1
|
Xu Y, Li Y, Gao L, Liu Y, Ding Z. Advances and Prospects of Nanomaterials for Solid-State Hydrogen Storage. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1036. [PMID: 38921912 PMCID: PMC11207059 DOI: 10.3390/nano14121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
Hydrogen energy, known for its high energy density, environmental friendliness, and renewability, stands out as a promising alternative to fossil fuels. However, its broader application is limited by the challenge of efficient and safe storage. In this context, solid-state hydrogen storage using nanomaterials has emerged as a viable solution to the drawbacks of traditional storage methods. This comprehensive review delves into the recent advancements in nanomaterials for solid-state hydrogen storage, elucidating the fundamental principles and mechanisms, highlighting significant material systems, and exploring the strategies of surface and interface engineering alongside catalytic enhancement. We also address the primary challenges and provide future perspectives on the development of nanomaterial-based hydrogen storage technologies. Key discussions include the role of nanomaterial size effects, surface modifications, nanocomposites, and nanocatalysts in optimizing storage performance.
Collapse
Affiliation(s)
- Yaohui Xu
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China
- Leshan West Silicon Materials Photovoltaic New Energy Industry Technology Research Institute, Leshan 614000, China
| | - Yuting Li
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China
| | - Liangjuan Gao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yitao Liu
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Zhao Ding
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, National Innovation Center for Industry-Education Integration of Energy Storage Technology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Long S, Zhang L, Liu Z, Jiao H, Lei A, Gong W, Pei X. Fabrication of Biomass Derived Pt-Ni Bimetallic Catalyst and Its Selective Hydrogenation for 4-Nitrostyrene. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2968. [PMID: 36080004 PMCID: PMC9457902 DOI: 10.3390/nano12172968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The hydrogenation products of aromatic molecules with reducible groups (such as C=C, NO2, C=O, etc.) are relatively critical intermediate compounds in fine chemicals, but how to accurately reduce only specific groups is still challenging. In this work, a bimetallic Pt-Ni/Chitin catalyst was prepared for the first time by using renewable biomass resource chitin as support. As the carrier, the chitin was constructed into porous nanofibrous microspheres through the sol-gel strategy, which was favorable for the adhesion of nano-metals and the exchange of reactive substances due to its large surface area, porous structure, and rich functional groups. Then the Pt-Ni/Chitin catalyst was applied to selective hydrogenation with the model substrate of 4-nitrostyrene. As the highly dispersed Pt-Ni NPs with abundant exposed active sites and the synergistic effect of bimetals, the Pt-Ni/Chitin catalyst could efficiently and selectively hydrogenate only NO2 or C=C with yields of ~99% and TOF of 660 h-1, as well as good stability. This utilization of biomass resources to build catalyst materials would be important for the green and sustainable chemistry.
Collapse
Affiliation(s)
- Siyu Long
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
- Guizhou Key Laboratory of Inorganic Nonmetallic Functional Materials, Guizhou Normal University, Guiyang 550025, China
| | - Lingyu Zhang
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
- Guizhou Key Laboratory of Inorganic Nonmetallic Functional Materials, Guizhou Normal University, Guiyang 550025, China
| | - Zhuoyue Liu
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
- Guizhou Key Laboratory of Inorganic Nonmetallic Functional Materials, Guizhou Normal University, Guiyang 550025, China
| | - Huibin Jiao
- School of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Gong
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
- Guizhou Key Laboratory of Inorganic Nonmetallic Functional Materials, Guizhou Normal University, Guiyang 550025, China
| | - Xianglin Pei
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Ashirov T, Coskun A. Ultrahigh permeance metal coated porous graphene membranes with tunable gas selectivities. Chem 2021. [DOI: 10.1016/j.chempr.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Ashirov T, Coskun A. Ultrahigh permeance metal coated porous graphene membranes with tunable gas selectivities. Chem 2021; 7:2385-2394. [DOI: https:/doi.org/10.1016/j.chempr.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
|
5
|
Commercial Kevlar derived activated carbons for CO2 and C2H4 sorption. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2021. [DOI: 10.2478/pjct-2021-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The carbonaceous precursor was obtained via pyrolysis of commercial aramid polymer (Kevlar). Additionally the precursor was activated at 1000°C in CO2 atmosphere for different times. Obtained materials were characterised by BET; XPS; SEM and optical microscopy. The sorption capacities were determined by temperature swing adsorption performed in TGA apparatus for CO2 and C2H4 gases. The obtained materials exhibit high difference in sorption of these gases i.e. 1.5 and 2.8 mmol/g @30°C respectively and high SSA ~1600 m2/g what can be applied in separation applications. The highest uptakes were 1.8 and 3.1 mmol/g @30°C respectively. It was found that the presence of oxygen and nitrogen functional groups enhances C2H4/CO2 uptake ratio.
Collapse
|
6
|
Santana JA, Meléndez-Rivera J. Hydrogen Adsorption on Au-Supported Pt and Pd Nanoislands: A Computational Study of Hydrogen Coverage Effects. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:5110-5115. [PMID: 34178204 PMCID: PMC8225257 DOI: 10.1021/acs.jpcc.0c11566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We have studied the dissociative adsorption of hydrogen under high coverage conditions of adsorbed hydrogen on Pd and Pt nanoislands supported on Au(111) using Density Functional Theory calculations. The results reveal that for Pd/Au(111), the free energy of hydrogen adsorption ΔG is close to 0 kJ/mol when the coverage of adsorbed hydrogen is near 1 ML, where the available catalytic sites are located at the edges of the Pd nanoislands. In the case of Pt/Au(111), ΔG ≈ 0 kJ/mol under a broad range of hydrogen coverage conditions, from 1 ML to 3 ML, depending on the size of the Pt nanoislands. This is the case because the available catalytic sites are located at both the steps and terraces of Pt nanoislands. These findings indicate that Au surfaces with Pd or Pt nanoislands offer catalytic sites with ΔG ≈ 0 for hydrogen reactions, one key factor for an ideal electrocatalyst for hydrogen reactions.
Collapse
|
7
|
PdAgPt Corner-Satellite Nanocrystals in Well-Controlled Morphologies and the Structure-Related Electrocatalytic Properties. NANOMATERIALS 2021; 11:nano11020340. [PMID: 33572848 PMCID: PMC7911664 DOI: 10.3390/nano11020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022]
Abstract
The functions of heterogeneous metallic nanocrystals (HMNCs) can be undoubtedly tuned by controlling their morphologies and compositions. As a less-studied kind of HMNCs, corner-satellite multi-metallic nanocrystals (CSMNCs) have great research value in structure-related electrocatalytic performance. In this work, PdAgPt corner-satellite nanocrystals with well-controlled morphologies and compositions have been developed by temperature regulation of a seed-mediated growth process. Through the seed-mediated growth, the morphology of PdAgPt products evolves from Pd@Ag cubes to PdAgPt corner-satellite cubes, and eventually to truncated hollow octahedra, as a result of the expansion of {111} facets in AgPt satellites. The growth of AgPt satellites exclusively on the corners of central cubes is realized with the joint help of Ag shell and moderate bromide, and hollow structures form only at higher reaction temperatures on account of galvanic displacement promoted by the Pd core. In view of the different performances of Pd and Pt toward formic acid oxidation (FAO), this structure-sensitive reaction is chosen to measure electrocatalytic properties of PdAgPt HMNCs. It is proven that PdAgPt CSMNCs display greatly improved activity toward FAO in direct oxidation pathway. In addition, with the help of AgPt heterogeneous shells, all PdAgPt HMNCs exhibit better durability than Pd cubes and commercial Pt.
Collapse
|
8
|
Characterization of Carbon Materials for Hydrogen Storage and Compression. C — JOURNAL OF CARBON RESEARCH 2020. [DOI: 10.3390/c6030046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Carbon materials have proven to be a suitable choice for hydrogen storage and, recently, for hydrogen compression. Their developed textural properties, such as large surface area and high microporosity, are essential features for hydrogen adsorption. In this work, we first review recent advances in the physisorption characterization of nanoporous carbon materials. Among them, approaches based on the density functional theory are considered now standard methods for obtaining a reliable assessment of the pore size distribution (PSD) over the whole range from narrow micropores to mesopores. Both a high surface area and ultramicropores (pore width < 0.7 nm) are needed to achieve significant hydrogen adsorption at pressures below 1 MPa and 77 K. However, due to the wide PSD typical of activated carbons, it follows from an extensive literature review that pressures above 3 MP are needed to reach maximum excess uptakes in the range of ca. 7 wt.%. Finally, we present the adsorption–desorption compression technology, allowing hydrogen to be compressed at 70 MPa by cooling/heating cycles between 77 and 298 K, and being an alternative to mechanical compressors. The cyclic, thermally driven hydrogen compression might open a new scenario within the vast field of hydrogen applications.
Collapse
|
9
|
Feng S, Li Y, Zhang R, Li Y. A novel electrochemical sensor based on molecularly imprinted polymer modified hollow N, S-Mo 2C/C spheres for highly sensitive and selective carbendazim determination. Biosens Bioelectron 2019; 142:111491. [PMID: 31326864 DOI: 10.1016/j.bios.2019.111491] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/09/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
A novel electrochemical sensor based on nitrogen and sulfur doped hollow Mo2C/C spheres (N, S-Mo2C) and molecularly imprinted polymer (MIP) was proposed for carbendazim (CBD) determination. The N, S-Mo2C were prepared by first nitrogen and sulfur doping via one-pot method and subsequent carbonization at high temperature. A film of MIP was then fabricated in situ on the N, S-Mo2C surface by electropolymerization, with CBD acting as template molecule and o-phenylenediamine as functional monomer. The N, S-Mo2C were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and electrochemical behaviors of CBD on differently modified electrodes were explored by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under the optimal conditions, a calibration curve of current shift versus the logarithm of CBD concentration was obtained in the range of 1×10-12 ∼ 8×10-9 M with a detection limit of 6.7×10-13 M (S/N=3). Moreover, the proposed sensor exhibited favorable stability and selectivity, and was applied to analyze pesticide residues in fruits and vegetables with decent accuracy.
Collapse
Affiliation(s)
- Shuxiao Feng
- College of Chemical Engineering & Pharmaceutical, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yangguang Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Ruyue Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832000, China
| | - Yingchun Li
- College of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Pan M, Yin Z, Liu K, Du X, Liu H, Wang S. Carbon-Based Nanomaterials in Sensors for Food Safety. NANOMATERIALS 2019; 9:nano9091330. [PMID: 31533228 PMCID: PMC6781043 DOI: 10.3390/nano9091330] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
Food safety is one of the most important and widespread research topics worldwide. The development of relevant analytical methods or devices for detection of unsafe factors in foods is necessary to ensure food safety and an important aspect of the studies of food safety. In recent years, developing high-performance sensors used for food safety analysis has made remarkable progress. The combination of carbon-based nanomaterials with excellent properties is a specific type of sensor for enhancing the signal conversion and thus improving detection accuracy and sensitivity, thus reaching unprecedented levels and having good application potential. This review describes the roles and contributions of typical carbon-based nanomaterials, such as mesoporous carbon, single- or multi-walled carbon nanotubes, graphene and carbon quantum dots, in the construction and performance improvement of various chemo- and biosensors for various signals. Additionally, this review focuses on the progress of applications of this type of sensor in food safety inspection, especially for the analysis and detection of all types of toxic and harmful substances in foods.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zongjia Yin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiaoling Du
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Huilin Liu
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
11
|
Wang Y, Guo H, Luo X, Liu X, Hu Z, Han L, Zhang Z. Nonsiliceous Mesoporous Materials: Design and Applications in Energy Conversion and Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805277. [PMID: 30869834 DOI: 10.1002/smll.201805277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/10/2019] [Indexed: 06/09/2023]
Abstract
In this work, the progress in the design of nonsiliceous mesoporous materials (nonSiMPMs) over the last five years from the perspectives of the chemical composition, morphology, loading, and surface modification is summarized. Carbon, metal, and metal oxide are in focus, which are the most promising compositions. Then, representative applications of nonSiMPMs are demonstrated in energy conversion and storage, including recent technical advances in dye-sensitized solar cells, perovskite solar cells, photocatalysts, electrocatalysts, fuel cells, storage batteries, supercapacitors, and hydrogen storage systems. Finally, the requirements and challenges of the design and application of nonSiMPMs are outlined.
Collapse
Affiliation(s)
- Yongfei Wang
- School of High Temperature Materials and Magnesite Resources Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| | - Hong Guo
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xudong Luo
- School of High Temperature Materials and Magnesite Resources Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| | - Xin Liu
- School of High Temperature Materials and Magnesite Resources Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| | - Zhizhi Hu
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| | - Lu Han
- School of High Temperature Materials and Magnesite Resources Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, School of Chemical Engineering, University of Science and Technology Liaoning, 185 Qianshan Zhong Road, Anshan, 114044, P. R. China
| |
Collapse
|
12
|
Activated carbons from common nettle as potential adsorbents for CO2 capture. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2019. [DOI: 10.2478/pjct-2019-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Activated carbons (ACs) prepared from common nettle (Urtica Dioica L.) were studied in terms of carbon dioxide adsorption. ACs were prepared by KOH chemical activation in a nitrogen atmosphere at temperatures (ranging from 500 to 850°C). The pore structure and the surface characterization of the ACs were specified based on adsorption-desorption isotherms of nitrogen measured at –196°C and carbon dioxide at 0°C. The specific surface area was calculated according to the BET equation. The pore volume was estimated using the DFT method. The highest values of the specific surface area (SSA) showed activated carbons produced at higher carbonization temperatures. All samples revealed presence of micropores and mesopores with a diameter range of 0.3–10 nm. The highest value of the CO2 adsorption, 4.22 mmol/g, was found for the material activated at 700°C.
Collapse
|