, 28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|