1
|
Cui B, Yan Z, Bu N, Liang L, Yao W, Wang S, Cui J, Yan W, Yang L, Yang Y, Yuan Y, Xia L. Bio-inspired porous adsorbents with lotus-leaf-like hierarchical structures and mussel adhesive surfaces for high-capacity removal of toxic dyes. ENVIRONMENTAL RESEARCH 2025; 268:120776. [PMID: 39788444 DOI: 10.1016/j.envres.2025.120776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/27/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
Basic dyes are highly toxic and have adverse effects on humans such as accelerated heart rate, shock, cyanosis, and tissue necrosis upon ingestion or skin contact. Efficient removal of basic dye pollutants from wastewater is therefore essential for the protection of the environment and human health. Biomolecules exhibit excellent dye removal performance in terms of removal capacity, selectivity, and rate. However, their poor thermal/chemical stability precludes their large-scale industrial applications. Herein, porous aromatic frameworks (PAFs) were utilized for the biomimetic construction of mussel, which included two unique features: (1) multistage pore structures for the rapid transport of dye contaminants and (2) mussel-inspired adhesive surfaces for cationic dye removal. Accordingly, the solid PAFs exhibited a record adsorption capacity of 7300 mg g-1 and ultrahigh adsorption rates for cationic dye (safranine T) (188.78 mg g-1 min-1 in the first 20 min). Notably, the bionic adsorbent system exhibited outstanding dye removal performance under various conditions such as after multiple reuse cycles, acid/alkali environments, presence of multiple anions, and in different water bodies (e.g., seawater, lake water, rainwater, and sanitary wastewater). This demonstrates the broad adaptability of the system and its ability to effectively deal with dye contamination in a variety of environments.
Collapse
Affiliation(s)
- Bo Cui
- College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Zhuojun Yan
- College of Chemistry, Liaoning University, Shenyang, 110036, PR China.
| | - Naishun Bu
- School of Environmental Science, Liaoning University, Shenyang, 110036, PR China
| | - Lijuan Liang
- College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Wanting Yao
- College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Suri Wang
- College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Jingbo Cui
- College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Weihan Yan
- College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Lini Yang
- College of Chemistry, Liaoning University, Shenyang, 110036, PR China
| | - Yajie Yang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China.
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang, 110036, PR China; Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, PR China.
| |
Collapse
|
2
|
Ahmad M, Riaz Q, Tabassum M, Shafqat SS, Ayesha AT, Zubair M, Xiong Y, Syed A, Al-Shwaiman HA, Nadeem MA, Jia X, Xu G, Zafar MN. DFT and comparative adsorption study of NiO, MnO, and Mn 2NiO 4 nanomaterials for the removal of amaranth dye from synthetic water. RSC Adv 2024; 14:28285-28297. [PMID: 39239279 PMCID: PMC11372564 DOI: 10.1039/d4ra04208e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/26/2024] [Indexed: 09/07/2024] Open
Abstract
In the current study, NiO nanoparticles, MnO nanoparticles, and Mn2NiO4 nanocomposites (Ni-NPs, Mn-NPs and MN-NCs, respectively) were synthesized using a facile hydrothermal method, and their performance in the removal of amaranth (AM) dye from synthetic wastewater was compared. XRD, FTIR spectroscopy, SEM, BET analysis, and TGA were performed to characterize the produced catalysts. The effect of pertinent parameters, including pH, dosage of catalysts, temperature, and shaking speed on the uptake of AM was investigated through batch experiments. The MN-NCs showed ultrafast and high efficiency for AM removal compared to their counter parts Mn-NPs and Ni-NPs. Under ideal conditions, the highest adsorption efficiencies of AM onto Ni-NPs, Mn-NPs, and MN-NCs were calculated to be 80.50%, 93.85%, and 98.50%, respectively. The Langmuir isotherm fitted the experimental data of AM removal better as shown by the higher values of r 2, compared to the Freundlich isotherm, indicating monolayer type adsorption of AM. According to kinetic analyses, the adsorption of AM was best described by the pseudo-second-order kinetic model. Further, regeneration/recycling studies showed that MN-NCs retained 79% adsorption efficiency after four cycles. DFT experiments were also conducted to gain a deeper understanding of the process and behavior of AM adsorption. In conclusion, as Ni-NPs, Mn-NPs, and MN-NCs adsorb AM predominantly via electrostatic interaction, they can be applied for the removal of both cationic and anionic dyes by controlling the pH factor.
Collapse
Affiliation(s)
- Madiha Ahmad
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Qamar Riaz
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Mehwish Tabassum
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University Shihezi 832003 PR China
| | - Syed Salman Shafqat
- Department of Chemistry, Division of Science and Technology, University of Education Lahore 54770 Pakistan
| | - Aima Tul Ayesha
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Muhammad Zubair
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Youpeng Xiong
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University Shihezi 832003 PR China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
| | - Hind A Al-Shwaiman
- Department of Botany and Microbiology, College of Science, King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
| | - Muhammad Arif Nadeem
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i- Azam University Islamabad Islamabad 45320 Pakistan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 People's Republic of China
| | - Xin Jia
- Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering/State, Shihezi University Shihezi 832003 PR China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China No. 96 Jinzhai Road Hefei Anhui 230026 People's Republic of China
| | - Muhammad Nadeem Zafar
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 People's Republic of China
| |
Collapse
|
3
|
Aghajani M, Dabiri M. Ultrasound-assisted Cu(II) Strecker-functionalized organocatalyst for green azide-alkyne cycloaddition and Ullmann reactions. Sci Rep 2024; 14:12141. [PMID: 38802456 PMCID: PMC11130308 DOI: 10.1038/s41598-024-62826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
A new aminonitrile-functionalized Fe3O4 has been synthesized via the Strecker reaction, the designed aminonitrile ligand on the surface of the magnetic core coordinated to copper(II) to obtain the final new catalyst. The fabricated nanocatalyst was characterized by Fourier transform Infrared (FT-IR), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive X-ray spectroscopy (EDX), Transmission Electron Microscopy (TEM), Vibrating-Sample Magnetometer (VSM), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), and Thermogravimetric Analysis (TGA). The high tendency of nitrogens in the aminonitrile functional group to make a complex with Cu(II) has caused the practical activity of this nucleus in this catalyst. This nanocatalyst performance was investigated in azide-alkyne Huisgen cycloaddition (3 + 2) reaction for achieving to 1,4-disubstituted 1,2,3-triazoles in water as a green media at room temperature. In another try, Classic Ullmann Reaction was investigated for the synthesis of biaryls at 85 °C promoted by ultrasonic condition (37 kHz). The reaction scope was explored using different reactants and the results of using this developed catalytic system demonstrated its capacity to reduce the reaction time and enhance the reaction efficiency to provide good to excellent product yield. Conversely, the simple recycling and reusability of this catalyst for at least six times without any noticeable leaching of copper makes it a potential future catalyst for synthesizing such compounds.
Collapse
Affiliation(s)
- Mahyar Aghajani
- Department of Organic Chemistry and Oil, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, 1983969411, Islamic Republic of Iran.
| | - Minoo Dabiri
- Department of Organic Chemistry and Oil, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, 1983969411, Islamic Republic of Iran.
| |
Collapse
|
4
|
Zhang X, Yao J, Gong X, Sun J, Wang R, Wang L, Liu L, Huang Y. Paper electrophoretic enrichment-assisted ultrasensitive SERS detection. Food Chem 2024; 434:137416. [PMID: 37734149 DOI: 10.1016/j.foodchem.2023.137416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023]
Abstract
To achieve sensitive detection of trace substances in fluids by surface-enhanced Raman spectroscopy (SERS), effective enrichment of molecules at subwavelength regions (hot spots) with a large enhancement is adopted. In this work, a glass fibre paper with Ag nanoparticles (AgNPs) is employed for electrodynamic enrichment of analytes in fluids by paper electrophoresis integrated with field amplification sample stacking (FASS) and capillary effects to obtain both Raman and SERS convenient and sensitive detection. With the help of electrophoretic enrichment on the glass fibre paper and surface plasmon enhancement on the AgNPs, this paper electrophoretic enrichment could improve the detection limit of Raman and SERS detection by more than an order of magnitude, even achieving a SERS detection limit of 10-17 M for Nile Blue A. Furthermore, this flexible SERS detection method can also detect trace organic contaminants at the ppt level in aquaculture and food applications.
Collapse
Affiliation(s)
- Xiumei Zhang
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Jingru Yao
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Xiangnan Gong
- Analytical and Testing Center, Chongqing University, Chongqing 401331, China
| | - Jianfeng Sun
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Runhui Wang
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Li Wang
- School of Optoelectronics Engineering, Chongqing University, Chongqing 401331, China.
| | - Liyu Liu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China
| | - Yingzhou Huang
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
5
|
Zhao S, Li Y, Wang M, Chen B, Zhang Y, Sun Y, Chen K, Du Q, Wang Y, Pi X, Jing Z, Jin Y. The Defects, Physicochemical Properties, and Surface Charge of MIL-88A (Al) Crystal Were Regulated for Highly Efficient Removal of Anionic Dyes: Preparation, Characterization, and Adsorption Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37470723 DOI: 10.1021/acs.langmuir.3c01207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
In this paper, the physicochemical properties, surface charge, and crystal defects of MIL-88A (Al) were controlled by adjusting the ratio of metal ligands and temperature in the synthetic system without the addition of surfactants. The adsorption properties of different crystals for Congo red (CR) were studied. Among them, MIL-88A (Al)-130 and MIL-88A (Al)-d have the best adsorption properties. The maximum adsorption capacities are 600.8 and 1167 mg · g-1, respectively. Compared with MIL-88A (Al)-130, the adsorption performance of MIL-88A (Al)-d was increased by 94.2%, and the adsorption rate was increased by about 4 times. It can be seen that increasing the proportion of metal ligands within a certain range will improve the adsorption capacity. The structure and morphology of the adsorbent were characterized by XRD, FTIR, SEM, EDS, TGA, BET, and zeta potential. The effects of time, temperature, pH, initial solution concentration, and dosage on CR adsorption properties were systematically discussed. The pseudo-second-order kinetic model and Langmuir isothermal model can well describe the adsorption process, which indicates that the adsorption process is a single-layer chemisorption occurring on a uniform surface. According to thermodynamics, this adsorption is an endothermic process. The mechanism of CR removal is proposed as the electrostatic attraction, hydrogen bond, metal coordination effect, π-π conjugation, crystal defect, and pore-filling effect. In addition, MIL-88A (Al)-d has good repeatability, indicating that it is a good material for treating anionic dye wastewater.
Collapse
Affiliation(s)
- Shiyong Zhao
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingzhen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Bing Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yang Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yaohui Sun
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kewei Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qiuju Du
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuqi Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinxin Pi
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhenyu Jing
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yonghui Jin
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
6
|
Aridi A, Basma H, Chehade W, Sayed Hassan R, Yaacoub N, Naoufal D, Awad R. Enhanced adsorption performance of magnetic Ni 0.5Zn 0.5Fe 2O 4/Zn 0.95Co 0.05O nanocomposites for the removal of malachite green dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58399-58411. [PMID: 36991201 DOI: 10.1007/s11356-023-26608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/18/2023] [Indexed: 05/10/2023]
Abstract
This investigation reports the synthesis and characterization of (1-x)Ni0.5Zn0.5Fe2O4/(x)Zn0.95Co0.05O nanocomposites, with 0.0 ≤ × ≤ 0.5. Fourier transform infrared (FTIR) and Raman spectroscopies confirmed the purity of the samples and the presence of bands corresponding to octahedral and tetrahedral iron occupancies for Ni0.5Zn0.5Fe2O4 nanoparticles. A shift in peak positions of these bands was detected upon the addition of Zn0.95Co0.05O nanoparticles. The magnetic properties of the nanocomposites were examined using Mössbauer spectrometry at both room temperature and 77 K. Room temperature analysis showed the existence of both ferromagnetic and superparamagnetic behaviors, while at 77 K, all nanocomposites showed ferromagnetic behavior. The adsorption performance of the nanocomposite on the removal of malachite green (MG) dye solution was investigated by varying the contact time, adsorbent concentration, and reaction temperature. The adsorption reaction followed the second-order kinetics and the sample with x = 0.3 showed the highest adsorption rate. The adsorption rate showed an increase with the increase in the reaction temperature. The adsorption isotherm was determined by applying different adsorption isotherms (Langmuir, Freundlich, and Temkin isotherms), and the results are well-fitted with the Langmuir theoretical model.
Collapse
Affiliation(s)
- Amani Aridi
- Department of Chemistry, Faculty of Science, Beirut Arab University, Beirut, Lebanon.
- Inorganic and Organometallic Coordination Chemistry Laboratory, Faculty of Sciences I, Lebanese University, Hadath, Lebanon.
| | - Hadi Basma
- Department of Physics, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Warde Chehade
- Department of Physics, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | | | - Nader Yaacoub
- IMMM, Université du Mans, CNRS, UMR-6283, Avenue Olivier Messiaen, 72085, Le Mans, France
| | - Daoud Naoufal
- Inorganic and Organometallic Coordination Chemistry Laboratory, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Ramadan Awad
- Department of Physics, Faculty of Science, Beirut Arab University, Beirut, Lebanon
- Department of Physics, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| |
Collapse
|
7
|
Zhao S, Li Y, Wang M, Chen B, Zhang Y, Sun Y, Chen K, Du Q, Wang Y, Pi X, Jing Z, Jin Y. Efficient adsorption of Congo red by micro/nano MIL-88A (Fe, Al, Fe-Al)/chitosan composite sponge: Preparation, characterization, and adsorption mechanism. Int J Biol Macromol 2023; 239:124157. [PMID: 36965569 DOI: 10.1016/j.ijbiomac.2023.124157] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/19/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
MIL-88A crystals with three different metal ligands (Fe, Al, FeAl) were prepared by hydrothermal method for the first time. The three materials' crystal structure and surface morphology are different, leading to different adsorption properties of Congo red (CR). The maximum adsorption capacities of MIL-88A (Fe), MIL-88A (FeAl), and MIL-88A (Al) are 607.7 mg · g-1, 536.4 mg · g-1, and 512.1 mg · g-1 respectively. In addition, MIL-88A was combined with chitosan (CS) respectively, and MIL-88A/CS composite sponge was prepared by the freeze-drying method, which not only solved the defect that MIL-88A powder was difficult to recover but also further improved the removal ability of CR by the adsorbent. The maximum adsorption capacities of MIL-88A (FeAl)/CS, MIL-88A (Fe)/CS, MIL-88A (Al)/CS, and CS are 1312 mg · g-1, 1056 mg · g-1, 996.7 mg · g-1, and 769.6 mg · g-1, respectively. The structure and physicochemical properties of the materials were analyzed by SEM, FTIR, XRD, TGA, BET, and Zeta. The adsorption process of CR follows pseudo-second-order kinetics and Langmuir, Sips isotherm model. Combined with thermodynamic parameters, the adsorption behavior was described as endothermic monomolecular chemical adsorption. The removal of CR is attributed to electrostatic interactions, hydrogen bonding, metal coordination effects, and size-matching effects.
Collapse
Affiliation(s)
- Shiyong Zhao
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Mingzhen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Bing Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yang Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yaohui Sun
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kewei Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Qiuju Du
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuqi Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinxin Pi
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhenyu Jing
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yonghui Jin
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
8
|
Attia M, Glickman RD, Romero G, Chen B, Brenner AJ, Ye JY. Optimized metal-organic-framework based magnetic nanocomposites for efficient drug delivery and controlled release. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Zhinzhilo VA, Uflyand IE. Magnetic Nanocomposites Based on Metal-Organic Frameworks: Preparation, Classification, Structure, and Properties (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Song R, Yao J, Yang M, Ye Z. Insights into High-Performance and Selective Elimination of Cationic Dye from Multicomponent Systems by Using Fe-Based Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9400-9409. [PMID: 35862139 DOI: 10.1021/acs.langmuir.2c01354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs), especially Fe-MOFs, have shown prospective application in eliminating organic dyes from wastewater due to their well-developed pores, water stability, easy preparation, and economy. Herein, we synthesized four types of Fe-MOFs (such as MIL-88A, MIL-88B, MIL-100, and MIL-101) using the hydrothermal method. The products were analyzed with several methods. By comparing the adsorption effect of those four types of Fe-MOFs on three kinds of dyes, it has been shown that MIL-100 owns the best adsorption efficiency on cationic organic dyes methylene blue (MB) and Rhodamine B (RhB) in 180 min, while all MOFs have slight removal capacity on methyl orange (MO). MIL-100, as an adsorbent, was studied under various research conditions, and the maximum removal efficiencies to MB, RhB, and MO were found to be up to 97.36%, 88.75%, and 13.00%, respectively. Furthermore, cationic dye MB's removal by MIL-100 was fitted with a pseudo-second-order model and Langmuir isotherm model (Qm = 411.041 mg/g) by adsorption kinetics and isotherms research, and MIL-100 could rapidly and selectively divide MB from a binary complex aqueous solution of MB and MO. The as-fabricated MIL-100 also exhibited excellent recyclability after four adsorption-desorption recycles and can be treated as a potential substance with high removal efficiency of cationic organic dye-containing industrial effluents.
Collapse
Affiliation(s)
- Rutong Song
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Jun Yao
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Mei Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- China Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Zhongbin Ye
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
- Chengdu Technological University, Chengdu 611730, China
| |
Collapse
|
11
|
Artificial Intelligence-Based Tools for Process Optimization: Case Study—Bromocresol Green Decolorization with Active Carbon. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/8110436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study highlights the benefits of optimizing the decolorization of bromocresol green (a colorant/pH indicator widely used in the industry, whose degradation produces toxic byproducts) by adsorption on active carbon. A set of experiments were planned and performed based on the design of experiments methodology for the following parameters: the colorant concentration (0.009-0.045 g/L), the amount of adsorbent (0.5-3 g/L), and the contact time (60-240 min). Modeling and optimization strategies were employed to determine the working conditions leading to efficiency maximization. Using the response surface methodology, the optimum values of the primary process parameters were established. In addition, a modified bacterial foraging optimization algorithm was applied as an alternative optimizer in combination with artificial neural networks in order to determine multiple combinations of parameters that can lead to maximum process efficiency. Different solutions were obtained with the considered strategies, and the maximum efficiency obtained was >99%. The study emphasizes that adsorption on active carbon is an effective method for bromocresol green decolorization in wastewater that can be further improved using advanced optimization methods.
Collapse
|
12
|
Patel RV, Raj GB, Chaubey S, Yadav A. Investigation on the feasibility of recycled polyvinylidene difluoride polymer from used membranes for removal of methylene blue: experimental and DFT studies. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:194-210. [PMID: 35838291 DOI: 10.2166/wst.2022.193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study reports the feasibility of recycled polyvinylidene difluoride (PVDF) beads to decolourize methylene blue (MB) from aqueous streams. The beads were characterized using scanning electron microscopy (SEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FT-IR) for its morphological and structural analysis. The effect of various process parameters such as adsorbent dose, initial concentration, contact time, and pH was studied. The first principle density functional theory (DFT) calculations were performed to investigate the underlying mechanism behind the adsorption process. The MB dye adsorption on recycled PVDF beads followed the pseudo-second-order kinetics and Langmuir isotherm, indicating the adsorption was chemical and monolayer. The maximum adsorption capacity obtained was 27.86 mg g-1. The adsorption energy of MB-PVDF predicted from the DFT study was -64.7 kJ mol-1. The HOMO-LUMO energy gap of PVDF decreased from 9.42 eV to 0.50 eV upon interaction with MB dye due to the mixing of molecular orbitals. The DFT simulations showed that the interaction of the MB dye molecule was from the electronegative N atom of the MB dye molecule, implying that electrostatic interactions occurred between the recycled PVDF beads and the positively charged quaternary ammonium groups in MB dye. The present study demonstrates the potential of recycled PVDF beads for a low-cost dye removal technique from textile wastewater.
Collapse
Affiliation(s)
- Raj Vardhan Patel
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India E-mail:
| | - Gopika B Raj
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India E-mail: ; Centre for Bio-Polymer Science and Technology (unit of CIPET), Kochi 683501, India
| | - Shweta Chaubey
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India E-mail:
| | - Anshul Yadav
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India E-mail:
| |
Collapse
|
13
|
Zhang P, Li YH, Chen L, Zhang MJ, Ren Y, Chen YX, Hu Z, Wang Q, Wang W, Chu LY. Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Rashtbari Y, Afshin S, Hamzezadeh A, Gholizadeh A, Ansari FJ, Poureshgh Y, Fazlzadeh M. Green synthesis of zinc oxide nanoparticles loaded on activated carbon prepared from walnut peel extract for the removal of Eosin Y and Erythrosine B dyes from aqueous solution: experimental approaches, kinetics models, and thermodynamic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5194-5206. [PMID: 34417700 DOI: 10.1007/s11356-021-16006-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Water contamination due to release of dye containing effluents is one of the environmental problems of serious concern today. The present study investigate the green synthesis of zinc oxide nanoparticles (ZnO-NPs) doped on activated carbon (AC) prepared from walnut peel extract and to estimate its efficiency in the removal of Eosin Y (Eo-Y) and Erythrosine B (Er-B) from its aqueous solution. The synthesized AC-ZnO was identified by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and the Brunauer-Emmett-Teller. The influence of various parameters such as pH, dosage of AC-ZnO, contact time, and concentrations of Eo-Y and Er-B was also studied. The pH 3 was observed as the optimum pH while the equilibrium was noticed to reach in 30 min at dosage of 1 g/L and initial concentration 100 mg/L for Eo-Y and Er-B adsorption onto AC-ZnO. The maximum adsorption capacity of Eo-Y and Er-B onto AC-ZnO was found to be 163.9 and 144.92 mg/g (and removal efficiencies of 95.11 and 98.31 %), respectively. The process of Eo-Y and Er-B adsorption on AC-ZnO was observed to be depended on the pseudo-second-order kinetic model which indicates chemisorption processes. Langmuir adsorption isotherm model test described the removal of Eo-Y and Er-B on AC-ZnO. The thermodynamic data indicated that the adsorption was endothermic process. Also, the values, SBET and VTOTAL, for the AC-ZnO were equal to 725.65 m2/g and 0.6004 cm3/g, respectively. The results of this study exhibited that AC-ZnO was a very effective method that can be used for the removal of Eo-Y and Er-B from aqueous solutions.
Collapse
Affiliation(s)
- Yousef Rashtbari
- Students Research Committee, Faculty of Health, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shirin Afshin
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Asghar Hamzezadeh
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Abdolmajid Gholizadeh
- Department of Environmental Health Engineering, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farshid Jaberi Ansari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Poureshgh
- Department of Environmental Health Engineering, School of Health, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mehdi Fazlzadeh
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
15
|
Ali SM, Emran KM, Alrashedee FM. Removal of organic pollutants by lanthanide-doped MIL-53 (Fe) metal-organic frameworks: Effect of dopant type in magnetite precursor. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
He Y, Guo J, Yang X, Guo B, Shen H. Highly sensitive humidity-driven actuators based on metal-organic frameworks incorporating thermoplastic polyurethane with gradient polymer distribution. RSC Adv 2021; 11:37744-37751. [PMID: 35498101 PMCID: PMC9043914 DOI: 10.1039/d1ra08174h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
Ambient humidity plays an important role in the fields of industrial and agricultural production, food and drug storage, climate monitoring, and maintenance of precision instruments. To sense and control humidity, humidity-responsive actuators that mimick humidity responsive behavior existing in nature, have attracted intense attention. The most common and important class of humidity actuators is active bilayer structures. However, such bilayer structures generally show weak interfacial adhesion, tending to delaminate during frequent bending and restoration cycles. In this work, to address this problem, a novel monolayer humidity-driven actuator with no adhesive issue is developed by integrating the swellable metal-organic frameworks (MIL-88A) into thermoplastic polyurethane films. The proposed actuators display excellent humidity response that under the conditions of relative humidity simulated with saturated salt solution, the MIL-88A/polyurethane composite films show good self-folding response and stability for recycling use. In addition, a deep insight into the self-folding of the composite films is also provided and a new response mechanism is proposed. In this case, the results show that both the preparation method and response properties of the humidity actuators are improved. Therefore, it suggests a new promising way to develop and design flexible humidity actuators.
Collapse
Affiliation(s)
- Yi He
- College of Materials and Chemistry, China Jiliang University Hangzhou 310018 PR China
| | - Jiayu Guo
- College of Materials and Chemistry, China Jiliang University Hangzhou 310018 PR China
| | - Xiazhen Yang
- The Institute of Industrial Catalysis, Zhejiang University of Technology Hangzhou 310032 PR China
| | - Bing Guo
- College of Materials and Chemistry, China Jiliang University Hangzhou 310018 PR China
| | - Hangyan Shen
- College of Materials and Chemistry, China Jiliang University Hangzhou 310018 PR China
| |
Collapse
|
17
|
Adsorption of Anionic Dyes from Wastewater onto Magnetic Nanocomposite Powders Synthesized by Combustion Method. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, new magnetic nanocomposites were successfully prepared by combustion method, characterized by X-ray diffraction, Fourier transform infrared spectroscopy, magnetic measurements, N2 adsorption–desorption thermal analysis, and scanning electron microscopy, and tested as adsorbents for the removal of anionic dyes (Acid Yellow 42 and Acid Red 213) from aqueous solutions. The influence of process variables solution pH, adsorbent dose, initial dye concentration and temperature on the adsorption was evaluated. The best kinetic model that fitted with experimental data was a pseudo-second order model, and the equilibrium data were correlated by Langmuir isotherm model for the investigated dyes. Maximum removal efficiencies of 98.54% and 97.58% was obtained for Acid Yellow 42 and Acid Red 213, respectively, indicating the superior adsorption capacity of the new synthesized magnetic nanocomposites. The thermodynamic parameters indicated the spontaneous and endothermic nature of the adsorption process.
Collapse
|
18
|
Zhang Y, You Z, Hou C, Liu L, Xiao A. An Electrochemical Sensor Based on Amino Magnetic Nanoparticle-Decorated Graphene for Detection of Cannabidiol. NANOMATERIALS 2021; 11:nano11092227. [PMID: 34578543 PMCID: PMC8467804 DOI: 10.3390/nano11092227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022]
Abstract
For detection of cannabidiol (CBD)—an important ingredient in Cannabis sativa L.—amino magnetic nanoparticle-decorated graphene (Fe3O4-NH2-GN) was prepared in the form of nanocomposites, and then modified on a glassy carbon electrode (GCE), resulting in a novel electrochemical sensor (Fe3O4-NH2-GN/GCE). The applied Fe3O4-NH2 nanoparticles and GN exhibited typical structures and intended surface groups through characterizations via transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD), vibrating sample magnetometer (VSM), and Raman spectroscopy. The Fe3O4-NH2-GN/GCE showed the maximum electrochemical signal for CBD during the comparison of fabricated components via the cyclic voltammetry method, and was systematically investigated in the composition and treatment of components, pH, scan rate, and quantitative analysis ability. Under optimal conditions, the Fe3O4-NH2-GN/GCE exhibited a good detection limit (0.04 μmol L−1) with a linear range of 0.1 μmol L−1 to 100 μmol L−1 (r2 = 0.984). In the detection of CBD in the extract of C. sativa leaves, the results of the electrochemical method using the Fe3O4-NH2-GN/GCE were in good agreement with those of the HPLC method. Based on these findings, the proposed sensor could be further developed for the portable and rapid detection of natural active compounds in the food, agricultural, and pharmaceutical fields.
Collapse
Affiliation(s)
| | | | | | - Liangliang Liu
- Correspondence: (L.L.); (A.X.); Tel.: +86-731-88998525 (L.L.); +86-731-88998536 (A.X.)
| | - Aiping Xiao
- Correspondence: (L.L.); (A.X.); Tel.: +86-731-88998525 (L.L.); +86-731-88998536 (A.X.)
| |
Collapse
|
19
|
Zhang G, Wo R, Sun Z, Hao G, Liu G, Zhang Y, Guo H, Jiang W. Effective Magnetic MOFs Adsorbent for the Removal of Bisphenol A, Tetracycline, Congo Red and Methylene Blue Pollutions. NANOMATERIALS 2021; 11:nano11081917. [PMID: 34443748 PMCID: PMC8398004 DOI: 10.3390/nano11081917] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 01/11/2023]
Abstract
A magnetic metal−organic frameworks adsorbent (Fe3O4@MIL-53(Al)) was prepared by a typical solvothermal method for the removal of bisphenol A (BPA), tetracycline (TC), congo red (CR), and methylene blue (MB). The prepared Fe3O4@MIL-53(Al) composite adsorbent was well characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and fourier transform infrared spectrometer (FTIR). The influence of adsorbent quantity, adsorption time, pH and ionic strength on the adsorption of the mentioned pollutants were also studied by a UV/Vis spectrophotometer. The adsorption capacities were found to be 160.9 mg/g for BPA, 47.8 mg/g for TC, 234.4 mg/g for CR, 70.8 mg/g for MB, respectively, which is superior to the other reported adsorbents. The adsorption of BPA, TC, and CR were well-fitted by the Langmuir adsorption isotherm model, while MB followed the Freundlich model, while the adsorption kinetics data of all pollutants followed the pseudo-second-order kinetic models. The thermodynamic values, including the enthalpy change (ΔH°), the Gibbs free energy change (ΔG°), and entropy change (ΔS°), showed that the adsorption processes were spontaneous and exothermic entropy-reduction process for BPA, but spontaneous and endothermic entropy-increasing processes for the others. The Fe3O4@MIL-53(Al) was also found to be easily separated after external magnetic field, can be a potential candidate for future water treatment.
Collapse
Affiliation(s)
- Guangpu Zhang
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (G.Z.); (R.W.); (Z.S.); (G.H.); (G.L.); (W.J.)
| | - Rong Wo
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (G.Z.); (R.W.); (Z.S.); (G.H.); (G.L.); (W.J.)
| | - Zhe Sun
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (G.Z.); (R.W.); (Z.S.); (G.H.); (G.L.); (W.J.)
| | - Gazi Hao
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (G.Z.); (R.W.); (Z.S.); (G.H.); (G.L.); (W.J.)
| | - Guigao Liu
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (G.Z.); (R.W.); (Z.S.); (G.H.); (G.L.); (W.J.)
| | - Yanan Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Correspondence: (Y.Z.); (H.G.)
| | - Hu Guo
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (G.Z.); (R.W.); (Z.S.); (G.H.); (G.L.); (W.J.)
- Correspondence: (Y.Z.); (H.G.)
| | - Wei Jiang
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (G.Z.); (R.W.); (Z.S.); (G.H.); (G.L.); (W.J.)
| |
Collapse
|
20
|
Castañeda Ramírez AA, Rojas García E, López Medina R, Contreras Larios JL, Suárez Parra R, Maubert Franco AM. Selective Adsorption of Aqueous Diclofenac Sodium, Naproxen Sodium, and Ibuprofen Using a Stable Fe 3O 4-FeBTC Metal-Organic Frameworka. MATERIALS 2021; 14:ma14092293. [PMID: 33925167 PMCID: PMC8124272 DOI: 10.3390/ma14092293] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022]
Abstract
The FeBTC metal–organic framework (MOF) incorporated with magnetite is proposed as a novel material to solve water contamination with last generation pollutants. The material was synthesized by in situ solvothermal methods, and Fe3O4 nanoparticles were added during FeBTC MOF synthesis and used in drug adsorption. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy characterized the materials, with N2-physisorption at 77 K. Pseudo-second-order kinetic and Freundlich models were used to describe the adsorption process. The thermodynamic study revealed that the adsorption of three drugs was a feasible, spontaneous exothermic process. The incorporation of magnetite nanoparticles in the FeBTC increased the adsorption capacity of pristine FeBTC. The Fe3O4–FeBTC material showed a maximum adsorption capacity for diclofenac sodium (DCF), then by ibuprofen (IB), and to a lesser extent by naproxen sodium (NS). Additionally, hybridization of the FeBTC with magnetite nanoparticles reinforced the most vulnerable part of the MOF, increasing the stability of its thermal and aqueous media. The electrostatic interaction, H-bonding, and interactions in the open-metal sites played vital roles in the drug adsorption. The sites’ competition in the multicomponent mixture’s adsorption showed selective adsorption (DCF) and (NS). This work shows how superficial modification with a low-surface-area MOF can achieve significant adsorption results in water pollutants.
Collapse
Affiliation(s)
- Aldo Arturo Castañeda Ramírez
- Materials Chemistry, Basic Sciences, Metropolitan Autonomous University-Azcapotzalco, Mexico City 02200, Mexico;
- Correspondence: ; Tel.: +52-5571203078
| | - Elizabeth Rojas García
- Process Engineering and Hydraulics, Basic Sciences, Metropolitan Autonomous University-Iztapalapa, Mexico City 09340, Mexico;
| | - Ricardo López Medina
- Energy, Basic Sciences, Metropolitan Autonomous University-Azcapotzalco, Mexico City 02200, Mexico; (R.L.M.); (J.L.C.L.)
| | - José L. Contreras Larios
- Energy, Basic Sciences, Metropolitan Autonomous University-Azcapotzalco, Mexico City 02200, Mexico; (R.L.M.); (J.L.C.L.)
| | - Raúl Suárez Parra
- Institute of Renewable Energies, National Autonomous University of Mexico, Morelos 62580, Mexico;
| | - Ana Marisela Maubert Franco
- Materials Chemistry, Basic Sciences, Metropolitan Autonomous University-Azcapotzalco, Mexico City 02200, Mexico;
| |
Collapse
|
21
|
Fu Y, You Z, Xiao A, Liu L. Magnetic molecularly imprinting polymers, reduced graphene oxide, and zeolitic imidazolate frameworks modified electrochemical sensor for the selective and sensitive detection of catechin. Mikrochim Acta 2021; 188:71. [PMID: 33547976 DOI: 10.1007/s00604-021-04724-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
A glassy carbon electrode (GCE) was modified with magnetic molecularly imprinted polymers (mMIPs) using catechin as a template, reduced graphene oxide (rGO), and zeolitic imidazolate frameworks-8 (ZIF-8) for the sensitive detection of catechin (mMIPs/rGO-ZIF-8/GCE). The prepared rGO, ZIF-8, and mMIPs exhibited typical structures and properties determined by various characterizations. The mMIPs showed good selectivity for catechin among several structural analogs. The mMIPs/rGO-ZIF-8/GCE showed a higher maximum peak current for catechin than that of a single component modified GCE. After the optimization of the material ratio, coating amounts, pH, and scan rate, the mMIPs/rGO-ZIF-8/GCE exhibited good selectivity, good linearity, and a low detection limit (LOD) for catechin. The linear range was 0.01 nmol/L-10 μmol/L and the LOD was 0.003 nmol/L (S/N = 3). The relative standard deviations for reproducibility and stability tests (n = 6) were 5.2% and 6.1%, respectively. A recovery between 99.1 and 101.3% was obtained in the detection of catechin in spiked samples. Based on these findings, the proposed mMIPs/rGO-ZIF-8/GCE could be developed further, and future research could be conducted on alternate fabrication strategies and methods to create more portable and practical electrochemical sensors. Graphical Abstract.
Collapse
Affiliation(s)
- Yafen Fu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China
| | - Zongyi You
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China
| | - Aiping Xiao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, People's Republic of China.
| |
Collapse
|
22
|
Chen Y, Bai X, Ye Z. Recent Progress in Heavy Metal Ion Decontamination Based on Metal-Organic Frameworks. NANOMATERIALS 2020; 10:nano10081481. [PMID: 32751050 PMCID: PMC7466619 DOI: 10.3390/nano10081481] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
Heavy metals are inorganic pollutants which pose a serious threat to human and environmental safety, and their effective removal is becoming an increasingly urgent issue. Metal-organic frameworks (MOFs) are a novel group of crystalline porous materials, which have proven to be promising adsorbents because of their extremely high surface areas, optimizable pore volumes and pore size distributions. This study is a systematic review of the recent research on the removal of several major heavy metal ions by MOFs. Based on the different structures of MOFs, varying adsorption capacity can be achieved, ranging from tens to thousands of milligrams per gram. Many MOFs have shown a high selectivity for their target metal ions. The corresponding mechanisms involved in capturing metal ions are outlined and finally, the challenges and prospects for their practical application are discussed.
Collapse
Affiliation(s)
- Yajie Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China;
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China;
- Correspondence:
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China;
| |
Collapse
|
23
|
Nistor MA, Muntean SG, Maranescu B, Visa A. Phosphonate metal–organic frameworks used as dye removal materials from wastewaters. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maria Andreea Nistor
- “Coriolan Dragulescu” Institute of Chemistry 24 M. Viteazul Ave Timişoara 300223 Romania
| | | | - Bianca Maranescu
- “Coriolan Dragulescu” Institute of Chemistry 24 M. Viteazul Ave Timişoara 300223 Romania
| | - Aurelia Visa
- “Coriolan Dragulescu” Institute of Chemistry 24 M. Viteazul Ave Timişoara 300223 Romania
| |
Collapse
|
24
|
Far HS, Hasanzadeh M, Nashtaei MS, Rabbani M, Haji A, Hadavi Moghadam B. PPI-Dendrimer-Functionalized Magnetic Metal-Organic Framework (Fe 3O 4@MOF@PPI) with High Adsorption Capacity for Sustainable Wastewater Treatment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25294-25303. [PMID: 32400154 DOI: 10.1021/acsami.0c04953] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, a magnetic zirconium-based metal-organic framework nanocomposite was synthesized by a simple solvothermal method and used as an adsorbent for the removal of direct and acid dyes from aqueous solution. To enhance its adsorption performance, poly(propyleneimine) dendrimer was used to functionalize the as-synthesized magnetic porous nanocomposite. The dendrimer-functionalized magnetic nanocomposite was characterized by field-emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption/desorption isotherms, and vibration sample magnetometer. The obtained results revealed the successful synthesis and functionalization of the magnetic nanocomposite. The adsorbents exhibited good magnetic properties with high saturation magnetization and high specific surface area. The adsorption isotherms and kinetics of anionic dyes were described by the Freundlich and pseudo-second-order models, respectively. It was found that the kinetics of adsorption of both the investigated dyes by the dendrimer-functionalized magnetic composite is considerably faster than the magnetic composite under the same condition. The adsorption capacity of the dendrimer-functionalized magnetic composite for investigated direct and acid dyes was 173.7 and 122.5 mg/g, respectively, which was higher than those of the existing magnetic adsorbents. This work provides new insights into the synthesis and application of hybrid magnetic adsorbents with synergistic properties of nanoporous metal-organic frameworks and dendrimer with a large number of functional groups for the removal of organic dyes.
Collapse
Affiliation(s)
- Hossein Shahriyari Far
- Department of Chemistry, Iran University of Science and Technology, P.O. Box, Narmak 16846-13114, Tehran, Iran
| | - Mahdi Hasanzadeh
- Department of Textile Engineering, Yazd University, P.O. Box, 89195-741 Yazd, Iran
| | - Mohammad Shabani Nashtaei
- Department of Chemistry, Iran University of Science and Technology, P.O. Box, Narmak 16846-13114, Tehran, Iran
| | - Mahboubeh Rabbani
- Department of Chemistry, Iran University of Science and Technology, P.O. Box, Narmak 16846-13114, Tehran, Iran
| | - Aminoddin Haji
- Department of Textile Engineering, Yazd University, P.O. Box, 89195-741 Yazd, Iran
| | - Bentolhoda Hadavi Moghadam
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box, 11365-8639 Tehran, Iran
| |
Collapse
|
25
|
|
26
|
Ahmadi S, Mohammadi L, Rahdar A, Rahdar S, Dehghani R, Adaobi Igwegbe C, Kyzas GZ. Acid Dye Removal from Aqueous Solution by Using Neodymium(III) Oxide Nanoadsorbents. NANOMATERIALS 2020; 10:nano10030556. [PMID: 32204520 PMCID: PMC7153400 DOI: 10.3390/nano10030556] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 01/19/2023]
Abstract
In the current work, neodymium oxide (Nd2O3) nanoparticles were synthesized and characterized by means of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The major aim/investigation of this research was to fit/model and optimize the removal of Acid Blue 92 (AB92) dye from synthetic effluents (aqueous solutions) using the adsorption process based on neodymium oxide (Nd2O3) nanoparticles. To optimize the adsorption conditions, central composite design (CCD) based on response surface methodology (RSM) was applied. The effects of pH (3-9), adsorbent dosage (0.1-1 g/L), initial concentration of AB92 (100-300 mg/L), and contact time (10-100 min) on the adsorption process were investigated. Apart from equilibrium and kinetic experiments, thermodynamic evaluation of the adsorption process was also undertaken. The adsorption process was found to have the best fitting to Langmuir isotherm model and pseudo-second-order kinetic equation. Also, the process was found to be spontaneous and favorable with increased temperature. The optimal conditions found were: pH = 3.15, AB92 concentration equal to 138.5 mg/L, dosage of nanoadsorbent equal to 0.83 g/L, and 50 min as contact time, which resulted in 90.70% AB92 removal. High values for the coefficient of determination, R2 (0.9596) and adjusted R2 (0.9220) indicated that the removal of AB92 dye using adsorption can be explained and modeled by RSM. The Fisher's F-value (25.4683) denotes that the developed model was significant for AB92 adsorption at a 95% confidence level.
Collapse
Affiliation(s)
- Shahin Ahmadi
- Department of Environmental Health, Zabol University of Medical Sciences, Zabol 986161588, Iran; (S.A.); (S.R.)
| | - Leili Mohammadi
- PhD of Environmental Health, Infectious Diseases and Tropical Medicine Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of science, University of Zabol, Zabol 538-98615, Iran
- Correspondence: (A.R.); (G.Z.K.)
| | - Somayeh Rahdar
- Department of Environmental Health, Zabol University of Medical Sciences, Zabol 986161588, Iran; (S.A.); (S.R.)
| | - Ramin Dehghani
- Department of Environmental Health, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | | | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 654040 Kavala, Greece
- Correspondence: (A.R.); (G.Z.K.)
| |
Collapse
|
27
|
MIL-88A Metal-Organic Framework as a Stable Sulfur-host Cathode for Long-cycle Li-S Batteries. NANOMATERIALS 2020; 10:nano10030424. [PMID: 32121149 PMCID: PMC7152856 DOI: 10.3390/nano10030424] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 01/29/2023]
Abstract
Lithium-sulfur (Li-S) batteries have received enormous interest as a promising energy storage system to compete against limited, non-renewable, energy sources due to their high energy density, sustainability, and low cost. Among the main challenges of this technology, researchers are concentrating on reducing the well-known “shuttle effect” that generates the loss and corrosion of the active material during cycling. To tackle this issue, metal-organic frameworks (MOF) are considered excellent sulfur host materials to be part of the cathode in Li-S batteries, showing efficient confinement of undesirable polysulfides. In this study, MIL-88A, based on iron fumarate, was synthesised by a simple and fast ultrasonic-assisted probe method. Techniques such as X-ray diffraction (XRD), Raman spectroscopy, Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), and N2 adsorption/desorption isotherms were used to characterise structural, morphological, and textural properties. The synthesis process led to MIL-88A particles with a central prismatic portion and pyramidal terminal portions, which exhibited a dual micro-mesoporous MOF system. The composite MIL-88A@S was prepared, by a typical melt-diffusion method at 155 °C, as a cathodic material for Li-S cells. MIL-88A@S electrodes were tested under several rates, exhibiting stable specific capacity values above 400 mAh g−1 at 0.1 C (1C = 1675 mA g−1). This polyhedral and porous MIL-88A was found to be an effective cathode material for long cycling in Li-S cells, retaining a reversible capacity above 300 mAh g−1 at 0.5 C for more than 1000 cycles, and exhibiting excellent coulombic efficiency.
Collapse
|
28
|
Rojas S, Horcajada P. Metal–Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chem Rev 2020; 120:8378-8415. [DOI: 10.1021/acs.chemrev.9b00797] [Citation(s) in RCA: 392] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Rojas
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| |
Collapse
|
29
|
Hamedi A, Trotta F, Borhani Zarandi M, Zanetti M, Caldera F, Anceschi A, Nateghi MR. In Situ Synthesis of MIL-100(Fe) at the Surface of Fe 3O 4@AC as Highly Efficient Dye Adsorbing Nanocomposite. Int J Mol Sci 2019; 20:E5612. [PMID: 31717564 PMCID: PMC6888277 DOI: 10.3390/ijms20225612] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 01/03/2023] Open
Abstract
A new magnetic nanocomposite called MIL-100(Fe) @Fe3O4@AC was synthesized by the hydrothermal method as a stable adsorbent for the removal of Rhodamine B (RhB) dye from aqueous medium. In this work, in order to increase the carbon uptake capacity, magnetic carbon was first synthesized and then the Fe3O4 was used as the iron (III) supplier to synthesize MIL-100(Fe). The size of these nanocomposite is about 30-50 nm. Compared with activated charcoal (AC) and magnetic activated charcoal (Fe3O4@AC) nanoparticles, the surface area of MIL-100(Fe) @Fe3O4@AC were eminently increased while the magnetic property of this adsorbent was decreased. The surface area of AC, Fe3O4@AC, and MIL-100(Fe) @Fe3O4@AC was 121, 351, and 620 m2/g, respectively. The magnetic and thermal property, chemical structure, and morphology of the MIL-100(Fe) @Fe3O4@AC were considered by vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), zeta potential, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Brunner-Emmet-Teller (BET), and transmission electron microscopy (TEM) analyses. The relatively high adsorption capacity was obtained at about 769.23 mg/g compared to other adsorbents to eliminate RhB dye from the aqueous solution within 40 min. Studies of adsorption kinetics and isotherms showed that RhB adsorption conformed the Langmuir isotherm model and the pseudo second-order kinetic model. Thermodynamic amounts depicted that the RhB adsorption was spontaneous and exothermic process. In addition, the obtained nanocomposite exhibited good reusability after several cycles. All experimental results showed that MIL-100(Fe) @Fe3O4@AC could be a prospective sorbent for the treatment of dye wastewater.
Collapse
Affiliation(s)
- Asma Hamedi
- Department of Physics, Faculty of Science, Yazd University, Yazd 89195741, Iran;
| | - Francesco Trotta
- Department of Chemistry, University of Torino, 10125 Torino, Italy; (F.C.); (A.A.)
| | | | - Marco Zanetti
- Department of Chemistry, University of Torino, 10125 Torino, Italy; (F.C.); (A.A.)
| | - Fabrizio Caldera
- Department of Chemistry, University of Torino, 10125 Torino, Italy; (F.C.); (A.A.)
| | - Anastasia Anceschi
- Department of Chemistry, University of Torino, 10125 Torino, Italy; (F.C.); (A.A.)
| | - Mohammad Reza Nateghi
- Department of Chemistry, Faculty of Science, Yazd Branch, Islamic Azad University, Yazd 8915813135, Iran;
| |
Collapse
|
30
|
Editorial for the Special Issue on 'Application and Behavior of Nanomaterials in Water Treatment'. NANOMATERIALS 2019; 9:nano9060880. [PMID: 31197078 PMCID: PMC6630655 DOI: 10.3390/nano9060880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 11/16/2022]
Abstract
The simultaneous population explosion and the growing lack of clean water today requires disruptively innovative solutions in water remediation [...].
Collapse
|