1
|
Heide A, Wiebe P, Sabantina L, Ehrmann A. Suitability of Mycelium-Reinforced Nanofiber Mats for Filtration of Different Dyes. Polymers (Basel) 2023; 15:3951. [PMID: 37836000 PMCID: PMC10575079 DOI: 10.3390/polym15193951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Electrospun nanofiber mats have a high specific surface area and very small pores which can be tailored by the spinning process. They are thus highly suitable as filters for small particles and molecules, such as organic dyes. On the other hand, they are usually very thin and thus have low mechanical properties. As a potential reinforcement, mycelium of Pleurotus ostreatus was grown on poly(acrylonitrile) nanofiber mats and thermally solidified after fully covering the nanofiber mats. This study investigates whether the filtration efficiency of the nanofiber mats is altered by the mycelium growing through it and whether the mechanical properties of the nanofibrous filters can be improved in this way. The study shows fast and reliable growth of the mycelium on the nanofiber mats and high filtration efficiency for astra blue and chlorophyll, while indigo carmine showed only very low filtration efficiency of up to 20%. For chlorophyll and safranin, membranes with mycelium showed higher filtration than pure nanofiber mats. In diffusion cell tests, especially astra blue was strongly adsorbed on the membranes with mycelium.
Collapse
Affiliation(s)
- Angela Heide
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Philip Wiebe
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Lilia Sabantina
- Faculty of Clothing Technology and Garment Engineering, School of Culture + Design, HTW Berlin—University of Applied Sciences, 12459 Berlin, Germany;
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| |
Collapse
|
2
|
Li K, Jia J, Wu N, Xu Q. Recent advances in the construction of biocomposites based on fungal mycelia. Front Bioeng Biotechnol 2022; 10:1067869. [PMID: 36466339 PMCID: PMC9713584 DOI: 10.3389/fbioe.2022.1067869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/03/2022] [Indexed: 04/12/2024] Open
Abstract
In recent years, environmental problems have become increasingly serious, significantly effecting the ecosystem and human health. To deal with the problem of environmental pollution in an eco-conscious way, sustainable composite biomaterials are being produced. Mycelium-based composite biomaterials combine biological systems with substrates such as nanomaterials or agricultural and industrial wastes, which can complement each other's advantages or turn waste into a useful resource. Such materials can solve practical wastewater problems as well as replace plastic products, thus reducing plastic pollution and contributing to the green transition of the environment. In this review, we summarized the recent findings of studies on these materials, indicating future research directions.
Collapse
Affiliation(s)
| | | | | | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
3
|
Fontes A, Ramalho-Santos J, Zischka H, Azul AM. Mushrooms on the plate: Trends towards NAFLD treatment, health improvement and sustainable diets. Eur J Clin Invest 2022; 52:e13667. [PMID: 34390493 DOI: 10.1111/eci.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a most important cause of liver disease. Similar to other non-communicable diseases (NCD), such as obesity and type II diabetes mellitus, NAFLD can strongly affected by diet. Diet-related NCD and malnutrition are rising in all regions being a major cause of the global health, economic and environmental burdens. Mushrooms, important dietary components since the hunter-gathering communities, have increasingly gained momentum in biomedical research and therapeutics due to their interplay in metabolism traits. We emphasize here the beneficial effects of mushroom-enriched diets on the homeostasis of lipid and sugar metabolism, including their modulation, but also interfering with insulin metabolism, gut microbiota, inflammation, oxidative stress and autophagy. In this review, we describe the cellular and molecular mechanisms at the gut-liver axis and the liver-white adipose tissue (WAT) axis, that plausibly cause such positive modulation, and discuss the potential of mushroom-enriched diets to prevent or ameliorate NAFLD and related NCD, also within the shift needed towards healthy sustainable diets.
Collapse
Affiliation(s)
- Adriana Fontes
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,DCV-Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,DCV-Department of Life Sciences, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Toxicology and Environmental Hygiene, School of Medicine, Technical University Munich, Munich, Germany
| | - Anabela Marisa Azul
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Chmelová D, Legerská B, Kunstová J, Ondrejovič M, Miertuš S. The production of laccases by white-rot fungi under solid-state fermentation conditions. World J Microbiol Biotechnol 2022; 38:21. [PMID: 34989891 DOI: 10.1007/s11274-021-03207-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
Laccases (E.C. 1.10.3.2) produced by white-rot fungi (WRF) can be widely used, but the high cost prevents their use in large-scale industrial processes. Finding a solution to the problem could involve laccase production by solid-state fermentation (SSF) simulating the natural growth conditions for WRF. SSF offers several advantages over conventional submerged fermentation (SmF), such as higher efficiency and productivity of the process and pollution reduction. The aim of this review is therefore to provide an overview of the current state of knowledge about the laccase production by WRF under SSF conditions. The focus is on variations in the up-stream process, fermentation and down-stream process and their impact on laccase activity. The variations of up-stream processing involve inoculum preparation, inoculation of the medium and formulation of the propagation and production media. According to the studies, the production process can be shortened to 5-7 days by the selection of a suitable combination of lignocellulosic material and laccase producer without the need for any additional components of the culture medium. Efficient laccase production was achieved by valorisation of wastes as agro-food, municipal wastes or waste generated from wood processing industries. This leads to a reduction of costs and an increase in competitiveness compared to other commonly used methods and/or procedures. There will be significant challenges and opportunities in the future, where SSF could become more efficient and bring the enzyme production to a higher level, especially in new biorefineries, bioreactors and biomolecular/genetic engineering.
Collapse
Affiliation(s)
- Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| | - Barbora Legerská
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| | - Jana Kunstová
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic.
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01, Trnava, Slovak Republic
| |
Collapse
|
5
|
Mamun A, Moulefera I, Topuz Y, Trabelsi M, Sabantina L. The Possibility of Reuse of Nanofiber Mats by Machine Washing at Different Temperatures. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4788. [PMID: 34500878 PMCID: PMC8432495 DOI: 10.3390/ma14174788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023]
Abstract
The worldwide spread of coronavirus COVID-19 infections demonstrates the great need for personal protective equipment and, in particular, hygiene masks. These masks are essential for the primary protection of the respiratory tract against pathogens such as viruses and bacteria that are infectious and transmitted through the air as large droplets or via small airborne particles. The use of protective masks will continue to accompany humans for an indefinite period of time, and therefore there is an urgent need for a safe method to extend their usability by reusing them under perspective with minimal loss of protective properties. Nanofiber mats are widely used in masks and in this study the reusability of nanofiber mats is investigated by washing them at different temperatures. This paper shows the first measurements of the washability of nanofiber mats. Furthermore, the air permeability is measured, and the evaporation resistance is evaluated. According to the results of this study, the air permeability performance of nanofiber mats does not change significantly after washing, confirming the possibility of reuse.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (A.M.); (Y.T.)
| | - Imane Moulefera
- Laboratory of Technique and Science of Water, University of Mascara Mustapha Stambouli, 29000 Mascara, Algeria;
| | - Yusuf Topuz
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (A.M.); (Y.T.)
| | - Marah Trabelsi
- Ecole Nationale d’Ingénieurs de Sfax, 3038 Sfax, Tunisia;
| | - Lilia Sabantina
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (A.M.); (Y.T.)
| |
Collapse
|
6
|
Electrospun Nanofibrous Membranes for Tissue Engineering and Cell Growth. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156929] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In biotechnology, the field of cell cultivation is highly relevant. Cultivated cells can be used, for example, for the development of biopharmaceuticals and in tissue engineering. Commonly, mammalian cells are grown in bioreactors, T-flasks, well plates, etc., without a specific substrate. Nanofibrous mats, however, have been reported to promote cell growth, adhesion, and proliferation. Here, we give an overview of the different attempts at cultivating mammalian cells on electrospun nanofiber mats for biotechnological and biomedical purposes. Starting with a brief overview of the different electrospinning methods, resulting in random or defined fiber orientations in the nanofiber mats, we describe the typical materials used in cell growth applications in biotechnology and tissue engineering. The influence of using different surface morphologies and polymers or polymer blends on the possible application of such nanofiber mats for tissue engineering and other biotechnological applications is discussed. Polymer blends, in particular, can often be used to reach the required combination of mechanical and biological properties, making such nanofiber mats highly suitable for tissue engineering and other biotechnological or biomedical cell growth applications.
Collapse
|
7
|
Moulefera I, Trabelsi M, Mamun A, Sabantina L. Electrospun Carbon Nanofibers from Biomass and Biomass Blends-Current Trends. Polymers (Basel) 2021; 13:1071. [PMID: 33805323 PMCID: PMC8036826 DOI: 10.3390/polym13071071] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, ecological issues have led to the search for new green materials from biomass as precursors for producing carbon materials (CNFs). Such green materials are more attractive than traditional petroleum-based materials, which are environmentally harmful and non-biodegradable. Biomass could be ideal precursors for nanofibers since they stem from renewable sources and are low-cost. Recently, many authors have focused intensively on nanofibers' production from biomass using microwave-assisted pyrolysis, hydrothermal treatment, ultrasonication method, but only a few on electrospinning methods. Moreover, still few studies deal with the production of electrospun carbon nanofibers from biomass. This review focuses on the new developments and trends of electrospun carbon nanofibers from biomass and aims to fill this research gap. The review is focusing on recollecting the most recent investigations about the preparation of carbon nanofiber from biomass and biopolymers as precursors using electrospinning as the manufacturing method, and the most important applications, such as energy storage that include fuel cells, electrochemical batteries and supercapacitors, as well as wastewater treatment, CO2 capture, and medicine.
Collapse
Affiliation(s)
| | - Marah Trabelsi
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (M.T.); (A.M.)
- Ecole Nationale d’Ingénieurs de Sfax (ENIS), Department of Materials Engineering, Sfax 3038, Tunisia
| | - Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (M.T.); (A.M.)
| | - Lilia Sabantina
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (M.T.); (A.M.)
| |
Collapse
|
8
|
Storck JL, Grothe T, Mamun A, Sabantina L, Klöcker M, Blachowicz T, Ehrmann A. Orientation of Electrospun Magnetic Nanofibers Near Conductive Areas. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E47. [PMID: 31861826 PMCID: PMC6982080 DOI: 10.3390/ma13010047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023]
Abstract
Electrospinning can be used to create nanofibers from diverse polymers in which also other materials can be embedded. Inclusion of magnetic nanoparticles, for example, results in preparation of magnetic nanofibers which are usually isotropically distributed on the substrate. One method to create a preferred direction is using a spinning cylinder as the substrate, which is not always possible, especially in commercial electrospinning machines. Here, another simple technique to partly align magnetic nanofibers is investigated. Since electrospinning works in a strong electric field and the fibers thus carry charges when landing on the substrate, using partly conductive substrates leads to a current flow through the conductive parts of the substrate which, according to Ampère's right-hand grip rule, creates a magnetic field around it. We observed that this magnetic field, on the other hand, can partly align magnetic nanofibers perpendicular to the borders of the current flow conductor. We report on the first observations of electrospinning magnetic nanofibers on partly conductive substrates with some of the conductive areas additionally being grounded, resulting in partly oriented magnetic nanofibers.
Collapse
Affiliation(s)
- Jan Lukas Storck
- Bielefeld University of Applied Sciences, Faculty of Engineering and Mathematics, 33619 Bielefeld, Germany; (J.L.S.); (T.G.); (A.M.); (L.S.); (M.K.)
| | - Timo Grothe
- Bielefeld University of Applied Sciences, Faculty of Engineering and Mathematics, 33619 Bielefeld, Germany; (J.L.S.); (T.G.); (A.M.); (L.S.); (M.K.)
| | - Al Mamun
- Bielefeld University of Applied Sciences, Faculty of Engineering and Mathematics, 33619 Bielefeld, Germany; (J.L.S.); (T.G.); (A.M.); (L.S.); (M.K.)
| | - Lilia Sabantina
- Bielefeld University of Applied Sciences, Faculty of Engineering and Mathematics, 33619 Bielefeld, Germany; (J.L.S.); (T.G.); (A.M.); (L.S.); (M.K.)
| | - Michaela Klöcker
- Bielefeld University of Applied Sciences, Faculty of Engineering and Mathematics, 33619 Bielefeld, Germany; (J.L.S.); (T.G.); (A.M.); (L.S.); (M.K.)
| | - Tomasz Blachowicz
- Silesian University of Technology, Institute of Physics—CSE, 44-100 Gliwice, Poland;
| | - Andrea Ehrmann
- Bielefeld University of Applied Sciences, Faculty of Engineering and Mathematics, 33619 Bielefeld, Germany; (J.L.S.); (T.G.); (A.M.); (L.S.); (M.K.)
| |
Collapse
|
9
|
Increased Mechanical Properties of Carbon Nanofiber Mats for Possible Medical Applications. FIBERS 2019. [DOI: 10.3390/fib7110098] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Carbon fibers belong to the materials of high interest in medical application due to their good mechanical properties and because they are chemically inert at room temperature. Carbon nanofiber mats, which can be produced by electrospinning diverse precursor polymers, followed by thermal stabilization and carbonization, are under investigation as possible substrates for cell growth, especially for possible 3D cell growth applications in tissue engineering. However, such carbon nanofiber mats may be too brittle to serve as a reliable substrate. Here we report on a simple method of creating highly robust carbon nanofiber mats by using electrospun polyacrylonitrile/ZnO nanofiber mats as substrates. We show that the ZnO-blended polyacrylonitrile (PAN) nanofiber mats have significantly increased fiber diameters, resulting in enhanced mechanical properties and thus supporting tissue engineering applications.
Collapse
|
10
|
Seed Germination and Seedling Growth on Knitted Fabrics as New Substrates for Hydroponic Systems. HORTICULTURAE 2019. [DOI: 10.3390/horticulturae5040073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vertical farming is one of the suggested avenues for producing food for the growing world population. Concentrating the cultivation of crops such as herbs in large indoor farms makes food production susceptible to technical, biological or other problems that might destroy large amounts of food at once. Thus, there is a trend towards locally, self-sufficient food production in vertical systems on a small scale. Our study examined whether conventional knitted fabrics, such as patches of worn jackets, can be used for hydroponics instead of the specialized nonwoven materials used in large-scale indoor systems. To this end, seed germination and seedling growth of 14 different crop plant species on knitted fabrics with three different stitch sizes were compared. Our results showed that hydroponic culture on knitted fabrics are indeed possible and allow for growing a broad spectrum of plant species, suggesting recycling of old textile fabrics for this purpose. Among the 14 plant species studied, differences in germination success, average fresh and dry masses, as well as water contents were found, but these parameters were not affected by knitted fabric stitch size.
Collapse
|
11
|
Surface-Modified Nanofibrous PVDF Membranes for Liquid Separation Technology. MATERIALS 2019; 12:ma12172702. [PMID: 31450788 PMCID: PMC6747603 DOI: 10.3390/ma12172702] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/02/2022]
Abstract
Preparing easily scaled up, cost-effective, and recyclable membranes for separation technology is challenging. In the present study, a unique and new type of modified polyvinylidene fluoride (PVDF) nanofibrous membrane was prepared for the separation of oil–water emulsions. Surface modification was done in two steps. In the first step, dehydrofluorination of PVDF membranes was done using an alkaline solution. After the first step, oil removal and permeability of the membranes were dramatically improved. In the second step, TiO2 nanoparticles were grafted onto the surface of the membranes. After adding TiO2 nanoparticles, membranes exhibited outstanding anti-fouling and self-cleaning performance. The as-prepared membranes can be of great use in new green separation technology and have great potential to deal with the separation of oil–water emulsions in the near future.
Collapse
|
12
|
Helberg J, Klöcker M, Sabantina L, Storck JL, Böttjer R, Brockhagen B, Kinzel F, Rattenholl A, Ehrmann A. Growth of Pleurotus Ostreatus on Different Textile Materials for Vertical Farming. MATERIALS (BASEL, SWITZERLAND) 2019; 12:ma12142270. [PMID: 31311088 PMCID: PMC6678538 DOI: 10.3390/ma12142270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
The mycelium of the edible mushroom Pleurotus ostreatus can be used for diverse technical applications, such as packaging materials or wastewater treatment, besides the more obvious use for nutrition. While P. ostreatus usually grows on sawdust, wood or similar materials, a former study investigated mycelium growth on different nanofiber mats. Here, we report on growing P. ostreatus on fabrics knitted from different materials, enabling the use of this mushroom in textile-based vertical farming. Our results underline that P. ostreatus grows similar on natural fibers and on synthetic fibers. The agar medium used to provide nutrients was found to support mycelium growth optimally when applied by dip-coating, suggesting that, in this way, P. ostreatus can also be grown on vertically aligned textile fabrics for vertical farming.
Collapse
Affiliation(s)
- Julia Helberg
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Michaela Klöcker
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Lilia Sabantina
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Jan Lukas Storck
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Robin Böttjer
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Bennet Brockhagen
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Franziska Kinzel
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Anke Rattenholl
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany.
| |
Collapse
|