1
|
Shen K, Bi C, Yang H, Xu M, Huang L, Wang Y. Phenylboronic acid modification-based novel dumbbell-shaped Au-Ag nanorod SERS substrates for ultrasensitive detection of SO 42. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2311-2321. [PMID: 38529920 DOI: 10.1039/d3ay01831h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Based on the coordination principle of Lewis acids, a 4-mercaptophenylboronic acid (4-MPBA)-modified novel dumbbell-shaped Au-Ag nanorod (4-MPBA@DS Au-AgNR) substrate was developed, which could be combined with the surface-enhanced Raman scattering (SERS) technique to detect SO42- with high sensitivity and specificity. DS Au-AgNRs synthesized in this study with a dumbbell-shaped structure were verified by finite-difference time domain (FDTD) simulation to be capable of stimulating strong localized electromagnetic enhancement (EM) at nano-edge and gap, generating a large number of "hot spots" exhibiting excellent SERS performance. The 4-MPBA modified on its surface could specifically recognize SO42-, producing a change in the spectral peak at 1382 cm-1, thus realizing highly sensitive and specific sensing of SO42-. Under optimized conditions, this SERS sensor responded rapidly to SO42- within 2 minutes and demonstrated outstanding specificity. Calculation of the ratio of the characteristic peaks at 1382 and 1070 cm-1 (I1382/I1070) enabled the quantitative detection of SO42- in the range of 1 × 10-8-1 × 10-3 M, and the detection threshold was as low as 1 nM, which was superior to those of similar detection methods. Importantly, the utility and reliability of this SERS substrate for the determination of SO42- in actual samples were evaluated using ion chromatography as the gold standard, and there was no significant difference between the two protocols (P > 0.05), and the RSD was less than 6% with a satisfactory recovery rate (97.6-102.3%). Therefore, the present protocol has the advantages of simplicity and rapidity, high sensitivity, specificity, stability, and practicability in the determination of SO42- in aqueous solution, providing a reliable solution for tracing SO42- in the fields of food safety and environmental testing.
Collapse
Affiliation(s)
- Kang Shen
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou 225001, PR China.
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Caili Bi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Haifan Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Miaowen Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Lili Huang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Youwei Wang
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou 225001, PR China.
| |
Collapse
|
2
|
Chen Q, Wang J, Yao F, Zhang W, Qi X, Gao X, Liu Y, Wang J, Zou M, Liang P. A review of recent progress in the application of Raman spectroscopy and SERS detection of microplastics and derivatives. Mikrochim Acta 2023; 190:465. [PMID: 37953347 DOI: 10.1007/s00604-023-06044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
The global environmental concern surrounding microplastic (MP) pollution has raised alarms due to its potential health risks to animals, plants, and humans. Because of the complex structure and composition of microplastics (MPs), the detection methods are limited, resulting in restricted detection accuracy. Surface enhancement of Raman spectroscopy (SERS), a spectral technique, offers several advantages, such as high resolution and low detection limit. It has the potential to be extensively employed for sensitive detection and high-resolution imaging of microplastics. We have summarized the research conducted in recent years on the detection of microplastics using Raman and SERS. Here, we have reviewed qualitative and quantitative analyses of microplastics and their derivatives, as well as the latest progress, challenges, and potential applications.
Collapse
Affiliation(s)
- Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Jiamiao Wang
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Fuqi Yao
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Wei Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Xiaohua Qi
- Chinese Academy of Inspection and Quarantine (CAIQ), Beijing, 100123, China
| | - Xia Gao
- Institute of Analysis and Testing, Beijing Research Institute of Science and Technology, Beijing, 100089, China
| | - Yan Liu
- Institute of Analysis and Testing, Beijing Research Institute of Science and Technology, Beijing, 100089, China
| | - Jiamin Wang
- Institute of Analysis and Testing, Beijing Research Institute of Science and Technology, Beijing, 100089, China
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine (CAIQ), Beijing, 100123, China.
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
3
|
Li D, Yao D, Li C, Luo Y, Liang A, Wen G, Jiang Z. Nanosol SERS quantitative analytical method: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115885] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Li D, Li C, Liang A, Jiang Z. A silver nanosol SERS quantitative method for trace F− detection using the oxidized tetramethylbenzidine as molecular probes. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Pham XH, Hahm E, Kang E, Son BS, Ha Y, Kim HM, Jeong DH, Jun BH. Control of Silver Coating on Raman Label Incorporated Gold Nanoparticles Assembled Silica Nanoparticles. Int J Mol Sci 2019; 20:ijms20061258. [PMID: 30871136 PMCID: PMC6471565 DOI: 10.3390/ijms20061258] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 11/16/2022] Open
Abstract
Signal reproducibility in surface-enhanced Raman scattering (SERS) remains a challenge, limiting the scope of the quantitative applications of SERS. This drawback in quantitative SERS sensing can be overcome by incorporating internal standard chemicals between the core and shell structures of metal nanoparticles (NPs). Herein, we prepared a SERS-active core Raman labeling compound (RLC) shell material, based on Au⁻Ag NPs and assembled silica NPs (SiO₂@Au@RLC@Ag NPs). Three types of RLCs were used as candidates for internal standards, including 4-mercaptobenzoic acid (4-MBA), 4-aminothiophenol (4-ATP) and 4-methylbenzenethiol (4-MBT), and their effects on the deposition of a silver shell were investigated. The formation of the Ag shell was strongly dependent on the concentration of the silver ion. The negative charge of SiO₂@Au@RLCs facilitated the formation of an Ag shell. In various pH solutions, the size of the Ag NPs was larger at a low pH and smaller at a higher pH, due to a decrease in the reduction rate. The results provide a deeper understanding of features in silver deposition, to guide further research and development of a strong and reliable SERS probe based on SiO₂@Au@RLC@Ag NPs.
Collapse
Affiliation(s)
- Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Eunji Kang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Byung Sung Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Yuna Ha
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| | - Dae Hong Jeong
- Department of Chemistry Education and Center for Educational Research, Seoul National University, Seoul 151-742, Korea.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea.
| |
Collapse
|
6
|
Preparation of Highly Catalytic N-Doped Carbon Dots and Their Application in SERS Sulfate Sensing. MATERIALS 2018; 11:ma11091655. [PMID: 30205487 PMCID: PMC6165424 DOI: 10.3390/ma11091655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 11/25/2022]
Abstract
Carbon dots (CD) have excellent stability and fluorescence activity, and have been widely used in fluorescence methods. However, there are no reports about using CD as catalysts to amplify SERS signals to detect trace sulfate. Thus, preparing CD catalysts and their application in SERS sulfate-sensing are significant. In this article, highly catalytic N-doped carbon dots (CDN) were prepared by a hydrothermal procedure. CDN exhibited strong catalysis of the gold nanoparticle (AuNP) reaction between HAuCl4 and H2O2. Vitoria blue 4R (VB4R) has a strong SERS peak at 1614 cm−1 in the formed AuNP sol substrate. When Ba2+ ions were added, they were adsorbed on a CDN surface to inhibit the CDN catalytic activity that caused the SERS peak decreasing. Upon addition of analyte SO42−, a reaction with Ba2+ produced stable BaSO4 precipitate and CDN, and its catalysis recovered to cause SERS intensity increasing linearly. Thus, an SERS method was developed for the detection of 0.02–1.7 μmol/L SO42−, with a detection limit of 0.007 μmol/L.
Collapse
|