1
|
Xu Z, Lv Z, Yang H, Zhang J, Sun Z, He D, Liu R. Label-free electrochemical biosensor with magnetic self-assembly constructed via PNA-DNA hybridization process on α-Fe 2O 3/Fe 3O 4 nanosheets for APOE ε4 genes ultrasensitive detection. Bioelectrochemistry 2025; 161:108847. [PMID: 39556966 DOI: 10.1016/j.bioelechem.2024.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024]
Abstract
A label-free electrochemical DNA detection strategy based on self-assembled α-Fe2O3/Fe3O4 nanosheets with PNA-DNA hybridization process was developed for ultrasensitive detection of APOE ε4 gene, one of the most robust genetic risks for Alzheimer's Disease (AD). In this work, magnetic α-Fe2O3/Fe3O4 heterogeneous nanosheets were prepared by hydrothermal-calcined reduction method and loaded with Au nanoparticles (AuNPs) on their surfaces. The magnetic α-Fe2O3/Fe3O4@Au nanocomposites significantly enhanced the electrochemical response as a signal amplification matrix and were able to bind to the magnetic glassy carbon electrode (MGCE) surface by magnetic self-assembly. Moreover, owing to the high specificity and stable binding capacity of PNA with respect to the target DNA, the biosensor not only enabled accurate (the limit of detection was estimated to be 0.147 pM) and rapid detection of the APOE ε4 gene, but also exhibited excellent specificity, stability and regeneration capability. Additional, the satisfactory recoveries were also obtained in real samples of human serum, ranging from 92.83 % to 106.22 % with relative standard deviation (RSD) between 0.25 % and 1.85 %. The results possessed important reference value for exploring the application of DNA biosensor technology in the diagnosis of APOE gene mutation.
Collapse
Affiliation(s)
- Zhihao Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhixiang Lv
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, PR China
| | - Huijiao Yang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiashuo Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Zijie Sun
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Dawei He
- Affiliated Kunshan Hospital, Jiangsu University, Suzhou 215300, PR China.
| | - Ruijiang Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
2
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Label-free electrochemical bioplatform based on Au-modified magnetic Fe3O4/α-Fe2O3 hetero-nanorods for sensitive quantification of ovarian cancer tumor marker. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
4
|
Alphandéry E. Light-Interacting iron-based nanomaterials for localized cancer detection and treatment. Acta Biomater 2021; 124:50-71. [PMID: 33540060 DOI: 10.1016/j.actbio.2021.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
To improve the prognosis of cancer patients, methods of local cancer detection and treatment could be implemented. For that, iron-based nanomaterials (IBN) are particularly well-suited due to their biocompatibility and the various ways in which they can specifically target a tumor, i.e. through passive, active or magnetic targeting. Furthermore, when it is needed, IBN can be associated with well-known fluorescent compounds, such as dyes, clinically approved ICG, fluorescent proteins, or quantum dots. They may also be excited and detected using well-established optical methods, relying on scattering or fluorescent mechanisms, depending on whether IBN are associated with a fluorescent compound or not. Systems combining IBN with optical methods are diverse, thus enabling tumor detection in various ways. In addition, these systems provide a wealth of information, which is inaccessible with more standard diagnostic tools, such as single tumor cell detection, in particular by combining IBN with near-field scanning optical microscopy, dark-field microscopy, confocal microscopy or super-resolution microscopy, or the highlighting of certain dynamic phenomena such as the diffusion of a fluorescent compound in an organism, e.g. using fluorescence lifetime imaging, fluorescence resonance energy transfer, fluorescence anisotropy, or fluorescence tomography. Furthermore, they can in some cases be complemented by a therapeutic approach to destroy tumors, e.g. when the fluorescent compound is a drug, or when a technique such as photo-thermal or photodynamic therapy is employed. This review brings forward the idea that iron-based nanomaterials may be associated with various optical techniques to form a commercially available toolbox, which can serve to locally detect or treat cancer with a better efficacy than more standard medical approaches. STATEMENT OF SIGNIFICANCE: New tools should be developed to improve cancer treatment outcome. For that, two closely-related aspects deserve to be considered, i.e. early tumor detection and local tumor treatment. Here, I present various types of iron-based nanomaterials, which can achieve this double objective when they interact with a beam of light under specific and accurately chosen conditions. Indeed, these materials are biocompatible and can be used/combined with most standard microscopic/optical methods. Thus, these systems enable on the one hand tumor cell detection with a high sensitivity, i.e. down to single tumor cell level, and on the other hand tumor destruction through various mechanisms in a controlled and localized manner by deciding whether or not to apply a beam of light and by having these nanomaterials specifically target tumor cells.
Collapse
|
5
|
Kheradmand E, Poursalehi R, Delavari H. Optical and magnetic properties of iron-enriched Fe/FexOy@Au magnetoplasmonic nanostructures. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01246-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Ananikov VP. Organic-Inorganic Hybrid Nanomaterials. NANOMATERIALS 2019; 9:nano9091197. [PMID: 31454924 PMCID: PMC6780615 DOI: 10.3390/nano9091197] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 11/16/2022]
Abstract
The paramount progress in the field of organic–inorganic hybrid nanomaterials was stimulated by numerous applications in chemistry, physics, life sciences, medicine, and technology. Currently, in the field of hybrid materials, researchers may choose either to mimic complex natural materials or to compete with nature by constructing new artificial materials. The deep mechanistic understanding and structural insight achieved in recent years will guide a new wave in the design of hybrid materials at the atomic and molecular levels.
Collapse
Affiliation(s)
- Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
7
|
Jeong Y, Hwang HS, Na K. Theranostics and contrast agents for magnetic resonance imaging. Biomater Res 2018; 22:20. [PMID: 30065849 PMCID: PMC6062937 DOI: 10.1186/s40824-018-0130-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/18/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Magnetic resonance imaging is one of the diagnostic tools that uses magnetic particles as contrast agents. It is noninvasive methodology which provides excellent spatial resolution. Although magnetic resonance imaging offers great temporal and spatial resolution and rapid in vivo images acquisition, it is less sensitive than other methodologies for small tissue lesions, molecular activity or cellular activities. Thus, there is a desire to develop contrast agents with higher efficiency. Contrast agents are known to shorten both T1 and T2. Gadolinium based contrast agents are examples of T1 agents and iron oxide contrast agents are examples of T2 agents. In order to develop high relaxivity agents, gadolinium or iron oxide-based contrast agents can be synthesized via conjugation with targeting ligands or functional moiety for specific interaction and achieve accumulation of contrast agents at disease sites. MAIN BODY This review discusses the principles of magnetic resonance imaging and recent efforts focused on specificity of contrast agents on specific organs such as liver, blood, lymph nodes, atherosclerotic plaque, and tumor. Furthermore, we will discuss the combination of theranostic such as contrast agent and drug, contrast agent and thermal therapy, contrast agent and photodynamic therapy, and neutron capture therapy, which can provide for cancer diagnosis and therapeutics. CONCLUSION These applications of magnetic resonance contrast agents demonstrate the usefulness of theranostic agents for diagnosis and treatment.
Collapse
Affiliation(s)
- Yohan Jeong
- Department of Biotechnology, Center for Photomedicine, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi do 14662 South Korea
| | - Hee Sook Hwang
- Department of Biotechnology, Center for Photomedicine, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi do 14662 South Korea
| | - Kun Na
- Department of Biotechnology, Center for Photomedicine, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi do 14662 South Korea
| |
Collapse
|
8
|
Mochi F, Burratti L, Fratoddi I, Venditti I, Battocchio C, Carlini L, Iucci G, Casalboni M, De Matteis F, Casciardi S, Nappini S, Pis I, Prosposito P. Plasmonic Sensor Based on Interaction between Silver Nanoparticles and Ni 2+ or Co 2+ in Water. NANOMATERIALS 2018; 8:nano8070488. [PMID: 30004404 PMCID: PMC6070780 DOI: 10.3390/nano8070488] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
Silver nanoparticles capped with 3-mercapto-1propanesulfonic acid sodium salt (AgNPs-3MPS), able to interact with Ni2+ or Co2+, have been prepared to detect these heavy metal ions in water. This system works as an optical sensor and it is based on the change of the intensity and shape of optical absorption peak due to the surface plasmon resonance (SPR) when the AgNPs-3MPS are in presence of metals ions in a water solution. We obtain a specific sensitivity to Ni2+ and Co2+ up to 500 ppb (part per billion). For a concentration of 1 ppm (part per million), the change in the optical absorption is strong enough to produce a colorimetric effect on the solution, easily visible with the naked eye. In addition to the UV-VIS characterizations, morphological and dimensional studies were carried out by transmission electron microscopy (TEM). Moreover, the systems were investigated by means of dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and high-resolution X-ray photoelectron spectroscopy (HR-XPS). On the basis of the results, the mechanism responsible for the AgNPs-3MPS interaction with Ni2+ and Co2+ (in the range of 0.5⁻2.0 ppm) looks like based on the coordination compounds formation.
Collapse
Affiliation(s)
- Federico Mochi
- Department of Industrial Engineering and INSTM, University of Rome, Tor Vergata, via del Politecnico 1, 00133 Rome, Italy.
- Center for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Luca Burratti
- Department of Industrial Engineering and INSTM, University of Rome, Tor Vergata, via del Politecnico 1, 00133 Rome, Italy.
| | - Ilaria Fratoddi
- Department of Chemistry, University of Rome Sapienza, Rome, P.le A. Moro 5, 00187 Rome, Italy.
| | - Iole Venditti
- Department of Sciences, Roma Tre University of Rome Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University of Rome Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Laura Carlini
- Department of Sciences, Roma Tre University of Rome Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Giovanna Iucci
- Department of Sciences, Roma Tre University of Rome Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Mauro Casalboni
- Department of Industrial Engineering and INSTM, University of Rome, Tor Vergata, via del Politecnico 1, 00133 Rome, Italy.
- Center for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Fabio De Matteis
- Department of Industrial Engineering and INSTM, University of Rome, Tor Vergata, via del Politecnico 1, 00133 Rome, Italy.
- Center for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Stefano Casciardi
- National Institute for Insurance against Accidents at Work (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, 00078 Monte Porzio Catone, Italy.
| | - Silvia Nappini
- IOM-CNR Laboratorio TASC, SS 14, km 163,5 Basovizza, I-34149 Trieste, Italy.
| | - Igor Pis
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14, km 163.5 Basovizza, I-34149 Trieste, Italy.
| | - Paolo Prosposito
- Department of Industrial Engineering and INSTM, University of Rome, Tor Vergata, via del Politecnico 1, 00133 Rome, Italy.
- Center for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|