1
|
Aziz T, Li W, Zhu J, Chen B. Developing multifunctional cellulose derivatives for environmental and biomedical applications: Insights into modification processes and advanced material properties. Int J Biol Macromol 2024; 278:134695. [PMID: 39151861 DOI: 10.1016/j.ijbiomac.2024.134695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
The growing bioeconomic demand for lightweight, eco-friendly materials with functional versatility and competitive mechanical properties drives the resurgence of cellulose as a sustainable scaffold for various applications. This review comprehensively scrutinizes current progressions in cellulose functional materials (CFMs), concentrating on their structure-property connections. Significant modification methods, including cross-linking, grafting, and oxidation, are discussed together with preparation techniques categorized by cellulose sources. This review article highlights the extensive usage of modified cellulose in various industries, particularly its potential in optical and toughening applications, membrane production, and intelligent bio-based systems. Prominence is located on low-cost procedures for developing biodegradable polymers and the physical-chemical characteristics essential for biomedical applications. Furthermore, the review explores the role of cellulose derivatives in smart packaging films for food quality monitoring and deep probes into cellulose's mechanical, thermal, and structural characteristics. The multifunctional features of cellulose derivatives highlight their worth in evolving environmental and biomedical engineering applications.
Collapse
Affiliation(s)
- Tariq Aziz
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China
| | - Wenlong Li
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China
| | - Jianguo Zhu
- Faculty of Civil Engineering and Mechanics, Jiangsu University, 212013, China.
| | - Beibei Chen
- School of Materials Science and Engineering, Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Ahmadi N, Ahari H, Anvar A, Khosravi-Darani K, Gharachorloo M. Polycaprolactone (PCL)-based films integrated with hairy cellulose nanocrystals and silver nanoparticles for active Tilapia packaging applications. Food Chem X 2024; 22:101490. [PMID: 38840719 PMCID: PMC11152891 DOI: 10.1016/j.fochx.2024.101490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
The migration of metal ions to the food matrix has been always a challenge in the production of active food packaging films. In this study, it was tried to evaluate the idea of using hairy cellulose nanocrystals (HCNs) in controlling the migration of Silver Nanoparticles (AgNPs) from polycaprolactone (PCL)-based films to the Tilapia fish. HCNs and the final films (integrated with various amounts of HCNs and AgNPs) were evaluated physicochemically and mechanically. Tilapia fish were packed using the films and after specific periods, the fish samples were assessed microbiologically and physiochemically. According to the results, incorporating NPs into PCL films enhanced tensile strength, elasticity, and toughness making the films more resistant to breakage and deformation under stress. The introduction of HCNs reduced the surface roughness level, decreasing AgNPs migration, but also accelerated the degradation rate. Films with [1% AgNPs +2% HCNs] and [1% AgNPs] had the lowest and highest water vapor transmission rate. The use of AgNPs (1%) + HCNs (2%) incorporated into PCL films resulted in a lower pH value, TVB-N, TBARs, and PV. It also decreased microbial activities in samples in comparison to the control. Therefore, the idea of using HCNs along with antibacterial metal-based nanoparticles can control the rate of ion migration.
Collapse
Affiliation(s)
- Negin Ahmadi
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kianoush Khosravi-Darani
- Research Department of Food Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Gharachorloo
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Zhang S, Cao J, Yang P, Xie Y, Wang H, Mao Y, Ning K, Zhang Q. Adsorption and aggregation of Cu 2+ on carboxymethylated sugarcane bagasse: Adsorption behavior and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133297. [PMID: 38141295 DOI: 10.1016/j.jhazmat.2023.133297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Abundant biomass resources provide us with sufficient material basis, while a large amount of bio-waste is also produced and the high-value utilization of bio-waste is still highly desirable. Herein, we reported a facile one-pot fabrication approach towards efficient utilization of sugarcane bagasse via carboxymethylation to adsorb and recycle Cu2+ ions. The modified sugarcane bagasse possessed outstanding adsorption efficiency, with a maximum capacity of 263.7 mg g-1, owing to the functional groups such as carboxyl and hydroxyl groups, as well as aromatic structure. It was noted that the carboxymethylated sugarcane bagasse (MSB40) swelled rapidly when suffering Cu2+ ions solution, and more adsorption sites were available since the physical diffusion barrier was removed, thereby enhancing the absorption capacity. Interestingly, Cu2+ ions could induce the aggregation of MSB40 due to the Cu2+ ions compress colloid double layer, neutralizes surface charges, which benefited the following separation process. Ultimately, copper oxide was recovered and the purity reached 97.9%. Additionally, in the presence of both Ca2+ and Mg2+ ions, MSB40 exhibited excellent selectivity for the adsorption of Cu2+ ions. This strategy offers a facile and novel clue for the high-value utilization of bio-waste and the recovery of copper for biomaterial and environmental applications.
Collapse
Affiliation(s)
- Shiping Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jinyan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Peng Yang
- Department of Health Products Technical Research and Development Center, Yunnan Baiyao Group Co. Ltd, Kunming 650500, PR China
| | - Yu Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Huiming Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yufeng Mao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Kegong Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; Department of Health Products Technical Research and Development Center, Yunnan Baiyao Group Co. Ltd, Kunming 650500, PR China.
| | - Qiulin Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
4
|
Sharma R, Nath PC, Mohanta YK, Bhunia B, Mishra B, Sharma M, Suri S, Bhaswant M, Nayak PK, Sridhar K. Recent advances in cellulose-based sustainable materials for wastewater treatment: An overview. Int J Biol Macromol 2024; 256:128517. [PMID: 38040157 DOI: 10.1016/j.ijbiomac.2023.128517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Water pollution presents a significant challenge, impacting ecosystems and human health. The necessity for solutions to address water pollution arises from the critical need to preserve and protect the quality of water resources. Effective solutions are crucial to safeguarding ecosystems, human health, and ensuring sustainable access to clean water for current and future generations. Generally, cellulose and its derivatives are considered potential substrates for wastewater treatment. The various cellulose processing methods including acid, alkali, organic & inorganic components treatment, chemical treatment and spinning methods are highlighted. Additionally, we reviewed effective use of the cellulose derivatives (CD), including cellulose nanocrystals (CNCs), cellulose nano-fibrils (CNFs), CNPs, and bacterial nano-cellulose (BNC) on waste water (WW) treatment. The various cellulose processing methods, including spinning, mechanical, chemical, and biological approaches are also highlighted. Additionally, cellulose-based materials, including adsorbents, membranes and hydrogels are critically discussed. The review also highlighted the mechanism of adsorption, kinetics, thermodynamics, and sorption isotherm studies of adsorbents. The review concluded that the cellulose-derived materials are effective substrates for removing heavy metals, dyes, pathogenic microorganisms, and other pollutants from WW. Similarly, cellulose based materials are used for flocculants and water filtration membranes. Cellulose composites are widely used in the separation of oil and water emulsions as well as in removing dyes from wastewater. Cellulose's natural hydrophilicity makes it easier for it to interact with water molecules, making it appropriate for use in water treatment processes. Furthermore, the materials derived from cellulose have wider application in WW treatment due to their inexhaustible sources, low energy consumption, cost-effectiveness, sustainability, and renewable nature.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Pinku Chandra Nath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India; Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India
| | - Minaxi Sharma
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Baridua 793101, India
| | - Shweta Suri
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida 201301, India
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980 8579, Japan
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
5
|
Muneer R, Hashmet MR, Pourafshary P, Shakeel M. Unlocking the Power of Artificial Intelligence: Accurate Zeta Potential Prediction Using Machine Learning. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1209. [PMID: 37049303 PMCID: PMC10096557 DOI: 10.3390/nano13071209] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Nanoparticles have gained significance in modern science due to their unique characteristics and diverse applications in various fields. Zeta potential is critical in assessing the stability of nanofluids and colloidal systems but measuring it can be time-consuming and challenging. The current research proposes the use of cutting-edge machine learning techniques, including multiple regression analyses (MRAs), support vector machines (SVM), and artificial neural networks (ANNs), to simulate the zeta potential of silica nanofluids and colloidal systems, while accounting for affecting parameters such as nanoparticle size, concentration, pH, temperature, brine salinity, monovalent ion type, and the presence of sand, limestone, or nano-sized fine particles. Zeta potential data from different literature sources were used to develop and train the models using machine learning techniques. Performance indicators were employed to evaluate the models' predictive capabilities. The correlation coefficient (r) for the ANN, SVM, and MRA models was found to be 0.982, 0.997, and 0.68, respectively. The mean absolute percentage error for the ANN model was 5%, whereas, for the MRA and SVM models, it was greater than 25%. ANN models were more accurate than SVM and MRA models at predicting zeta potential, and the trained ANN model achieved an accuracy of over 97% in zeta potential predictions. ANN models are more accurate and faster at predicting zeta potential than conventional methods. The model developed in this research is the first ever to predict the zeta potential of silica nanofluids, dispersed kaolinite, sand-brine system, and coal dispersions considering several influencing parameters. This approach eliminates the need for time-consuming experimentation and provides a highly accurate and rapid prediction method with broad applications across different fields.
Collapse
Affiliation(s)
- Rizwan Muneer
- School of Mining and Geosciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Muhammad Rehan Hashmet
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Peyman Pourafshary
- School of Mining and Geosciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Mariam Shakeel
- School of Mining and Geosciences, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
6
|
Che M, Shan C, Zhang W, Duan Y, Huang R, Cui M, Qi W, Su R. Efficient removal of Phaeocystis globosa from seawater with the persulfate activation by arbutin-modified cellulose nanocrystals. CHEMOSPHERE 2023; 313:137647. [PMID: 36574786 DOI: 10.1016/j.chemosphere.2022.137647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Harmful algal blooms (HABs) from seawater have a severe threat to human health, aquaculture, and coastal nuclear power safety. Thus, it is highly desirable to explore environmentally friendly, efficient, and economic methods for controlling HABs. Herein, the arbutin-modified cellulose nanocrystals (AT-CNC) activated persulfate (PS), as a novel heterogeneous Fenton-like process, was proposed to remove Phaeocystis globosa (P. globosa) from seawater. The AT-CNC was synthesized via the surface modification of AT on CNC. The effects of AT dosage, CNC dosage, and PS dosage on the removal performance of P. globosa were investigated. With the addition of 530 mg/L AT-CNC (6 wt% AT/CNC of AT loading) and 120 mg/L PS, the removal percentage of chlorophyll a (Rc), optical density at 680 nm (Ro) and turbidity (Rt) reached 97.7%, 91.9% and 85.2% at 24 h. According to electron paramagnetic resonance (EPR) spectra and radical quenching tests, the predominant free radicals inactivating P. globosa were hydroxyl radicals (•OH). Additionally, the flocculation of the inactivated algae cells by AT-CNC was also critical for removing P. globosa. Moreover, a positive environmental impact was achieved in the AT-CNC-PS system due to the reduction of nitrogen, phosphorus and organic carbon contents. Based on the excellent removal performance for P. globosa, we believe that the AT-CNC activated persulfate is a promising option for HABs control.
Collapse
Affiliation(s)
- Mingda Che
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Cancan Shan
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wenjie Zhang
- China Nuclear Power Engineering Co., Ltd., No.117, West Third Ring Road North, Haidian District, Beijing 100840, China
| | - Yanyi Duan
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Renliang Huang
- Key Laboratory of Ocean Observation Technology of Ministry of Natural Resources, School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Ocean Observation Technology of Ministry of Natural Resources, School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
| |
Collapse
|
7
|
Shi T, Jia C, Wang X, Xia S, Wang X, Fan C, Zhang X, Swing CJ. Formation mechanism and stability of low environment-sensitive ternary nanoparticles based on zein-pea protein-pectin for astaxanthin delivery. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Pang K, Zhang X, Zong L, Yang H, Zhang T, Duan Y, Zhang J. Tuning liquid aggregation of zwitterionic chitin nanocrystals by graphene oxide planar catchers via electrostatic regulation. J Colloid Interface Sci 2022; 628:566-572. [PMID: 36007421 DOI: 10.1016/j.jcis.2022.08.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022]
Abstract
As important structural units, biomass nanomaterials have exhibited great potentials to construct high-performance macroscopic materials for broad applications by liquid assembly. However, the liquid aggregation of nanomaterials was less investigated. Here, we demonstrate that the one-dimensional (1D) zwitterionic chitin nanocrystals (ZChNCs) can be reversibly captured and released by two-dimensional (2D) planar catchers of graphene oxide (GO) sheets. The dominant electrostatic regulation strategy by pH variation drives that there are three reversible changes for the liquid aggregation of ZChNCs and GO, which were the isolated dispersion state (pH > 7), homogeneous hybridization state (7 ≥ pH ≥ 5), and partially stacked hybridization state (pH < 5), respectively. We found there are no sedimentation during the change of liquid aggregation with the higher absolute Zeta potentials (almost>30 mV). Moreover, the ZChNCs-GO nanohybrids have reached a maximum Zeta potential up to -80 mV, which can be explained by the ionization of excess carboxyl groups on the surface of ZChNCs. Besides, the electrostatic regulation endows the nanohybrids with rheological behavior, which is beneficial to the macro assembly of liquid nanomaterials. This work provides a new class of hybrid colloidal nanomaterials, opens the structural design dimension of macro assembly and holds great potentials in high-performance biodegradable material.
Collapse
Affiliation(s)
- Kai Pang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao266042, China
| | - Xiaofang Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao266042, China
| | - Lu Zong
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao266042, China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongsheng Yang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao266042, China.
| | - Tongping Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao266042, China
| | - Yongxin Duan
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao266042, China
| | - Jianming Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao266042, China
| |
Collapse
|
9
|
Zhuang J, Rong N, Wang X, Chen C, Xu Z. Adsorption of small size microplastics based on cellulose nanofiber aerogel modified by quaternary ammonium salt in water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Warwar Damouny C, Martin P, Vasilyev G, Vilensky R, Fadul R, Redenski I, Srouji S, Zussman E. Injectable Hydrogels Based on Inter-Polyelectrolyte Interactions between Hyaluronic Acid, Gelatin, and Cationic Cellulose Nanocrystals. Biomacromolecules 2022; 23:3222-3234. [PMID: 35771870 DOI: 10.1021/acs.biomac.2c00316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present work dealt with the development of physically cross-linked injectable hydrogels with potential applications in tissue engineering. The hydrogels were composed of a ternary mixture of a polyanion and a polyampholyte, hyaluronic acid (HA) and gelatin, respectively, bridged by cationic cellulose nanocrystals (cCNCs). A 3D network is formed by employing attractive electrostatic interactions and hydrogen bonding between these components under physiological conditions. The hydrogels demonstrated low viscosity at high stresses, enabling easy injection, structural stability at low stresses (<15 Pa), and nearly complete structure recovery within several minutes. Increasing the cCNC content (>3%) reduced hydrogel swelling and decelerated the degradation in phosphate-buffered saline as compared to that in pure HA and HA-gelatin samples. Biological evaluation of the hydrogel elutions showed excellent cell viability. The proliferation of fibroblasts exposed to elutions of hydrogels with 5% cCNCs reached ∼200% compared to that in the positive control after 11 days. Considering these results, the prepared hydrogels hold great potential in biomedical applications, such as injectable dermal fillers, 3D bioprintable inks, or 3D scaffolds to support and promote soft tissue regeneration.
Collapse
Affiliation(s)
- Christine Warwar Damouny
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Patrick Martin
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Gleb Vasilyev
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Rita Vilensky
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Reema Fadul
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.,Oral and Maxillofacial Department, Galilee Medical Center, Nahariya 22100, Israel
| | - Idan Redenski
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.,Oral and Maxillofacial Department, Galilee Medical Center, Nahariya 22100, Israel
| | - Samer Srouji
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel.,Oral and Maxillofacial Department, Galilee Medical Center, Nahariya 22100, Israel
| | - Eyal Zussman
- NanoEngineering Group, Faculty of Mechanical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
11
|
Gan C, Liu Q, Zhang Y, Shi T, He WS, Jia C. A novel phytosterols delivery system based on sodium caseinate-pectin soluble complexes: Improving stability and bioaccessibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Mohamed SH, Hossain MS, Kassim MHM, Balakrishnan V, Habila MA, Zulkharnain A, Zulkifli M, Yahaya ANA. Biosorption of Cr(VI) Using Cellulose Nanocrystals Isolated from the Waterless Pulping of Waste Cotton Cloths with Supercritical CO 2: Isothermal, Kinetics, and Thermodynamics Studies. Polymers (Basel) 2022; 14:887. [PMID: 35267710 PMCID: PMC8912417 DOI: 10.3390/polym14050887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
In the present study, supercritical carbon dioxide (scCO2) was utilized as a waterless pulping for the isolation of cellulose nanocrystals (CNCs) from waste cotton cloths (WCCs). The isolation of CNCs from the scCO2-treated WCCs' fiber was carried out using sulphuric acid hydrolysis. The morphological and physicochemical properties analyses showed that the CNCs isolated from the WCCs had a rod-like structure, porous surface, were crystalline, and had a length of 100.03 ± 1.15 nm and a width of 7.92 ± 0.53 nm. Moreover, CNCs isolated from WCCs had a large specific surface area and a negative surface area with uniform nano-size particles. The CNCs isolated from WCCs were utilized as an adsorbent for the hexavalent chromium [Cr(VI)] removal from aqueous solution with varying parameters, such as treatment time, adsorbent doses, pH, and temperature. It was found that the CNCs isolated from the WCCs were a bio-sorbent for the Cr(VI) removal. The maximum Cr(VI) removal was determined to be 96.97% at pH 2, 1.5 g/L of adsorbent doses, the temperature of 60 °C, and the treatment time of 30 min. The adsorption behavior of CNCs for Cr(VI) removal was determined using isothermal, kinetics, and thermodynamics properties analyses. The findings of the present study revealed that CNCs isolated from the WCCs could be utilized as a bio-sorbent for Cr(VI) removal.
Collapse
Affiliation(s)
- Siti Hajar Mohamed
- School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia; (S.H.M.); (M.H.M.K.)
| | - Md. Sohrab Hossain
- School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia; (S.H.M.); (M.H.M.K.)
| | | | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia;
| | - Mohamed A. Habila
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, Shibaura Institute of Technology, College of Systems Engineering and Science, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan;
| | - Muzafar Zulkifli
- Institute of Chemical and Bio-Engineering Technology, Universiti Kuala Lumpur Malaysian, Alor Gajah, Melaka 78000, Malaysia;
| | - Ahmad Naim Ahmad Yahaya
- Institute of Chemical and Bio-Engineering Technology, Universiti Kuala Lumpur Malaysian, Alor Gajah, Melaka 78000, Malaysia;
| |
Collapse
|
13
|
Reshmy R, Philip E, Madhavan A, Pugazhendhi A, Sindhu R, Sirohi R, Awasthi MK, Pandey A, Binod P. Nanocellulose as green material for remediation of hazardous heavy metal contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127516. [PMID: 34689089 DOI: 10.1016/j.jhazmat.2021.127516] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal pollution generated by urban and industrial activities has become a major global concern due to its high toxicity, minimal biodegradability, and persistence in the food chain. These are the severe pollutants that have the potential to harm humans and the environment as a whole. Mercury, chromium, copper, zinc, cadmium, lead, and nickel are the most often discharged hazardous heavy metals. Nanocellulose, reminiscent of many other sustainable nanostructured materials, is gaining popularity for application in bioremediation technologies owing to its many unique features and potentials. The adsorption of heavy metals from wastewaters is greatly improved when cellulose dimension is reduced to nanometric levels. For instance, the adsorption efficiency of Cr3+ and Cr6+ is found to be 42.02% and 5.79% respectively using microcellulose, while nanocellulose adsorbed 62.40% of Cr3+ ions and 5.98% of Cr6+ ions from contaminated water. These nanomaterials are promising in terms of their ease and low cost of regeneration. This review addresses the relevance of nanocellulose as biosorbent, scaffold, and membrane in various heavy metal bioremediation, as well as provides insights into the challenges, future prospects, and updates. The methods of designing better nanocellulose biosorbents to improve adsorption efficiency according to contaminant types are focused.
Collapse
Affiliation(s)
- R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram 695 014, Kerala, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Centre for Innovation and Translational Research, CSIR, Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India.
| |
Collapse
|
14
|
Enhancing Removal of Cr(VI), Pb 2+, and Cu 2+ from Aqueous Solutions Using Amino-Functionalized Cellulose Nanocrystal. Molecules 2021; 26:molecules26237315. [PMID: 34885897 PMCID: PMC8658863 DOI: 10.3390/molecules26237315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, the amino-functionalized cellulose nanocrystal (ACNC) was prepared using a green route and applied as a biosorbent for adsorption of Cr(VI), Pb2+, and Cu2+ from aqueous solutions. CNC was firstly oxidized by sodium periodate to yield the dialdehyde nanocellulose (DACNC). Then, DACNC reacted with diethylenetriamine (DETA) to obtain amino-functionalized nanocellulose (ACNC) through a Schiff base reaction. The properties of DACNC and ACNC were characterized by using elemental analysis, Fourier transform infrared spectroscopy (FT-IR), Kaiser test, atomic force microscopy (AFM), X-ray diffraction (XRD), and zeta potential measurement. The presence of free amino groups was evidenced by the FT-IR results and Kaiser test. ACNCs exhibited an amphoteric nature with isoelectric points between pH 8 and 9. After the chemical modification, the cellulose I polymorph of nanocellulose remained, while the crystallinity decreased. The adsorption behavior of ACNC was investigated for the removal of Cr(VI), Pb2+, and Cu2+ in aqueous solutions. The maximum adsorption capacities were obtained at pH 2 for Cr(VI) and pH 6 for Cu2+ and Pb2+, respectively. The adsorption all followed pseudo second-order kinetics and Sips adsorption isotherms. The estimated adsorption capacities for Cr(VI), Pb2+, and Cu2+ were 70.503, 54.115, and 49.600 mg/g, respectively.
Collapse
|
15
|
Debnath B, Haldar D, Purkait MK. A critical review on the techniques used for the synthesis and applications of crystalline cellulose derived from agricultural wastes and forest residues. Carbohydr Polym 2021; 273:118537. [PMID: 34560949 DOI: 10.1016/j.carbpol.2021.118537] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022]
Abstract
In order to meet the growing energy crisis of the 21st century, the utilization of bio-based materials has become a field of high research endeavour. In view of that, the present review paper is focused on different techniques that are frequently explored for the synthesis of value-added crystalline derivatives of cellulose like MCC and NCC from agricultural wastes and forest residues. Moreover, a comparative analysis between thermochemical and biochemical methods is carried out for such valorization of biomass considering the mechanism involved with various reactions. Further, a critical analysis is performed on various individual techniques specifically used for the applications of MCC and NCC in different fields including environmental, polymer industry, pharmaceutical and other emerging sectors. This article will assist the readers not only to explore new biomass sources but also provides an in-depth insight on various green and cost-effective methods for sustainable production of crystalline cellulose.
Collapse
Affiliation(s)
- Banhisikha Debnath
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dibyajyoti Haldar
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
16
|
Soeiro VS, Tundisi LL, Novaes LC, Mazzola PG, Aranha N, Grotto D, Júnior JM, Komatsu D, Gama FM, Chaud MV, Jozala AF. Production of bacterial cellulose nanocrystals via enzymatic hydrolysis and evaluation of their coating on alginate particles formed by ionotropic gelation. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
17
|
Othmani A, John J, Rajendran H, Mansouri A, Sillanpää M, Velayudhaperumal Chellam P. Biochar and activated carbon derivatives of lignocellulosic fibers towards adsorptive removal of pollutants from aqueous systems: Critical study and future insight. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119062] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Jiang X, Li Y, Tang X, Jiang J, He Q, Xiong Z, Zheng H. Biopolymer-based flocculants: a review of recent technologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46934-46963. [PMID: 34263401 PMCID: PMC8279699 DOI: 10.1007/s11356-021-15299-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Biopolymer-based flocculants have become a potential substitute for inorganic coagulants and synthetic organic flocculants due to their wide natural reserves, environmental friendliness, easy natural degradation, and high material safety. In recent years, with more and more attention to clean technologies, a lot of researches on the modification and application of biopolymer-based flocculants have been carried out. The present paper reviews the latest important information about the base materials of biopolymer-based flocculants, including chitosan, starch, cellulose, and lignin etc. This review also highlights the various modification methods of these base materials according to reaction types in detail. Via the recent researches, the flocculation mechanisms of biopolymer-based flocculants, such as adsorption, bridging, charge neutralization, net trapping, and sweeping, as well as, some other special mechanisms are comprehensively summarized. This paper also focuses on the water treatment conditions, the removal efficiency, and advantages of biopolymer-based flocculants in applications. Further, this review sheds light on the future perspectives of biopolymer-based flocculants, which may make progress in the sources of base materials, modification processes, multi-function, and deepening application researches. We believe that this review can guide the further researches and developments of biopolymer-based flocculants in the future, to develop them with a higher efficiency, a lower cost, more safety, and multi-function for more diversified applications. Graphical abstract.
Collapse
Affiliation(s)
- Xincheng Jiang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Yisen Li
- Digital Chongqing Big Data Application Development Co., Ltd, Chongqing, 400000, People's Republic of China
| | - Xiaohui Tang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Junyi Jiang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Qiang He
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Zikang Xiong
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Huaili Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China.
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
19
|
Watts S, Maniura-Weber K, Siqueira G, Salentinig S. Virus pH-Dependent Interactions with Cationically Modified Cellulose and Their Application in Water Filtration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100307. [PMID: 34146389 DOI: 10.1002/smll.202100307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Norovirus and Rotavirus are among the pathogens causing a large number of disease outbreaks due to contaminated water. These viruses are nanoscale particles that are difficult to remove by common filtration approaches which are based on physical size exclusion, and require adsorption-based filtration methods. This study reports the pH-responsive interactions of viruses with cationic-modified nanocellulose and demonstrates a filter material that adsorbs nanoscale viruses and can be regenerated by changing the solution's pH. The bacteria viruses Qbeta and MS2, with diameters below 30 nm but different surface properties, are used to evaluate the pH-dependency of the interactions and the filtration process. Small angle X-ray scattering, cryogenic transmission electron microscopy, and ζ-potential measurements are used to study the interactions and analyze changes in their nanostructure and surface properties of the virus upon adsorption. The virus removal capacity of the cationic cellulose-based aerogel filter is 99.9% for MS2 and 93.6% for Qbeta, at pH = 7.0; and desorption of mostly intact viruses occurs at pH = 3.0. The results contribute to the fundamental understanding of pH-triggered virus-nanocellulose self-assembly and can guide the design of sustainable and environmentally friendly adsorption-based virus filter materials as well as phage and virus-based materials.
Collapse
Affiliation(s)
- Samuel Watts
- Biointerfaces Lab, Empa, Swiss Federal Laboratories for Material Science and Technology, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| | - Katharina Maniura-Weber
- Biointerfaces Lab, Empa, Swiss Federal Laboratories for Material Science and Technology, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Gilberto Siqueira
- Cellulose and Wood Material Lab, Empa, Swiss Federal Laboratories for Material Science and Technology, Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, 1700, Switzerland
| |
Collapse
|
20
|
Ahmad MB, Soomro U, Muqeet M, Ahmed Z. Adsorption of Indigo Carmine dye onto the surface-modified adsorbent prepared from municipal waste and simulation using deep neural network. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124433. [PMID: 33257121 DOI: 10.1016/j.jhazmat.2020.124433] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
A new adsorbent was prepared from municipal wastes (a mixture of Corn Stover, Paper Waste, and Yard Waste) by cationization with 3 ̶ Chloro ̶ 2 ̶ Hydroxypropyl Trimethylammonium Chloride. The FTIR spectrum confirmed the quaternary ammonium group's presence on the adsorbent surface (1450 cm-1). The maximum adsorption capacity (148 mg/g) was higher than the earlier reported values. Liu isotherm described well the adsorption process, with a high R2adj value (0.997). The pseudo-first-order equation fits well for kinetic data, and thermodynamic experiments demonstrated the endothermic nature of the adsorption. The deep neural network (DNN) is applied to simulate the adsorption process, which outperformed the classical machine learning and shallow neural network models. The DNN model predicted accurately the adsorption process with the lowest deviation from the actual values with Mean Absolute Error (MAE = 3.2), Root Mean Squared Error (RMSE = 4.89), and the highest performance accuracy of R2 (0.96) as compared to various classical ML algorithms such as Linear Regressions (MAE = 12.53, RMSE = 18.01, R2 = 0.42), Random Forest (MAE = 5.81, RMSE = 10.05, R2 = 0.82), and Extra Trees (MAE = 4.35, RMSE = 8.22, R2 = 0.88). The utilized DNN model can be used for predicting the removal efficiency of dyes for various combinations of input parameters without going through laboratory experiments.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmad
- Department of Computer Science, College of Computer Sciences and Information Technology, Alahsa, King Faisal University, Kingdom of Saudi Arabia.
| | - Umama Soomro
- Department of Environmental Engineering, U.S.-Pakistan Center for Advanced Studies in Water (USPCASW), Mehran University of Engineering and Technology (MUET), Jamshoro, Pakistan
| | - Muhammad Muqeet
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology (PAF-IAST), Mang, Haripur, Pakistan
| | - Zubair Ahmed
- Department of Environmental Engineering, U.S.-Pakistan Center for Advanced Studies in Water (USPCASW), Mehran University of Engineering and Technology (MUET), Jamshoro, Pakistan.
| |
Collapse
|
21
|
Namjoufar M, Farzi A, Karimi A. Removal of Acid Brown 354 from wastewater by aminized cellulose acetate nanofibers: experimental and theoretical study of the effect of different parameters on adsorption efficiency. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1649-1661. [PMID: 33843749 DOI: 10.2166/wst.2021.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Wastewater effluents usually involve dyes that are dangerous for aquatic life and other environments. Many of these dyes are toxic, carcinogenic, and can cause skin and eye irritation. In this study, firstly aminized cellulose acetate was prepared from cellulose acetate and applied for the adsorption of Acid Brown 354 from aqueous solutions. The effects of different parameters including adsorbent dosage, pH, temperature, and initial concentration of dye on adsorption capacity were examined. Results showed that removal efficiency of dye declined by increasing values of all parameters. Finally, maximum removal of dye was achieved in the presence of 0.1 g adsorbent, pH of 2, and 10 mg/L of initial dye concentration at a temperature of 25 °C. Also, different adsorption isotherms were investigated including Langmuir, Temkin, and Freundlich models and results demonstrated that the adsorption isotherm of dye followed the Freundlich model with a correlation coefficient of 0.988 revealing that the bond between the dye and the adsorbent is strong. Finally, kinetic study indicated that the adsorption of dye is exactly governed by pseudo-second-order kinetics explaining that the adsorption process is chemical and the adsorbent can not be reused.
Collapse
Affiliation(s)
- Mehran Namjoufar
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran E-mail:
| | - Ali Farzi
- Department of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran E-mail:
| | - Afzal Karimi
- Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
22
|
Zhang X, Zhu W, Guo J, Song J, Xiao H. Impacts of degree of substitution of quaternary cellulose on the strength improvement of fiber networks. Int J Biol Macromol 2021; 181:41-44. [PMID: 33771543 DOI: 10.1016/j.ijbiomac.2021.03.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/11/2021] [Accepted: 03/20/2021] [Indexed: 11/27/2022]
Abstract
The degree of substitution (DS) of cellulose derivative is significantly associated with its properties. In this paper, a series of quaternary cellulose (QC) samples with different DS (ranging from 0.16 to 0.51) were synthesized with assistance of microwave and their relationship with strength improvement of fiber networks was investigated systematically. QCs were characterized by elemental analysis, FT-IR, 1H NMR, and TGA, etc. The results showed that the cationic quaternary ammonium salt group was successfully grafted onto the backbones of cellulose chains and the thermal stability was associated inversely with the DS of QCs. However, the results of strength test for the fiber networks from secondary fiber of old corrugated containers showed that the tensile and burst strength was enhanced by addition of QCs, and their performance was positively correlated their DS. The best result achieved in this investigation was in the case of QC with DS of 0.51, with increments of tensile and burst strength 6.17% and 11.68%, respectively, at a dosage of 1.0 wt% based on oven-dry pulp. This investigation highlights the importance of DS of QC to its application in strength improvement for fiber networks.
Collapse
Affiliation(s)
- Xinyu Zhang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wenyuan Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
23
|
Mohamed SH, Hossain MS, Mohamad Kassim MH, Ahmad MI, Omar FM, Balakrishnan V, Zulkifli M, Yahaya ANA. Recycling Waste Cotton Cloths for the Isolation of Cellulose Nanocrystals: A Sustainable Approach. Polymers (Basel) 2021; 13:polym13040626. [PMID: 33669623 PMCID: PMC7922772 DOI: 10.3390/polym13040626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/02/2023] Open
Abstract
There is an interest in the sustainable utilization of waste cotton cloths because of their enormous volume of generation and high cellulose content. Waste cotton cloths generated are disposed of in a landfill, which causes environmental pollution and leads to the waste of useful resources. In the present study, cellulose nanocrystals (CNCs) were isolated from waste cotton cloths collected from a landfill. The waste cotton cloths collected from the landfill were sterilized and cleaned using supercritical CO2 (scCO2) technology. The cellulose was extracted from scCO2-treated waste cotton cloths using alkaline pulping and bleaching processes. Subsequently, the CNCs were isolated using the H2SO4 hydrolysis of cellulose. The isolated CNCs were analyzed to determine the morphological, chemical, thermal, and physical properties with various analytical methods, including attenuated total reflection-Fourier transform-infrared spectroscopy (ATR-FTIR), field-emission scanning electron microscopy (FE-SEM), energy-filtered transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results showed that the isolated CNCs had a needle-like structure with a length and diameter of 10–30 and 2–6 nm, respectively, and an aspect ratio of 5–15, respectively. Additionally, the isolated CNCs had a high crystallinity index with a good thermal stability. The findings of the present study revealed the potential of recycling waste cotton cloths to produce a value-added product.
Collapse
Affiliation(s)
- Siti Hajar Mohamed
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (S.H.M.); (M.H.M.K.); (M.I.A.)
| | - Md. Sohrab Hossain
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (S.H.M.); (M.H.M.K.); (M.I.A.)
- Correspondence: (M.S.H.); (A.N.A.Y.); Tel.: +60-46535206 (M.S.H.); +60-65512146 (A.N.A.Y.); Fax: +60-46533678 (M.S.H.); +60-65512001 (A.N.A.Y.)
| | | | - Mardiana Idayu Ahmad
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (S.H.M.); (M.H.M.K.); (M.I.A.)
| | - Fatehah Mohd Omar
- School of Civil Engineering, Universiti Sains Malaysia, Penang 14300, Malaysia;
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Muzafar Zulkifli
- Universiti Kuala Lumpur-Malaysian Institute of Chemical & Bioengineering Technology (UniKL-MICET), Melaka 78000, Malaysia;
| | - Ahmad Naim Ahmad Yahaya
- Universiti Kuala Lumpur-Malaysian Institute of Chemical & Bioengineering Technology (UniKL-MICET), Melaka 78000, Malaysia;
- Correspondence: (M.S.H.); (A.N.A.Y.); Tel.: +60-46535206 (M.S.H.); +60-65512146 (A.N.A.Y.); Fax: +60-46533678 (M.S.H.); +60-65512001 (A.N.A.Y.)
| |
Collapse
|
24
|
Koshani R, Tavakolian M, van de Ven TGM. Cellulose-based dispersants and flocculants. J Mater Chem B 2020; 8:10502-10526. [PMID: 33136107 DOI: 10.1039/d0tb02021d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Natural dispersants and flocculants, often referred to as dispersion stabilizers and liquid-solid separators, respectively, have secured a promising role in the bioprocessing community. They have various applications, including in biomedicine and in environmental remediation. A large fraction of existing dispersants and flocculants are synthesized from non-safe chemical compounds such as polyacrylamide and surfactants. Despite numerous advantages of synthetic dispersants and flocculants, issues such as renewability, sustainability, biocompatibility, and cost efficiency have shifted attention towards natural homologues, in particular, cellulose-based ones. Within the past decade, cellulose derivatives, obtained via chemical and mechanical treatments of cellulose fibrils, have successfully been used for these purposes. In this review article, by dividing the functional cellulosic compounds into "polymeric" and "nanoscale" categories, we provide insight into the engineering pathways, the structural frameworks, and surface chemistry of these "green" types of dispersants and flocculants. A summary of their efficiency and the controlling parameters is also accompanied by recent advances in their applications in each section. We are confident that the emergence of cellulose-based dispersing and flocculating agents will extend the boundaries of sustainable green technology.
Collapse
Affiliation(s)
- Roya Koshani
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada. and Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Center, McGill University, 3420 University Street, Montréal, QC H3A 2A7, Canada.
| | - Mandana Tavakolian
- Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Center, McGill University, 3420 University Street, Montréal, QC H3A 2A7, Canada. and Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada
| | - Theo G M van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada. and Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Center, McGill University, 3420 University Street, Montréal, QC H3A 2A7, Canada.
| |
Collapse
|
25
|
Metal oxide-cellulose nanocomposites for the removal of toxic metals and dyes from wastewater. Int J Biol Macromol 2020; 164:2477-2496. [DOI: 10.1016/j.ijbiomac.2020.08.074] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
|
26
|
Maćczak P, Kaczmarek H, Ziegler-Borowska M. Recent Achievements in Polymer Bio-Based Flocculants for Water Treatment. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3951. [PMID: 32906667 PMCID: PMC7559979 DOI: 10.3390/ma13183951] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 08/30/2020] [Accepted: 09/04/2020] [Indexed: 01/04/2023]
Abstract
Polymer flocculants are used to promote solid-liquid separation processes in potable water and wastewater treatment. Recently, bio-based flocculants have received a lot of attention due to their superior advantages over conventional synthetic polymers or inorganic agents. Among natural polymers, polysaccharides show many benefits such as biodegradability, non-toxicity, ability to undergo different chemical modifications, and wide accessibility from renewable sources. The following article provides an overview of bio-based flocculants and their potential application in water treatment, which may be an indication to look for safer alternatives compared to synthetic polymers. Based on the recent literature, a new approach in searching for biopolymer flocculants sources, flocculation mechanisms, test methods, and factors affecting this process are presented. Particular attention is paid to flocculants based on starch, cellulose, chitosan, and their derivatives because they are low-cost and ecological materials, accepted in industrial practice. New trends in water treatment technology, including biosynthetic polymers, nanobioflocculants, and stimulant-responsive flocculants are also considered.
Collapse
Affiliation(s)
- Piotr Maćczak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (P.M.); (M.Z.-B.)
- Water Supply and Sewage Enterprise LLC, Przemysłowa 4, 99-300 Kutno, Poland
| | - Halina Kaczmarek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (P.M.); (M.Z.-B.)
| | - Marta Ziegler-Borowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland; (P.M.); (M.Z.-B.)
| |
Collapse
|
27
|
Insight on Extraction and Characterisation of Biopolymers as the Green Coagulants for Microalgae Harvesting. WATER 2020. [DOI: 10.3390/w12051388] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review presents the extractions, characterisations, applications and economic analyses of natural coagulant in separating pollutants and microalgae from water medium, known as microalgae harvesting. The promising future of microalgae as a next-generation energy source is reviewed and the significant drawbacks of conventional microalgae harvesting using alum are evaluated. The performances of natural coagulant in microalgae harvesting are studied and proven to exceed the alum. In addition, the details of each processing stage in the extraction of natural coagulant (plant, microbial and animal) are comprehensively discussed with justifications. This information could contribute to future exploration of novel natural coagulants by providing description of optimised extraction steps for a number of natural coagulants. Besides, the characterisations of natural coagulants have garnered a great deal of attention, and the strategies to enhance the flocculating activity based on their characteristics are discussed. Several important characterisations have been tabulated in this review such as physical aspects, including surface morphology and surface charges; chemical aspects, including molecular weight, functional group and elemental properties; and thermal stability parameters including thermogravimetry analysis and differential scanning calorimetry. Furthermore, various applications of natural coagulant in the industries other than microalgae harvesting are revealed. The cost analysis of natural coagulant application in mass harvesting of microalgae is allowed to evaluate its feasibility towards commercialisation in the industrial. Last, the potentially new natural coagulants, which are yet to be exploited and applied, are listed as the additional information for future study.
Collapse
|
28
|
Wang A, Yuan Z, Wang C, Luo L, Zhang W, Geng S, Qu J, Wei B, Wen Y. Zwitterionic Cellulose Nanofibrils with High Salt Sensitivity and Tolerance. Biomacromolecules 2020; 21:1471-1479. [PMID: 32069405 DOI: 10.1021/acs.biomac.0c00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To improve the salt tolerance/sensitivity of cellulose nanofibrils (CNFs), zwitterionic cellulose nanofibrils (ZCNFs) were prepared from softwood bleached kraft pulp fibers via a sequential process of anionic modification with 2,2,6,6-tetramethylepiperidin-1-oxyl (TEMPO)-mediated oxidation, cationic modification with (2,3-epoxypropyl) trimethylammonium chloride (EPTMAC), and high-pressure homogenization. To produce ZCNFs with different contents of cation group, EPTMAC loadings of 0.15 to 1.15 g/g fiber were explored during cationization. The obtained ZCNFs were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectra (XPS), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and rheological measurements. The salt tolerance of the ZCNFs was investigated by adding mixed salts into the ZCNF dispersions. The results demonstrated that the ZCNFs with both anionic and cationic charges were produced. Compared with the TEMPO-mediated oxidized cellulose nanofibrils (TOCNFs), the ZCNFs exhibited an excellent "salt-thickening" behavior under the studied salt concentrations (2-24% w/w). Moreover, increasing the content of the cation group increased the salt tolerance/sensitivity of ZCNFs. This work demonstrated that introducing cationic charges to the anionic charged TOCNFs imparts the produced ZCNFs with excellent salt sensitivity and tolerance, which could expand the application of nanocellulose in oil recovery or wastewater treatment.
Collapse
Affiliation(s)
- An Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Zhaoyang Yuan
- Department of Biochemistry & Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, Michigan 48824, United States
| | - Chunping Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Langman Luo
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Weifeng Zhang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Shao Geng
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Jialei Qu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| | - Bing Wei
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, Sichuan China
| | - Yangbing Wen
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Area, Tianjin 300457, China
| |
Collapse
|
29
|
Qin F, Fang Z, Zhou J, Sun C, Chen K, Ding Z, Li G, Qiu X. Efficient Removal of Cu2+ in Water by Carboxymethylated Cellulose Nanofibrils: Performance and Mechanism. Biomacromolecules 2019; 20:4466-4475. [DOI: 10.1021/acs.biomac.9b01198] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Zhiqiang Fang
- South China Institute of Collaborative Innovation, South China University of Technology, Dongguan 221116, Guangdong, P. R. China
| | | | | | | | | | | | | |
Collapse
|