1
|
Alka, Singh P, Pal RR, Mishra N, Singh N, Verma A, Saraf SA. Development of pH-Sensitive hydrogel for advanced wound Healing: Graft copolymerization of locust bean gum with acrylamide and acrylic acid. Int J Pharm 2024; 661:124450. [PMID: 38986968 DOI: 10.1016/j.ijpharm.2024.124450] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Wounds pose a formidable challenge in healthcare, necessitating the exploration of innovative tissue-healing solutions. Traditional wound dressings exhibit drawbacks, causing tissue damage and impeding natural healing. Using a Microwave (MW)-)-assisted technique, we envisaged a novel hydrogel (Hg) scaffold to address these challenges. This hydrogel scaffold was created by synthesizing a pH-responsive crosslinked material, specifically locust bean gum-grafted-poly(acrylamide-co-acrylic acid) [LBG-g-poly(AAm-co-AAc)], to enable sustained release of c-phycocyanin (C-Pc). Synthesized LBG-g-poly(AAm-co-AAc) was fine-tuned by adjusting various synthetic parameters, including the concentration of monomers, duration of reaction, and MW irradiation intensity, to maximize the yield of crosslinked LBG grafted product and enhance encapsulation efficiency of C-Pc. Following its synthesis, LBG-g-poly(AAm-co-AAc) was thoroughly characterized using advanced techniques, like XRD, TGA, FTIR, NMR, and SEM, to analyze its structural and chemical properties. Moreover, the study examined the in-vitro C-Pc release profile from LBG-g-poly(AAm-co-AAc) based hydrogel (HgCPcLBG). Findings revealed that the maximum release of C-Pc (64.12 ± 2.69 %) was achieved at pH 7.4 over 48 h. Additionally, HgCPcLBG exhibited enhanced antioxidant performance and compatibility with blood. In vivo studies confirmed accelerated wound closure, and ELISA findings revealed reduced inflammatory markers (IL-6, IL-1β, TNF-α) within treated skin tissue, suggesting a positive impact on injury repair. A low-cost and eco-friendly approach for creating LBG-g-poly(AAm-co-AAc) and HgCPcLBG has been developed. This method achieved sustained release of C-Pc, which could be a significant step forward in wound care technology.
Collapse
Affiliation(s)
- Alka
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India; School of Pharmacy, GITAM (Deemed-to-be) University, Rudraram, Patancheru Mandal, Hyderabad, 502329 Telangana, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Abhishek Verma
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India; National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, 226002 Uttar Pradesh, India.
| |
Collapse
|
2
|
Liang S, Wang X, Sun S, Xie L, Dang X. Extraction of chitin from flammulina velutipes waste: A low-concentration acid pretreatment and aspergillus Niger fermentation approach. Int J Biol Macromol 2024; 273:133224. [PMID: 38897518 DOI: 10.1016/j.ijbiomac.2024.133224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/03/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
In recent years, with the booming of the edible mushroom industry, chitin production has become increasingly dependent on fungi and other non-traditional sources. Fungal chitin has advantages including superior performance, simpler separation processes, abundant raw materials, and the absence of shellfish allergens. As a kind of edible mushroom, flammulina velutipes (F. velutipes) also has the advantages of wide source and large annual yield. This provided the possibility for the extraction of chitin. Here, a procedure to extract chitin from F. velutipes waste be presented. This method comprises low-concentration acid pretreatment coupled with consolidated bioprocessing with Aspergillus niger. Characterization by SEM, FTIR, XRD, NMR, and TGA confirmed that the extracted chitin was β-chitin. To achieve optimal fermentation of F. velutipes waste (80 g/L), ammonium sulfate and glucose were selected as nitrogen and carbon sources (5 g/L), with a fermentation time of 5 days. The extracted chitin could be further deacetylated and purified to obtain high-purity chitosan (99.2 % ± 1.07 %). This chitosan exhibited a wide degree of deacetylation (50.0 % ± 1.33 % - 92.1 % ± 0.97 %) and a molecular weight distribution of 92-192 kDa. Notably, the yield of chitosan extracted in this study was increased by 56.3 % ± 0.47 % compared to the traditional chemical extraction method.
Collapse
Affiliation(s)
- Shuang Liang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xuechuan Wang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Siwei Sun
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, PR China
| | - Long Xie
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Xugang Dang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Hubei Provincial Engineering Laboratory for Clean Production and High-Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
3
|
Wang S, Chen W, Zhang C, Pan H. Efficient and selective adsorption of cationic dyes with regenerated cellulose. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Gao C, Wang S, Liu B, Yao S, Dai Y, Zhou L, Qin C, Fatehi P. Sustainable Chitosan-Dialdehyde Cellulose Nanocrystal Film. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5851. [PMID: 34640253 PMCID: PMC8510260 DOI: 10.3390/ma14195851] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 01/20/2023]
Abstract
In this study, we incorporated 2,3-dialdehyde nanocrystalline cellulose (DANC) into chitosan as a reinforcing agent and manufactured biodegradable films with enhanced gas barrier properties. DANC generated via periodate oxidation of cellulose nanocrystal (CNC) was blended at various concentrations with chitosan, and bionanocomposite films were prepared via casting and characterized systematically. The results showed that DANC developed Schiff based bond with chitosan that improved its properties significantly. The addition of DANC dramatically improved the gas barrier performance of the composite film, with water vapor permeability (WVP) value decreasing from 62.94 g·mm·m-2·atm-1·day-1 to 27.97 g·mm·m-2·atm-1·day-1 and oxygen permeability (OP) value decreasing from 0.14 cm3·mm·m-2·day-1·atm-1 to 0.026 cm3·mm·m-2·day-1·atm-1. Meanwhile, the maximum decomposition temperature (Tdmax) of the film increased from 286 °C to 354 °C, and the tensile strength of the film was increased from 23.60 MPa to 41.12 MPa when incorporating 25 wt.% of DANC. In addition, the chitosan/DANC (75/25, wt/wt) films exhibited superior thermal stability, gas barrier, and mechanical strength compared to the chitosan/CNC (75/25, wt/wt) film. These results confirm that the DANC and chitosan induced films with improved gas barrier, mechanical, and thermal properties for possible use in film packaging.
Collapse
Affiliation(s)
- Cong Gao
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
- Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| | - Shuo Wang
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Baojie Liu
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Shuangquan Yao
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Yi Dai
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China;
| | - Long Zhou
- Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| | - Chengrong Qin
- Department of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China; (C.G.); (S.W.); (B.L.); (S.Y.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Pedram Fatehi
- Chemical Engineering Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada;
| |
Collapse
|
5
|
Chitosan grafted/cross-linked with biodegradable polymers: A review. Int J Biol Macromol 2021; 178:325-343. [PMID: 33652051 DOI: 10.1016/j.ijbiomac.2021.02.200] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/29/2022]
Abstract
Public perception of polymers has been drastically changed with the improved plastic management at the end of their life. However, it is widely recognised the need of developing biodegradable polymers, as an alternative to traditional petrochemical polymers. Chitosan (CH), a biodegradable biopolymer with excellent physiological and structural properties, together with its immunostimulatory and antibacterial activity, is a good candidate to replace other polymers, mainly in biomedical applications. However, CH has also several drawbacks, which can be solved by chemical modifications to improve some of its characteristics such as solubility, biological activity, and mechanical properties. Many chemical modifications have been studied in the last decade to improve the properties of CH. This review focussed on a critical analysis of the state of the art of chemical modifications by cross-linking and graft polymerization, between CH or CH derivatives and other biodegradable polymers (polysaccharides or proteins, obtained from microorganisms, synthetized from biomonomers, or from petrochemical products). Both techniques offer the option of including a wide variety of functional groups into the CH chain. Thus, enhanced and new properties can be obtained in accordance with the requirements for different applications, such as the release of drugs, the improvement of antimicrobial properties of fabrics, the removal of dyes, or as scaffolds to develop bone tissues.
Collapse
|
6
|
Radiation grafted cellulose fabric as reusable anionic adsorbent: A novel strategy for potential large-scale dye wastewater remediation. Carbohydr Polym 2020; 249:116902. [DOI: 10.1016/j.carbpol.2020.116902] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 01/02/2023]
|
7
|
Safavi-Mirmahalleh SA, Salami-Kalajahi M, Roghani-Mamaqani H. Adsorption kinetics of methyl orange from water by pH-sensitive poly(2-(dimethylamino)ethyl methacrylate)/nanocrystalline cellulose hydrogels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28091-28103. [PMID: 32405949 DOI: 10.1007/s11356-020-09127-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
A series of hydrogel nanocomposites was fabricated by in situ polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA) in presence of different amounts of (amine- and alkyl-modified) nanocrystalline cellulose (NCC). Modification and nanocomposites properties were proved by different analysis methods such as Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and field emission scanning electron microscopy (FE-SEM). The new hydrogel nanocomposites were applied for removing methyl orange (MO) used as anionic dye and presented in process water at different pH values. The effects of the fabrication process such as modification and content of NCC, contact time, and pH value on swelling ratio (SR), and equilibrium adsorption kinetics were studied. Results showed that the swelling ratio of PDMAEMA-based nanocomposites varied with the different types of nanoparticles showing the significant effect of the modification process. The MO adsorption into the hydrogel nanocomposites was affected by intermolecular and electrostatic interactions between functional groups of hydrogel and dye. The adsorption capacity decreased at high pH value, and it was significantly affected type of nanoparticles introduced into the hydrogel network. The addition of unmodified NCC did not affect adsorption kinetics significantly. Finally, adsorption kinetics was investigated by pseudo-first-order, pseudo-second-order and intraparticle diffusion models where pseudo-first-order model showed the best correlation with experimental results.
Collapse
Affiliation(s)
- Seyedeh-Arefeh Safavi-Mirmahalleh
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| |
Collapse
|
8
|
Futalan CM, Yang JH, Phatai P, Chen IP, Wan MW. Fixed-bed adsorption of copper from aqueous media using chitosan-coated bentonite, chitosan-coated sand, and chitosan-coated kaolinite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24659-24670. [PMID: 31410834 DOI: 10.1007/s11356-019-06083-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Fixed-bed studies were performed to evaluate the removal efficiency of copper (Cu(II)) from aqueous solution using chitosan-coated bentonite (CCB), chitosan-coated sand (CCS), and chitosan-coated kaolinite (CCK). The thermal and morphological properties of CCB, CCK, and CCS were characterized using thermogravimetric analysis, Fourier transform infrared spectroscopy, and the Brunauer-Emmett-Teller method. Dynamic experiments were carried out to investigate the effect of solution pH (3.0 to 5.0) and initial Cu(II) concentration (200 to 1000 mg/L) on the time to reach breakthrough (tb), total volume of treated effluent (Veff), and adsorption capacity at breakthrough (qb). Results show that increasing the initial Cu(II) concentration inhibits the column performance where lower Veff, tb, and qb were obtained. Decreasing the pH from 5.0 to 3.0 led to improved removal efficiency with higher values of Veff, tb, and qb. Under pH 3.0 and 200 mg/L, the maximum removal efficiency of 68.60%, 56.10%, and 58.90% for Cu(II) was attained using CCB, CCS, and CCK, respectively. The Thomas model was determined to adequately predict the breakthrough curves based on high values of coefficient of determination (R2 ≥ 0.8503). Regeneration studies were carried out using 0.1 M HCl and 0.1 M NaOH solution in the saturated column of CCB, CCK, and CCS.
Collapse
Affiliation(s)
- Cybelle M Futalan
- National Research Center for Disaster-Free and Safe Ocean City, Dong-A University, Busan, 49315, Republic of Korea
| | - Jung-Hung Yang
- Department of Environmental Engineering and Science, Chia-Nan University of Pharmacy and Science, 71710, Tainan, Taiwan
| | - Piaw Phatai
- Department of Chemistry, Faculty of Science, Udon Thani Rajabhat University, Udon Thani, 41000, Thailand
| | - I-Pin Chen
- Department of Environmental Engineering and Science, Chia-Nan University of Pharmacy and Science, 71710, Tainan, Taiwan
| | - Meng-Wei Wan
- Department of Environmental Resources Management, Chia-Nan University of Pharmacy and Science, 71710, Tainan, Taiwan.
| |
Collapse
|
9
|
Su W, Yu S, Wu D, Xia M, Wen Z, Yao Z, Tang J, Wu W. A critical review of cast-off crab shell recycling from the perspective of functional and versatile biomaterials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31581-31591. [PMID: 31502055 DOI: 10.1007/s11356-019-06318-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Shellfish cultivation is an expanding economic activity worldwide. However, the rapid development of crab farming and processing result in a large number of crab shells (CS). Utilizing CS could not only benefit the environment and economy but also promote the sustainable development of aquaculture. In this work, it reviews and analyzes recent attempts in CS recycling, including extracting chitin and its derivatives, for use as adsorbent and flocculant and for preparing polymer composites and catalysts, as well as medical applications. The challenges in these utilizations are discussed, and future research directions are proposed as well. Extracting chitin and its derivates, for use as adsorbent and flocculant, are recent major recycling approaches. Preparing polymer composites and carbon materials has gained more and more attentions. Biotechnology is an alternative method for extracting chitin and its derivates from CS, and high-efficiency desalted and deproteinized bacteria need to be screened. Immobilizing the CS-based adsorbents is the key of treating wastewater in continuous systems. Using CS as a biofiller to prepare polymer composites is promising, and surface modification to improve the interfacial compatibility between CS-based fillers and matrix needs to be further studied.
Collapse
Affiliation(s)
- Weiping Su
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shaoqi Yu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Daidai Wu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Meisheng Xia
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Zhengshun Wen
- School of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhitong Yao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Junhong Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
10
|
Balea A, Fuente E, Blanco A, Negro C. Nanocelluloses: Natural-Based Materials for Fiber-Reinforced Cement Composites. A Critical Review. Polymers (Basel) 2019; 11:polym11030518. [PMID: 30960502 PMCID: PMC6473712 DOI: 10.3390/polym11030518] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 01/19/2023] Open
Abstract
Nanocelluloses (NCs) are bio-based nano-structurated products that open up new solutions for natural material sciences. Although a high number of papers have described their production, properties, and potential applications in multiple industrial sectors, no review to date has focused on their possible use in cementitious composites, which is the aim of this review. It describes how they could be applied in the manufacturing process as a raw material or an additive. NCs improve mechanical properties (internal bonding strength, modulus of elasticity (MOE), and modulus of rupture (MOR)), alter the rheology of the cement paste, and affect the physical properties of cements/cementitious composites. Additionally, the interactions between NCs and the other components of the fiber cement matrix are analyzed. The final result depends on many factors, such as the NC type, the dosage addition mode, the dispersion, the matrix type, and the curing process. However, all of these factors have not been studied in full so far. This review has also identified a number of unexplored areas of great potential for future research in relation to NC applications for fiber-reinforced cement composites, which will include their use as a surface treatment agent, an anionic flocculant, or an additive for wastewater treatment. Although NCs remain expensive, the market perspective is very promising.
Collapse
Affiliation(s)
- Ana Balea
- Department of Chemical Engineering and Materials, University Complutense of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| | - Elena Fuente
- Department of Chemical Engineering and Materials, University Complutense of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| | - Angeles Blanco
- Department of Chemical Engineering and Materials, University Complutense of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| | - Carlos Negro
- Department of Chemical Engineering and Materials, University Complutense of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
11
|
Xu Q, Ji Y, Sun Q, Fu Y, Xu Y, Jin L. Fabrication of Cellulose Nanocrystal/Chitosan Hydrogel for Controlled Drug Release. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E253. [PMID: 30781761 PMCID: PMC6409612 DOI: 10.3390/nano9020253] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/28/2019] [Accepted: 02/09/2019] [Indexed: 12/21/2022]
Abstract
In this work, a novel nanocomposite hydrogel based on cellulose nanocrystal (CNC) and chitosan (CS) was fabricated and applied as a carrier for the controlled delivery of theophylline. CNC was firstly periodate-oxidized to obtain dialdehyde nanocellulose (DACNC). Then, chitosan was crosslinked using DACNC as both the matrix and crosslinker in different weight ratios, to fabricate CNC/CS composites. The prepared composites were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), zeta potential measurement and swelling ratio tests. FT-IR results confirmed the successful reaction between the free amino groups on chitosan and the aldehyde groups on DACNC. With the increase of chitosan percentage in the hydrogel, the isoelectric point was shifted towards an alkaline pH, which was probably caused by the higher content of free amino groups. The swelling ratio of the composite also increased, which may have been due to the decrease of crosslinking density. Because the swelling ratio of the drug-loaded hydrogels differed under varied pH values, the cumulative drug release percentage of the composite hydrogel was achieved to approximately 85% and 23% in the gastric (pH 1.5) and intestinal (pH 7.4) fluids, respectively. Therefore, CNC/CS hydrogel has application potential as a theophylline carrier.
Collapse
Affiliation(s)
- Qinghua Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yunzhong Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Qiucun Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yingjuan Fu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yongjian Xu
- Shaanxi Province Key Lab of Paper Technology and Specialty Paper, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Liqiang Jin
- College of Leather Chemical and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
12
|
Voronova M, Rubleva N, Kochkina N, Afineevskii A, Zakharov A, Surov O. Preparation and Characterization of Polyvinylpyrrolidone/Cellulose Nanocrystals Composites. NANOMATERIALS 2018; 8:nano8121011. [PMID: 30563129 PMCID: PMC6315985 DOI: 10.3390/nano8121011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/21/2018] [Accepted: 12/04/2018] [Indexed: 11/16/2022]
Abstract
Composite films and aerogels of polyvinylpyrrolidone/cellulose nanocrystals (PVP/CNC) were prepared by solution casting and freeze-drying, respectively. Investigations into the PVP/CNC composite films and aerogels over a wide composition range were conducted. Thermal stability, morphology, and the resulting reinforcing effect on the PVP matrix were explored. FTIR, TGA, DSC, X-ray diffraction, SEM, and tensile testing were used to examine the properties of the composites. It was revealed PVP-assisted CNC self-assembly that produces uniform CNC aggregates with a high aspect ratio (length/width). A possible model of the PVP-assisted CNC self-assembly has been considered. Dispersibility of the composite aerogels in water and some organic solvents was studied. It was shown that dispersing the composite aerogels in water resulted in stable colloidal suspensions. CNC particles size in the redispersed aqueous suspensions was near similar to the CNC particles size in never-dried CNC aqueous suspensions.
Collapse
Affiliation(s)
- Marina Voronova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| | - Natalia Rubleva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| | - Nataliya Kochkina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| | - Andrei Afineevskii
- Department of Physical and Colloid Chemistry, Ivanovo State University of Chemistry and Technology, 7 Sheremetevsky Prospect, Ivanovo 153000, Russia.
| | - Anatoly Zakharov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| | - Oleg Surov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| |
Collapse
|