1
|
Das S, Sahoo A, Baitalik S. Advancing Molecular-Scale Logic Devices through Multistage Switching in a Luminescent Bimetallic Ru(II)-Terpyridine Complex. Inorg Chem 2024; 63:14933-14942. [PMID: 39091180 DOI: 10.1021/acs.inorgchem.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Stimuli-responsive multistep switching phenomena of a luminescent bimetallic Ru(II) complex are employed herein to fabricate multiple configurable logic devices. The complex exhibits "off-on" and "on-off" emission switching upon alternative treatment with visible and UV light. Additionally, remarkable augmentation of the rate as well as quantum yield of photoisomerization was achieved via the use of a chemical oxidant (Ce4+) as well as a reductant (metallic sodium). Upon exploiting the emission spectral response of the complex, several advanced Boolean logic functions, including IMPLICATION as well as 2-input 2-output and 3-input 2-output complex combinational logic gates, are successfully implemented. Additionally, by utilizing the vast efficacy of Python, a novel "logic_circuit" model is devised that is capable of making accurate decisions under the influence of various input combinations. This model transcends traditional Boolean logic gates, offering flexibility and intuition to design logical functions tailored to specific chemical contexts. By integrating principles of logic circuits with chemical processes, this innovative approach enables structure determination of the chemical states based on input conditions, thereby unlocking avenues for exploring intricate interactions and reactions beyond conventional Boolean logic paradigms.
Collapse
Affiliation(s)
- Soumi Das
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Anik Sahoo
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
2
|
Brumett R, Danai L, Coffman A, Radwan Y, Teter M, Hayth H, Doe E, Pranger K, Thornburgh S, Dittmer A, Li Z, Kim TJ, Afonin KA, Khisamutdinov EF. Design and Characterization of Compact, Programmable, Multistranded Nonimmunostimulatory Nucleic Acid Nanoparticles Suitable for Biomedical Applications. Biochemistry 2024; 63:312-325. [PMID: 38271599 DOI: 10.1021/acs.biochem.3c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We report a thorough investigation of the role of single-stranded thymidine (ssT) linkers in the stability and flexibility of minimal, multistranded DNA nanostructures. We systematically explore the impact of varying the number of ssTs in three-way junction motifs (3WJs) on their formation and properties. Through various UV melting experiments and molecular dynamics simulations, we demonstrate that while the number of ssTs minimally affects thermodynamic stability, the increasing ssT regions significantly enhance the structural flexibility of 3WJs. Utilizing this knowledge, we design triangular DNA nanoparticles with varying ssTs, all showing exceptional assembly efficiency except for the 0T triangle. All triangles demonstrate enhanced stability in blood serum and are nonimmunostimulatory and nontoxic in mammalian cell lines. The 4T 3WJ is chosen as the building block for constructing other polygons due to its enhanced flexibility and favorable physicochemical characteristics, making it a versatile choice for creating cost-effective, stable, and functional DNA nanostructures that can be stored in the dehydrated forms while retaining their structures. Our study provides valuable insights into the design and application of nucleic acid nanostructures, emphasizing the importance of understanding stability and flexibility in the realm of nucleic acid nanotechnology. Our findings suggest the intricate connection between these ssTs and the structural adaptability of DNA 3WJs, paving the way for more precise design and engineering of nucleic acid nanosystems suitable for broad biomedical applications.
Collapse
Affiliation(s)
- Ross Brumett
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Leyla Danai
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Abigail Coffman
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Yasmine Radwan
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Megan Teter
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Hannah Hayth
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Erwin Doe
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Katelynn Pranger
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Sable Thornburgh
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Allison Dittmer
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Zhihai Li
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Tae Jin Kim
- Department of Physical Sciences, West Virginia University Institute of Technology, Beckley, West Virginia 25801, United States
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Emil F Khisamutdinov
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| |
Collapse
|
3
|
Fischermeier D, Steinmetzger C, Höbartner C, Mitrić R. Conformational preferences of modified nucleobases in RNA aptamers and their effect on Förster resonant energy transfer. Phys Chem Chem Phys 2023; 26:241-248. [PMID: 38054366 DOI: 10.1039/d3cp04704k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Förster resonant energy transfer (FRET) can be utilized in the study of tertiary structures of RNA aptamers, which bind specific fluorophoric ligands to form a fluorogenic aptamer complex. By introducing the emissive nucleobase analog 4-cyanoindole into the fluorogenic Chili RNA aptamer a FRET pair was established. The interpretation of studies aiming to investigate those tertiary structures using FRET, however, relies on prior knowledge about conformational properties of the nucleobase, which govern exciton transfer capabilities. Herein we employed classical molecular dynamics combined with Förster exciton theory to elucidate the preferred orientation relative to proximate bases and the influence on exciton transfer efficiency in multiple substitution sites. We did this by comparing the chromophoric distances emergent from MD simulations with experimental FRET data based on structural data of the native aptamer. We present the outlined methodology as a means to reliably evaluate future nucleobase analogue candidates in terms of their structural behavior and emergent exciton transfer properties as exemplified in the study of the preferred orientation of 4-cyanoindole in the Chili RNA aptamer.
Collapse
Affiliation(s)
- David Fischermeier
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Christian Steinmetzger
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Claudia Höbartner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
4
|
Hartung J, McCann N, Doe E, Hayth H, Benkato K, Johnson MB, Viard M, Afonin KA, Khisamutdinov EF. Toehold-Mediated Shape Transition of Nucleic Acid Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25300-25312. [PMID: 37204867 PMCID: PMC10331730 DOI: 10.1021/acsami.3c01604] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We introduce a toehold-mediated strand displacement strategy for regulated shape-switching of nucleic acid nanoparticles (NANPs) enabling their sequential transformation from triangular to hexagonal architectures at isothermal conditions. The successful shape transitions were confirmed by electrophoretic mobility shift assays, atomic force microscopy, and dynamic light scattering. Furthermore, implementation of split fluorogenic aptamers allowed for monitoring the individual transitions in real time. Three distinct RNA aptamers─malachite green (MG), broccoli, and mango─were embedded within NANPs as reporter domains to confirm shape transitions. While MG "lights up" within the square, pentagonal, and hexagonal constructs, the broccoli is activated only upon formation of pentagon and hexagon NANPs, and mango reports only the presence of hexagons. Moreover, the designed RNA fluorogenic platform can be employed to construct a logic gate that performs an AND operation with three single-stranded RNA inputs by implementing a non-sequential polygon transformation approach. Importantly, the polygonal scaffolds displayed promising potential as drug delivery agents and biosensors. All polygons exhibited effective cellular internalization followed by specific gene silencing when decorated with fluorophores and RNAi inducers. This work offers a new perspective for the design of toehold-mediated shape-switching nanodevices to activate different light-up aptamers for the development of biosensors, logic gates, and therapeutic devices in the nucleic acid nanotechnology.
Collapse
Affiliation(s)
- Jordan Hartung
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Nathan McCann
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Erwin Doe
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Hannah Hayth
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - Kheiria Benkato
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| | - M Brittany Johnson
- Department of Biology, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Mathias Viard
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
- Basic Science Program, Leidos Biomedical Research Inc. National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Emil F Khisamutdinov
- Department of Chemistry, Ball State University, Muncie, Indiana 47306, United States
| |
Collapse
|
5
|
Doe E, Hayth HL, Brumett R, Khisamutdinov EF. Effective, Rapid, and Small-Scale Bioconjugation and Purification of "Clicked" Small-Molecule DNA Oligonucleotide for Nucleic Acid Nanoparticle Functionalization. Int J Mol Sci 2023; 24:4797. [PMID: 36902228 PMCID: PMC10003352 DOI: 10.3390/ijms24054797] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Nucleic acid-based therapeutics involves the conjugation of small molecule drugs to nucleic acid oligomers to surmount the challenge of solubility, and the inefficient delivery of these drug molecules into cells. "Click" chemistry has become popular conjugation approach due to its simplicity and high conjugation efficiency. However, the major drawback of the conjugation of oligonucleotides is the purification of the products, as traditionally used chromatography techniques are usually time-consuming and laborious, requiring copious quantities of materials. Herein, we introduce a simple and rapid purification methodology to separate the excess of unconjugated small molecules and toxic catalysts using a molecular weight cut-off (MWCO) centrifugation approach. As proof of concept, we deployed "click" chemistry to conjugate a Cy3-alkyne moiety to an azide-functionalized oligodeo-xynucleotide (ODN), as well as a coumarin azide to an alkyne-functionalized ODN. The calculated yields of the conjugated products were found to be 90.3 ± 0.4% and 86.0 ± 1.3% for the ODN-Cy3 and ODN-coumarin, respectively. Analysis of purified products by fluorescence spectroscopy and gel shift assays demonstrated a drastic amplitude of fluorescent intensity by multiple folds of the reporter molecules within DNA nanoparticles. This work is intended to demonstrate a small-scale, cost-effective, and robust approach to purifying ODN conjugates for nucleic acid nanotechnology applications.
Collapse
|
6
|
Deb S, Sahoo A, Karmakar S, Baitalik S. Multi-channel anion sensing behaviour of a Ru(II)-bipyridine complex based on benzothiazolyl pyrazole ligand: experimental and implication of machine learning tools for data prediction. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
7
|
Deb S, Sahoo A, Mondal P, Baitalik S. Analysis and prediction of anion- and temperature responsive behaviours of luminescent Ru(II)-terpyridine complexes by using Boolean, fuzzy logic, artificial neural network and adapted neuro fuzzy inference models. Dalton Trans 2022; 51:15601-15613. [PMID: 36169624 DOI: 10.1039/d2dt02611b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anion- and temperature responsive behaviors of three luminescent Ru(II)-terpyridine complexes are utilized here to demonstrate multiple Boolean (BL) and fuzzy logic (FL) operations. Taking advantage of the imidazole NH protons, anion-promoted alteration of the photophysical characteristics of the complexes was thoroughly investigated via absorption, and emission spectral and lifetime measurements. In their free state, the complexes display luminescence representing the "on-state", whereas quenching of luminescence is observed with anions demonstrating the "off-state". Likewise, lowering of temperature induces a substantial increase of luminescence and lifetime demonstrating the "on-state", while the increase of temperature induces a significant decrease of emission intensity and lifetime indicating the "off-state" and the process is reversible in both cases. The complexes thus can act as anion- and temperature-responsive molecular switches. The spectral signatures of the complexes under the influence of anions and temperature were employed to mimic multiple BL and FL functions. Performing very detailed sensing studies by varying the analyte concentration within a wide domain is very tedious, time-consuming and expensive. In order to overcome the lacuna, we implemented machine learning and soft computing tools such as artificial neural networks (ANNs), fuzzy-logic and adaptive neuro-fuzzy inference system (ANFIS) to predict the experimental anion sensing data of the complexes.
Collapse
Affiliation(s)
- Sourav Deb
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Anik Sahoo
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Priyam Mondal
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
8
|
Sahoo A, Ahmed T, Deb S, Baitalik S. Neuro-Fuzzification Architecture for Modeling of Electrochemical Ion-Sensing Data of Imidazole-Dicarboxylate-Based Ru(II)-Bipyridine Complex. Inorg Chem 2022; 61:10242-10254. [PMID: 35737880 DOI: 10.1021/acs.inorgchem.2c01715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Anion- and pH-sensing behaviors of an imidazole-dicarboxylate-based Ru(II)-bipyridine complex possessing a number of dissociable protons in its secondary coordination sphere are employed here for the creation of multiple Boolean and fuzzy logic systems. The absorption, emission, and electrochemical behaviors of the metalloreceptor were significantly modulated upon the influence of basic anions (such as F-, AcO-, and H2PO4-) as well as by altering the pH of the solution. Interestingly, the deprotonation of the metalloreceptor by selected anions or by alkaline pH, followed by its restoration to its original form by acid or acidic pH is reversible and could be repeated many times. The metalloreceptor is capable to demonstrate several advanced Boolean functions, namely, three-input OR gate, set-reset flip-flop logic, and traffic signal, by employing its electrochemical responses through proper use of different inputs. Administering exhaustive sensing experiments by changing the analyte concentration within a wide range is usually tedious as well as exorbitantly costly. To get rid of these difficulties, we employed here several soft computing approaches such as artificial neural networks (ANN), fuzzy logic systems (FLS), or adaptive neuro-fuzzy inference system (ANFIS) to foresee the experimental sensing data and to appropriately model the protonation-deprotonation behaviors of the metalloreceptor. Reasonably good correlation between the experimental and model output data is also reflected in their tested root-mean-square error values (0.115961 and 0.118894 for the ANFIS model).
Collapse
Affiliation(s)
- Anik Sahoo
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Toushique Ahmed
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sourav Deb
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
9
|
Cellular Computational Logic Using Toehold Switches. Int J Mol Sci 2022; 23:ijms23084265. [PMID: 35457085 PMCID: PMC9033136 DOI: 10.3390/ijms23084265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
The development of computational logic that carries programmable and predictable features is one of the key requirements for next-generation synthetic biological devices. Despite considerable progress, the construction of synthetic biological arithmetic logic units presents numerous challenges. In this paper, utilizing the unique advantages of RNA molecules in building complex logic circuits in the cellular environment, we demonstrate the RNA-only bitwise logical operation of XOR gates and basic arithmetic operations, including a half adder, a half subtractor, and a Feynman gate, in Escherichia coli. Specifically, de-novo-designed riboregulators, known as toehold switches, were concatenated to enhance the functionality of an OR gate, and a previously utilized antisense RNA strategy was further optimized to construct orthogonal NIMPLY gates. These optimized synthetic logic gates were able to be seamlessly integrated to achieve final arithmetic operations on small molecule inputs in cells. Toehold-switch-based ribocomputing devices may provide a fundamental basis for synthetic RNA-based arithmetic logic units or higher-order systems in cells.
Collapse
|
10
|
Tran AN, Chandler M, Halman J, Beasock D, Fessler A, McKeough RQ, Lam PA, Furr DP, Wang J, Cedrone E, Dobrovolskaia MA, Dokholyan NV, Trammell SR, Afonin KA. Anhydrous Nucleic Acid Nanoparticles for Storage and Handling at Broad Range of Temperatures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104814. [PMID: 35128787 PMCID: PMC8976831 DOI: 10.1002/smll.202104814] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/17/2021] [Indexed: 05/13/2023]
Abstract
Recent advances in nanotechnology now allow for the methodical implementation of therapeutic nucleic acids (TNAs) into modular nucleic acid nanoparticles (NANPs) with tunable physicochemical properties which can match the desired biological effects, provide uniformity, and regulate the delivery of multiple TNAs for combinatorial therapy. Despite the potential of novel NANPs, the maintenance of their structural integrity during storage and shipping remains a vital issue that impedes their broader applications. Cold chain storage is required to maintain the potency of NANPs in the liquid phase, which greatly increases transportation costs. To promote long-term storage and retention of biological activities at higher temperatures (e.g., +50 °C), a panel of representative NANPs is first exposed to three different drying mechanisms-vacuum concentration (SpeedVac), lyophilization (Lyo), and light-assisted drying (LAD)-and then rehydrated and analyzed. While SpeedVac primarily operates using heat, Lyo avoids temperature increases by taking advantage of pressure reduction and LAD involves a near-infrared laser for uniform drying in the presence of trehalose. This work compares and defines refinements crucial in formulating an optimal strategy for producing stable, fully functional NANPs and presents a forward advancement in their development for clinical applications.
Collapse
Affiliation(s)
- Allison N Tran
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Justin Halman
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Damian Beasock
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Adam Fessler
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Riley Q McKeough
- Department of Physics and Optical Science, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Phuong Anh Lam
- Department of Physics and Optical Science, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Daniel P Furr
- Department of Physics and Optical Science, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Jian Wang
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Edward Cedrone
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Susan R Trammell
- Department of Physics and Optical Science, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
11
|
Sahoo A, Baitalik S. Fuzzy Logic, Artificial Neural Network, and Adaptive Neuro-Fuzzy Inference Methodology for Soft Computation and Modeling of Ion Sensing Data of a Terpyridyl-Imidazole Based Bifunctional Receptor. Front Chem 2022; 10:864363. [PMID: 35402382 PMCID: PMC8984201 DOI: 10.3389/fchem.2022.864363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/21/2022] [Indexed: 11/12/2022] Open
Abstract
Anion and cation sensing aspects of a terpyridyl-imidazole based receptor have been utilized in this work for the fabrication of multiply configurable Boolean and fuzzy logic systems. The terpyridine moiety of the receptor is used for cation sensing through coordination, whereas the imidazole motif is utilized for anion sensing via hydrogen bonding interaction and/or anion-induced deprotonation, and the recognition event was monitored through absorption and emission spectroscopy. The receptor functions as a selective sensor for F- and Fe2+ among the studied anions and cations, respectively. Interestingly, the complexation of the receptor by Fe2+ and its decomplexation by F- and deprotonation of the receptor by F- and restoration to its initial form by acid are reversible and can be recycled. The receptor can mimic various logic operations such as combinatorial logic gate and keypad lock using its spectral responses through the sequential use of ionic inputs. Conducting very detailed sensing studies by varying the concentration of the analytes within a wide domain is often very time-consuming, laborious, and expensive. To decrease the time and expenses of the investigations, soft computing approaches such as artificial neural networks (ANNs), fuzzy logic, or adaptive neuro-fuzzy inference system (ANFIS) can be recommended to predict the experimental spectral data. Soft computing approaches to artificial intelligence (AI) include neural networks, fuzzy systems, evolutionary computation, and other tools based on statistical and mathematical optimizations. This study compares fuzzy, ANN, and ANFIS outputs to model the protonation-deprotonation and complexation-decomplexation behaviors of the receptor. Triangular membership functions (trimf) are used to model the ANFIS methodology. A good correlation is observed between experimental and model output data. The testing root mean square error (RMSE) for the ANFIS model is 0.0023 for protonation-deprotonation and 0.0036 for complexation-decomplexation data.
Collapse
|
12
|
Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chem Rev 2021; 121:13797-13868. [PMID: 34157230 DOI: 10.1021/acs.chemrev.0c01332] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Researchers have worked for many decades to master the rules of biomolecular design that would allow artificial biopolymer complexes to self-assemble and function similarly to the diverse biochemical constructs displayed in natural biological systems. The rules of nucleic acid assembly (dominated by Watson-Crick base-pairing) have been less difficult to understand and manipulate than the more complicated rules of protein folding. Therefore, nucleic acid nanotechnology has advanced more quickly than de novo protein design, and recent years have seen amazing progress in DNA and RNA design. By combining structural motifs with aptamers that act as affinity handles and add powerful molecular recognition capabilities, nucleic acid-based self-assemblies represent a diverse toolbox for use by bioengineers to create molecules with potentially revolutionary biological activities. In this review, we focus on the development of self-assembling nucleic acid nanostructures that are functionalized with nucleic acid aptamers and their great potential in wide ranging application areas.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carson M Key
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sahil Pontula
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas H LaBean
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
13
|
Chandler M, Johnson B, Khisamutdinov E, Dobrovolskaia MA, Sztuba-Solinska J, Salem AK, Breyne K, Chammas R, Walter NG, Contreras LM, Guo P, Afonin KA. The International Society of RNA Nanotechnology and Nanomedicine (ISRNN): The Present and Future of the Burgeoning Field. ACS NANO 2021; 15:16957-16973. [PMID: 34677049 PMCID: PMC9023608 DOI: 10.1021/acsnano.0c10240] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) hosts an annual meeting series focused on presenting the latest research achievements involving RNA-based therapeutics and strategies, aiming to expand their current biomedical applications while overcoming the remaining challenges of the burgeoning field of RNA nanotechnology. The most recent online meeting hosted a series of engaging talks and discussions from an international cohort of leading nanotechnologists that focused on RNA modifications and modulation, dynamic RNA structures, overcoming delivery limitations using a variety of innovative platforms and approaches, and addressing the newly explored potential for immunomodulation with programmable nucleic acid nanoparticles. In this Nano Focus, we summarize the main discussion points, conclusions, and future directions identified during this two-day webinar as well as more recent advances to highlight and to accelerate this exciting field.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Emil Khisamutdinov
- Department of Chemistry, Ball State University, Muncie, Indiana 47304, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, United States
| | - Joanna Sztuba-Solinska
- Department of Biological Sciences, Auburn University, 120 W. Samford Avenue, Rouse Life Sciences Building, Auburn, Alabama 36849, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachussets 02114, United States
| | - Roger Chammas
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de São Paulo - ICESP, Faculdade de Medicina da Universidade de São Paulo - FMUSP, Avenida Dr. Arnaldo 251, Cerqueira César, São Paulo 01246-000, São Paulo, Brazil
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering and Department of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78714, United States
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
14
|
Chandler M, Minevich B, Roark B, Viard M, Johnson MB, Rizvi MH, Deaton TA, Kozlov S, Panigaj M, Tracy JB, Yingling YG, Gang O, Afonin KA. Controlled Organization of Inorganic Materials Using Biological Molecules for Activating Therapeutic Functionalities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39030-39041. [PMID: 34402305 PMCID: PMC8654604 DOI: 10.1021/acsami.1c09230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Precise control over the assembly of biocompatible three-dimensional (3D) nanostructures would allow for programmed interactions within the cellular environment. Nucleic acids can be used as programmable crosslinkers to direct the assembly of quantum dots (QDs) and tuned to demonstrate different interparticle binding strategies. Morphologies of self-assembled QDs are evaluated via gel electrophoresis, transmission electron microscopy, small-angle X-ray scattering, and dissipative particle dynamics simulations, with all results being in good agreement. The controlled assembly of 3D QD organizations is demonstrated in cells via the colocalized emission of multiple assembled QDs, and their immunorecognition is assessed via enzyme-linked immunosorbent assays. RNA interference inducers are also embedded into the interparticle binding strategy to be released in human cells only upon QD assembly, which is demonstrated by specific gene silencing. The programmability and intracellular activity of QD assemblies offer a strategy for nucleic acids to imbue the structure and therapeutic function into the formation of complex networks of nanostructures, while the photoluminescent properties of the material allow for optical tracking in cells in vitro.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Brian Minevich
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Brandon Roark
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Mathias Viard
- Laboratory of Integrative Cancer Immunology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Mehedi H Rizvi
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Thomas A Deaton
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Seraphim Kozlov
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Martin Panigaj
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Kosice 04154, Slovak Republic
| | - Joseph B Tracy
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yaroslava G Yingling
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
15
|
Binzel DW, Li X, Burns N, Khan E, Lee WJ, Chen LC, Ellipilli S, Miles W, Ho YS, Guo P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem Rev 2021; 121:7398-7467. [PMID: 34038115 PMCID: PMC8312718 DOI: 10.1021/acs.chemrev.1c00009] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA nanotechnology is the bottom-up self-assembly of nanometer-scale architectures, resembling LEGOs, composed mainly of RNA. The ideal building material should be (1) versatile and controllable in shape and stoichiometry, (2) spontaneously self-assemble, and (3) thermodynamically, chemically, and enzymatically stable with a long shelf life. RNA building blocks exhibit each of the above. RNA is a polynucleic acid, making it a polymer, and its negative-charge prevents nonspecific binding to negatively charged cell membranes. The thermostability makes it suitable for logic gates, resistive memory, sensor set-ups, and NEM devices. RNA can be designed and manipulated with a level of simplicity of DNA while displaying versatile structure and enzyme activity of proteins. RNA can fold into single-stranded loops or bulges to serve as mounting dovetails for intermolecular or domain interactions without external linking dowels. RNA nanoparticles display rubber- and amoeba-like properties and are stretchable and shrinkable through multiple repeats, leading to enhanced tumor targeting and fast renal excretion to reduce toxicities. It was predicted in 2014 that RNA would be the third milestone in pharmaceutical drug development. The recent approval of several RNA drugs and COVID-19 mRNA vaccines by FDA suggests that this milestone is being realized. Here, we review the unique properties of RNA nanotechnology, summarize its recent advancements, describe its distinct attributes inside or outside the body and discuss potential applications in nanotechnology, medicine, and material science.
Collapse
Affiliation(s)
- Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wen-Jui Lee
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Li-Ching Chen
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Satheesh Ellipilli
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, College of Medicine, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yuan Soon Ho
- TMU Research Center of Cancer Translational Medicine, School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
16
|
Mukhtar M, Sargazi S, Barani M, Madry H, Rahdar A, Cucchiarini M. Application of Nanotechnology for Sensitive Detection of Low-Abundance Single-Nucleotide Variations in Genomic DNA: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1384. [PMID: 34073904 PMCID: PMC8225127 DOI: 10.3390/nano11061384] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/02/2023]
Abstract
Single-nucleotide polymorphisms (SNPs) are the simplest and most common type of DNA variations in the human genome. This class of attractive genetic markers, along with point mutations, have been associated with the risk of developing a wide range of diseases, including cancer, cardiovascular diseases, autoimmune diseases, and neurodegenerative diseases. Several existing methods to detect SNPs and mutations in body fluids have faced limitations. Therefore, there is a need to focus on developing noninvasive future polymerase chain reaction (PCR)-free tools to detect low-abundant SNPs in such specimens. The detection of small concentrations of SNPs in the presence of a large background of wild-type genes is the biggest hurdle. Hence, the screening and detection of SNPs need efficient and straightforward strategies. Suitable amplification methods are being explored to avoid high-throughput settings and laborious efforts. Therefore, currently, DNA sensing methods are being explored for the ultrasensitive detection of SNPs based on the concept of nanotechnology. Owing to their small size and improved surface area, nanomaterials hold the extensive capacity to be used as biosensors in the genotyping and highly sensitive recognition of single-base mismatch in the presence of incomparable wild-type DNA fragments. Different nanomaterials have been combined with imaging and sensing techniques and amplification methods to facilitate the less time-consuming and easy detection of SNPs in different diseases. This review aims to highlight some of the most recent findings on the aspects of nanotechnology-based SNP sensing methods used for the specific and ultrasensitive detection of low-concentration SNPs and rare mutations.
Collapse
Affiliation(s)
- Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary;
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| |
Collapse
|
17
|
He JL, Jiang BY, Zhou WJ, Yuan R, Xiang Y. Target Recycling Transcription of Lighting-Up RNA Aptamers for Highly Sensitive and Label-Free Detection of ATP. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Gerasimova YV, Nedorezova DD, Kolpashchikov DM. Split light up aptamers as a probing tool for nucleic acids. Methods 2021; 197:82-88. [PMID: 33992774 DOI: 10.1016/j.ymeth.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
Aptamers that bind non-fluorescent dyes and increase their fluorescence can be converted to fluorescent sensors. Here, we discuss and provide guidance for the design of split (binary) light up aptameric sensors (SLAS) for nucleic acid analysis. SLAS consist of two RNA or DNA strands and a fluorogenic organic dye added as a buffer component. The two strands hybridize to the analyzed DNA or RNA sequence and form a dye-binding pocket, followed by dye binding, and increase in its fluorescence. SLAS can detect nucleic acids in a cost-efficient label-free format since it does not require conjugation of organic dyes with nucleic acids. SLAS design is preferable over monolith fluorescent sensors due to simpler assay optimization and improved selectivity. RNA-based SLAS can be expressed in cells and used for intracellular monitoring and imaging biological molecules.
Collapse
Affiliation(s)
- Yulia V Gerasimova
- University of Central Florida, Chemistry Department, 4111 Libra Drive, Physical Sciences 255, Orlando, FL 32816-2366, United States.
| | - Daria D Nedorezova
- Laboratory of Molecular Robotics and Biosensor Materials, ChemBio Cluster, SCAMT Institute, ITMO University, 9 Lomonosova Str., Saint Petersburg 191002, Russian Federation
| | - Dmitry M Kolpashchikov
- University of Central Florida, Chemistry Department, 4111 Libra Drive, Physical Sciences 255, Orlando, FL 32816-2366, United States; Laboratory of Molecular Robotics and Biosensor Materials, ChemBio Cluster, SCAMT Institute, ITMO University, 9 Lomonosova Str., Saint Petersburg 191002, Russian Federation.
| |
Collapse
|
19
|
Abstract
Technologies for RNA imaging in live cells play an important role in understanding the function and regulatory process of RNAs. One approach for genetically encoded fluorescent RNA imaging involves fluorescent light-up aptamers (FLAPs), which are short RNA sequences that can bind cognate fluorogens and activate their fluorescence greatly. Over the past few years, FLAPs have emerged as genetically encoded RNA-based fluorescent biosensors for the cellular imaging and detection of various targets of interest. In this review, we first give a brief overview of the development of the current FLAPs based on various fluorogens. Then we further discuss on the photocycles of the reversibly photoswitching properties in FLAPs and their photostability. Finally, we focus on the applications of FLAPs as genetically encoded RNA-based fluorescent biosensors in biosensing and bioimaging, including RNA, non-nucleic acid molecules, metal ions imaging and quantitative imaging. Their design strategies and recent cellular applications are emphasized and summarized in detail.
Collapse
Affiliation(s)
- Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China.,NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai, China
| |
Collapse
|
20
|
Ryckelynck M. Development and Applications of Fluorogen/Light-Up RNA Aptamer Pairs for RNA Detection and More. Methods Mol Biol 2021; 2166:73-102. [PMID: 32710404 DOI: 10.1007/978-1-0716-0712-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The central role of RNA in living systems made it highly desirable to have noninvasive and sensitive technologies allowing for imaging the synthesis and the location of these molecules in living cells. This need motivated the development of small pro-fluorescent molecules called "fluorogens" that become fluorescent upon binding to genetically encodable RNAs called "light-up aptamers." Yet, the development of these fluorogen/light-up RNA pairs is a long and thorough process starting with the careful design of the fluorogen and pursued by the selection of a specific and efficient synthetic aptamer. This chapter summarizes the main design and the selection strategies used up to now prior to introducing the main pairs. Then, the vast application potential of these molecules for live-cell RNA imaging and other applications is presented and discussed.
Collapse
Affiliation(s)
- Michael Ryckelynck
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France.
| |
Collapse
|
21
|
Kolpashchikov DM, Spelkov AA. Binary (Split) Light‐up Aptameric Sensors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201914919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dmitry M. Kolpashchikov
- Chemistry Department University of Central Florida Orlando FL 32816-2366 USA
- Burnett School of Biomedical Sciences University of Central Florida Orlando FL 32816 USA
| | - Alexander A. Spelkov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| |
Collapse
|
22
|
Yan H, Zhang Z, Weng T, Zhu L, Zhang P, Wang D, Liu Q. Recognition of Bimolecular Logic Operation Pattern Based on a Solid-State Nanopore. SENSORS (BASEL, SWITZERLAND) 2020; 21:s21010033. [PMID: 33374742 PMCID: PMC7793508 DOI: 10.3390/s21010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 05/17/2023]
Abstract
Nanopores have a unique advantage for detecting biomolecules in a label-free fashion, such as DNA that can be synthesized into specific structures to perform computations. This method has been considered for the detection of diseased molecules. Here, we propose a novel marker molecule detection method based on DNA logic gate by deciphering a variable DNA tetrahedron structure using a nanopore. We designed two types of probes containing a tetrahedron and a single-strand DNA tail which paired with different parts of the target molecule. In the presence of the target, the two probes formed a double tetrahedron structure. As translocation of the single and the double tetrahedron structures under bias voltage produced different blockage signals, the events could be assigned into four different operations, i.e., (0, 0), (0, 1), (1, 0), (1, 1), according to the predefined structure by logic gate. The pattern signal produced by the AND operation is obviously different from the signal of the other three operations. This pattern recognition method has been differentiated from simple detection methods based on DNA self-assembly and nanopore technologies.
Collapse
Affiliation(s)
- Han Yan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing 210096, China; (H.Y.); (Z.Z.); (L.Z.)
| | - Zhen Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing 210096, China; (H.Y.); (Z.Z.); (L.Z.)
| | - Ting Weng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (T.W.); (P.Z.); (D.W.)
| | - Libo Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing 210096, China; (H.Y.); (Z.Z.); (L.Z.)
| | - Pang Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (T.W.); (P.Z.); (D.W.)
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (T.W.); (P.Z.); (D.W.)
| | - Quanjun Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing 210096, China; (H.Y.); (Z.Z.); (L.Z.)
- Correspondence:
| |
Collapse
|
23
|
Fan D, Wang J, Wang E, Dong S. Propelling DNA Computing with Materials' Power: Recent Advancements in Innovative DNA Logic Computing Systems and Smart Bio-Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001766. [PMID: 33344121 PMCID: PMC7740092 DOI: 10.1002/advs.202001766] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/30/2020] [Indexed: 05/11/2023]
Abstract
DNA computing is recognized as one of the most outstanding candidates of next-generation molecular computers that perform Boolean logic using DNAs as basic elements. Benefiting from DNAs' inherent merits of low-cost, easy-synthesis, excellent biocompatibility, and high programmability, DNA computing has evoked substantial interests and gained burgeoning advancements in recent decades, and also exhibited amazing magic in smart bio-applications. In this review, recent achievements of DNA logic computing systems using multifarious materials as building blocks are summarized. Initially, the operating principles and functions of different logic devices (common logic gates, advanced arithmetic and non-arithmetic logic devices, versatile logic library, etc.) are elaborated. Afterward, state-of-the-art DNA computing systems based on diverse "toolbox" materials, including typical functional DNA motifs (aptamer, metal-ion dependent DNAzyme, G-quadruplex, i-motif, triplex, etc.), DNA tool-enzymes, non-DNA biomaterials (natural enzyme, protein, antibody), nanomaterials (AuNPs, magnetic beads, graphene oxide, polydopamine nanoparticles, carbon nanotubes, DNA-templated nanoclusters, upconversion nanoparticles, quantum dots, etc.) or polymers, 2D/3D DNA nanostructures (circular/interlocked DNA, DNA tetrahedron/polyhedron, DNA origami, etc.) are reviewed. The smart bio-applications of DNA computing to the fields of intelligent analysis/diagnosis, cell imaging/therapy, amongst others, are further outlined. More importantly, current "Achilles' heels" and challenges are discussed, and future promising directions of this field are also recommended.
Collapse
Affiliation(s)
- Daoqing Fan
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- Present address:
Institute of ChemistryThe Hebrew University of JerusalemJerusalem91904Israel
| | - Juan Wang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- University of Science and Technology of ChinaHefeiAnhui230026China
| |
Collapse
|
24
|
Logic Gates Based on DNA Aptamers. Pharmaceuticals (Basel) 2020; 13:ph13110417. [PMID: 33238657 PMCID: PMC7700249 DOI: 10.3390/ph13110417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
DNA bio-computing is an emerging trend in modern science that is based on interactions among biomolecules. Special types of DNAs are aptamers that are capable of selectively forming complexes with target compounds. This review is devoted to a discussion of logic gates based on aptamers for the purposes of medicine and analytical chemistry. The review considers different approaches to the creation of logic gates and identifies the general algorithms of their creation, as well as describes the methods of obtaining an output signal which can be divided into optical and electrochemical. Aptameric logic gates based on DNA origami and DNA nanorobots are also shown. The information presented in this article can be useful when creating new logic gates using existing aptamers and aptamers that will be selected in the future.
Collapse
|
25
|
Kolpashchikov DM, Spelkov AA. Binary (Split) Light-up Aptameric Sensors. Angew Chem Int Ed Engl 2020; 60:4988-4999. [PMID: 32208549 DOI: 10.1002/anie.201914919] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Indexed: 12/12/2022]
Abstract
This Minireview discusses the design and applications of binary (also known as split) light-up aptameric sensors (BLAS). BLAS consist of two RNA or DNA strands and a fluorogenic organic dye added as a buffer component. When associated, the two strands form a dye-binding site, followed by an increase in fluorescence of the aptamer-bound dye. The design is cost-efficient because it uses short oligonucleotides and does not require conjugation of organic dyes with nucleic acids. In some applications, BLAS design is preferable over monolithic sensors because of simpler assay optimization and improved selectivity. RNA-based BLAS can be expressed in cells and used for the intracellular monitoring of biological molecules. BLAS have been used as reporters of nucleic acid association events in RNA nanotechnology and nucleic-acid-based molecular computation. Other applications of BLAS include the detection of nucleic acids, proteins, and cancer cells, and potentially they can be tailored to report a broad range of biological analytes.
Collapse
Affiliation(s)
- Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, FL, 32816-2366, USA.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| | - Alexander A Spelkov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| |
Collapse
|
26
|
Badu S, Melnik R, Singh S. Mathematical and computational models of RNA nanoclusters and their applications in data-driven environments. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1804564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shyam Badu
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
- BCAM-Basque Center for Applied Mathematics, Bilbao, Spain
| | - Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
27
|
Steinmetzger C, Bäuerlein C, Höbartner C. Supramolecular Fluorescence Resonance Energy Transfer in Nucleobase‐Modified Fluorogenic RNA Aptamers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Carmen Bäuerlein
- Institute of Organic ChemistryUniversity of Würzburg Am Hubland 97074 Würzburg Germany
| | - Claudia Höbartner
- Institute of Organic ChemistryUniversity of Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
28
|
Steinmetzger C, Bäuerlein C, Höbartner C. Supramolecular Fluorescence Resonance Energy Transfer in Nucleobase-Modified Fluorogenic RNA Aptamers. Angew Chem Int Ed Engl 2020; 59:6760-6764. [PMID: 32052536 PMCID: PMC7187157 DOI: 10.1002/anie.201916707] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Indexed: 12/14/2022]
Abstract
RNA aptamers form compact tertiary structures and bind their ligands in specific binding sites. Fluorescence-based strategies reveal information on structure and dynamics of RNA aptamers. Herein, we report the incorporation of the universal emissive nucleobase analog 4-cyanoindole into the fluorogenic RNA aptamer Chili, and its application as a donor for supramolecular FRET to the bound ligands DMHBI+ or DMHBO+ . The photophysical properties of the new nucleobase-ligand-FRET pair revealed structural restraints for the overall RNA aptamer organization and identified nucleotide positions suitable for FRET-based readout of ligand binding. This strategy is generally suitable for binding-site mapping and may also be applied for responsive aptamer devices.
Collapse
Affiliation(s)
| | - Carmen Bäuerlein
- Institute of Organic ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Claudia Höbartner
- Institute of Organic ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
29
|
Panigaj M, Johnson MB, Ke W, McMillan J, Goncharova EA, Chandler M, Afonin KA. Aptamers as Modular Components of Therapeutic Nucleic Acid Nanotechnology. ACS NANO 2019; 13:12301-12321. [PMID: 31664817 PMCID: PMC7382785 DOI: 10.1021/acsnano.9b06522] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nucleic acids play a central role in all domains of life, either as genetic blueprints or as regulators of various biochemical pathways. The chemical makeup of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA), generally represented by a sequence of four monomers, also provides precise instructions for folding and higher-order assembly of these biopolymers that, in turn, dictate biological functions. The sequence-based specific 3D structures of nucleic acids led to the development of the directed evolution of oligonucleotides, SELEX (systematic evolution of ligands by exponential enrichment), against a chosen target molecule. Among the variety of functions, selected oligonucleotides named aptamers also allow targeting of cell-specific receptors with antibody-like precision and can deliver functional RNAs without a transfection agent. The advancements in the field of customizable nucleic acid nanoparticles (NANPs) opened avenues for the design of nanoassemblies utilizing aptamers for triggering or blocking cell signaling pathways or using aptamer-receptor combinations to activate therapeutic functionalities. A recent selection of fluorescent aptamers enables real-time tracking of NANP formation and interactions. The aptamers are anticipated to contribute to the future development of technologies, enabling an efficient assembly of functional NANPs in mammalian cells or in vivo. These research topics are of top importance for the field of therapeutic nucleic acid nanotechnology with the promises to scale up mass production of NANPs suitable for biomedical applications, to control the intracellular organization of biological materials to enhance the efficiency of biochemical pathways, and to enhance the therapeutic potential of NANP-based therapeutics while minimizing undesired side effects and toxicities.
Collapse
Affiliation(s)
- Martin Panigaj
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, Kosice 04154, Slovak Republic
| | - M. Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Jessica McMillan
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Ekaterina A. Goncharova
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg 191002, Russian Federation
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Kirill A. Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
30
|
Efficient Epidermal Growth Factor Receptor Targeting Oligonucleotide as a Potential Molecule for Targeted Cancer Therapy. Int J Mol Sci 2019; 20:ijms20194700. [PMID: 31546749 PMCID: PMC6801465 DOI: 10.3390/ijms20194700] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 01/19/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is associated with the progression of a wide range of cancers including breast, glioma, lung, and liver cancer. The observation that EGFR inhibition can limit the growth of EGFR positive cancers has led to the development of various EGFR inhibitors including monoclonal antibodies and small-molecule inhibitors. However, the reported toxicity and drug resistance greatly compromised the clinical outcome of such inhibitors. As a type of chemical antibodies, nucleic acid aptamer provides an opportunity to overcome the obstacles faced by current EGFR inhibitors. In this study, we have developed and investigated the therapeutic potential of a 27mer aptamer CL-4RNV616 containing 2′-O-Methyl RNA and DNA nucleotides. Our results showed that CL-4RNV616 not only displayed enhanced stability in human serum, but also effectively recognized and inhibited the proliferation of EGFR positive Huh-7 liver cancer, MDA-MB-231 breast cancer, and U87MG glioblastoma cells, with an IC50 value of 258.9 nM, 413.7 nM, and 567.9 nM, respectively. Furthermore, TUNEL apoptosis assay revealed that CL-4RNV616 efficiently induced apoptosis of cancer cells. In addition, clinical breast cancer biopsy-based immunostaining assay demonstrated that CL-4RNV616 had a comparable detection efficacy for EGFR positive breast cancer with commonly used commercial antibodies. Based on the results, we firmly believe that CL-4RNV616 could be useful in the development of targeted cancer therapeutics and diagnostics.
Collapse
|
31
|
Li H, Wang S, Ji Z, Xu C, Shlyakhtenko LS, Guo P. Construction of RNA nanotubes. NANO RESEARCH 2019; 12:1952-1958. [PMID: 32153728 PMCID: PMC7062307 DOI: 10.1007/s12274-019-2463-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nanotubes are miniature materials with significant potential applications in nanotechnological, medical, biological and material sciences. The quest for manufacturing methods of nano-mechanical modules is in progress. For example, the application of carbon nanotubes has been extensively investigated due to the precise width control, but the precise length control remains challenging. Here we report two approaches for the one-pot self-assembly of RNA nanotubes. For the first approach, six RNA strands were used to assemble the nanotube by forming a 11 nm long hollow channel with the inner diameter of 1.7 nm and the outside diameter of 6.3 nm. For the second approach, six RNA strands were designed to hybridize with their neighboring strands by complementary base pairing and formed a nanotube with a six-helix hollow channel similar to the nanotube assembled by the first approach. The fabricated RNA nanotubes were characterized by gel electrophoresis and atomic force microscopy (AFM), confirming the formation of nanotube-shaped RNA nanostructures. Cholesterol molecules were introduced into RNA nanotubes to facilitate their incorporation into lipid bilayer. Incubation of RNA nanotube complex with the free-standing lipid bilayer membrane under applied voltage led to discrete current signatures. Addition of peptides into the sensing chamber revealed discrete steps of current blockage. Polyarginine peptides with different lengths can be detected by current signatures, suggesting that the RNA-cholesterol complex holds the promise of achieving single molecule sensing of peptides.
Collapse
Affiliation(s)
- Hui Li
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Department of Physiology & Cell Biology, College of Medicine; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Shaoying Wang
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Department of Physiology & Cell Biology, College of Medicine; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhouxiang Ji
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Department of Physiology & Cell Biology, College of Medicine; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Congcong Xu
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Department of Physiology & Cell Biology, College of Medicine; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Lyudmila S Shlyakhtenko
- UNMC Nanoimaging Core Facility, Department of Pharmaceutical Sciences, College of Pharmacy University of Nebraska Medical Center, Omaha, NE, 68182, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy; Department of Physiology & Cell Biology, College of Medicine; Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
32
|
Halman JR, Afonin KA. Editorial for the Special Issue on "Nucleic Acid Architectures for Therapeutics, Diagnostics, Devices and Materials". NANOMATERIALS 2019; 9:nano9070951. [PMID: 31261977 PMCID: PMC6669640 DOI: 10.3390/nano9070951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 06/29/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Justin R Halman
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
33
|
Chandler M, Afonin KA. Smart-Responsive Nucleic Acid Nanoparticles (NANPs) with the Potential to Modulate Immune Behavior. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E611. [PMID: 31013847 PMCID: PMC6523571 DOI: 10.3390/nano9040611] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
Nucleic acids are programmable and biocompatible polymers that have beneficial uses in nanotechnology with broad applications in biosensing and therapeutics. In some cases, however, the development of the latter has been impeded by the unknown immunostimulatory properties of nucleic acid-based materials, as well as a lack of functional dynamicity due to stagnant structural design. Recent research advancements have explored these obstacles in tandem via the assembly of three-dimensional, planar, and fibrous cognate nucleic acid-based nanoparticles, called NANPs, for the conditional activation of embedded and otherwise quiescent functions. Furthermore, a library of the most representative NANPs was extensively analyzed in human peripheral blood mononuclear cells (PBMCs), and the links between the programmable architectural and physicochemical parameters of NANPs and their immunomodulatory properties have been established. This overview will cover the recent development of design principles that allow for fine-tuning of both the physicochemical and immunostimulatory properties of dynamic NANPs and discuss the potential impacts of these novel strategies.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
34
|
O'Hara JM, Marashi D, Morton S, Jaeger L, Grabow WW. Optimization of the Split-Spinach Aptamer for Monitoring Nanoparticle Assembly Involving Multiple Contiguous RNAs. NANOMATERIALS 2019; 9:nano9030378. [PMID: 30845655 PMCID: PMC6474029 DOI: 10.3390/nano9030378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 12/16/2022]
Abstract
The fact that structural RNA motifs can direct RNAs to fold and self-assemble into predictable pre-defined structures is an attractive quality and driving force for RNA’s use in nanotechnology. RNA’s recognized diversity concerning cellular and synthetically selected functionalities, however, help explain why it continues to draw attention for new nano-applications. Herein, we report the modification of a bifurcated reporter system based on the previously documented Spinach aptamer/DFHBI fluorophore pair that affords the ability to confirm the assembly of contiguous RNA strands within the context of the previously reported multi-stranded RNA nanoring. Exploration of the sequence space associated with the base pairs flanking the aptamer core demonstrate that fluorescent feedback can be optimized to minimize the fluorescence associated with partially-assembled RNA nanorings. Finally, we demonstrate that the aptamer-integrated nanoring is capable of assembling directly from transcribed DNA in one pot.
Collapse
Affiliation(s)
- Jack M O'Hara
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 918119-1997, USA.
| | - Dylan Marashi
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 918119-1997, USA.
| | - Sean Morton
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 918119-1997, USA.
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA.
| | - Wade W Grabow
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 918119-1997, USA.
| |
Collapse
|
35
|
Intracellular Imaging with Genetically Encoded RNA-based Molecular Sensors. NANOMATERIALS 2019; 9:nano9020233. [PMID: 30744040 PMCID: PMC6410142 DOI: 10.3390/nano9020233] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/10/2023]
Abstract
Genetically encodable sensors have been widely used in the detection of intracellular molecules ranging from metal ions and metabolites to nucleic acids and proteins. These biosensors are capable of monitoring in real-time the cellular levels, locations, and cell-to-cell variations of the target compounds in living systems. Traditionally, the majority of these sensors have been developed based on fluorescent proteins. As an exciting alternative, genetically encoded RNA-based molecular sensors (GERMS) have emerged over the past few years for the intracellular imaging and detection of various biological targets. In view of their ability for the general detection of a wide range of target analytes, and the modular and simple design principle, GERMS are becoming a popular choice for intracellular analysis. In this review, we summarize different design principles of GERMS based on various RNA recognition modules, transducer modules, and reporting systems. Some recent advances in the application of GERMS for intracellular imaging are also discussed. With further improvement in biostability, sensitivity, and robustness, GERMS can potentially be widely used in cell biology and biotechnology.
Collapse
|
36
|
Chandler M, Lyalina T, Halman J, Rackley L, Lee L, Dang D, Ke W, Sajja S, Woods S, Acharya S, Baumgarten E, Christopher J, Elshalia E, Hrebien G, Kublank K, Saleh S, Stallings B, Tafere M, Striplin C, Afonin KA. Broccoli Fluorets: Split Aptamers as a User-Friendly Fluorescent Toolkit for Dynamic RNA Nanotechnology. Molecules 2018; 23:E3178. [PMID: 30513826 PMCID: PMC6321606 DOI: 10.3390/molecules23123178] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
RNA aptamers selected to bind fluorophores and activate their fluorescence offer a simple and modular way to visualize native RNAs in cells. Split aptamers which are inactive until the halves are brought within close proximity can become useful for visualizing the dynamic actions of RNA assemblies and their interactions in real time with low background noise and eliminated necessity for covalently attached dyes. Here, we design and test several sets of F30 Broccoli aptamer splits, that we call fluorets, to compare their relative fluorescence and physicochemical stabilities. We show that the splits can be simply assembled either through one-pot thermal annealing or co-transcriptionally, thus allowing for direct tracking of transcription reactions via the fluorescent response. We suggest a set of rules that enable for the construction of responsive biomaterials that readily change their fluorescent behavior when various stimuli such as the presence of divalent ions, exposure to various nucleases, or changes in temperature are applied. We also show that the strand displacement approach can be used to program the controllable fluorescent responses in isothermal conditions. Overall, this work lays a foundation for the future development of dynamic systems for molecular computing which can be used to monitor real-time processes in cells and construct biocompatible logic gates.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Tatiana Lyalina
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova St. 9, 191002 St. Petersburg, Russia.
| | - Justin Halman
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Lauren Rackley
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Lauren Lee
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Dylan Dang
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Weina Ke
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Sameer Sajja
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Steven Woods
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Shrija Acharya
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Elijah Baumgarten
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Jonathan Christopher
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Emman Elshalia
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Gabriel Hrebien
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Kinzey Kublank
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Saja Saleh
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Bailey Stallings
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Michael Tafere
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Caryn Striplin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|