1
|
Bula K, Jędrzejczak P, Ajnbacher D, Collins MN, Klapiszewski Ł. Design and characterization of functional TiO 2-lignin fillers used in rotational molded polyethylene containers. Int J Biol Macromol 2023; 246:125626. [PMID: 37392911 DOI: 10.1016/j.ijbiomac.2023.125626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/10/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
In this study, new TiO2-lignin hybrid systems were synthesized and characterized by various methods, including non-invasive backscattering (NIBS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), elemental analysis (EA) and zeta potential analysis (ZP). The weak hydrogen bonds between the components, as shown on FTIR spectra, proved the production of class I hybrid systems. TiO2-lignin systems were found to display good thermal stability and relatively good homogeneity. These newly designed hybrid materials were used to produce functional composites via rotational molding in a linear low-density polyethylene (LLDPE) matrix at 2.5 % and 5.0 % loading by weight of the fillers, namely, TiO2, TiO2-lignin (5:1 wt./wt.), TiO2-lignin (1:1 wt./wt.), TiO2-lignin (1:5 wt./wt.) and pristine lignin, creating rectangular specimens. The mechanical properties of the specimens were measured via compression testing and by low-energy impact damage testing (the drop test). The results showed that the system containing 5.0 % by weight of TiO2-lignin (1:1 wt./wt.) had the most positive effect on the container's compression strength, while the LLDPE filled with 5.0 % by weight of TiO2-lignin (5:1 wt./wt.) demonstrated the best impact resistance among all the tested composites.
Collapse
Affiliation(s)
- Karol Bula
- Institute of Material Technology, Faculty of Mechanical Engineering, Poznan University of Technology, PL-60965 Poznan, Poland.
| | - Patryk Jędrzejczak
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, PL-60965 Poznan, Poland
| | - Dawid Ajnbacher
- Institute of Material Technology, Faculty of Mechanical Engineering, Poznan University of Technology, PL-60965 Poznan, Poland
| | - Maurice N Collins
- School of Engineering and Bernal Institute, University of Limerick, Ireland; Advanced Materials and BioEngineering Research Centre (AMBER), University of Limerick, Ireland
| | - Łukasz Klapiszewski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, PL-60965 Poznan, Poland.
| |
Collapse
|
2
|
Ariza-Tarazona MC, Siligardi C, Carreón-López HA, Valdéz-Cerda JE, Pozzi P, Kaushik G, Villarreal-Chiu JF, Cedillo-González EI. Low environmental impact remediation of microplastics: Visible-light photocatalytic degradation of PET microplastics using bio-inspired C,N-TiO 2/SiO 2 photocatalysts. MARINE POLLUTION BULLETIN 2023; 193:115206. [PMID: 37392590 DOI: 10.1016/j.marpolbul.2023.115206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/22/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023]
Abstract
Microplastics (MPs) are plastic particles with sizes between 1 μm and 5 mm with a ubiquitous presence in aquatic ecosystems. MPs harm marine life and can cause severe health problems for humans. Advanced oxidation processes (AOPs) that involve the in-situ generation of highly oxidant hydroxyl radicals can be an alternative to fight MPs pollution. Of all the AOPs, photocatalysis has been proven a clean technology to overcome microplastic pollution. This work proposes novel C,N-TiO2/SiO2 photocatalysts with proper visible-active properties to degrade polyethylene terephthalate (PET) MPs. Photocatalysis was performed in an aqueous medium and at room temperature, evaluating the influence of two pH values (pH 6 and 8). The results demonstrated that the degradation of the PET MPs by C,N-TiO2/SiO2 semiconductors is possible, achieving mass losses between 9.35 and 16.22 %.
Collapse
Affiliation(s)
- Maria Camila Ariza-Tarazona
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti, Florence 50121, Italy.
| | - Cristina Siligardi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti, Florence 50121, Italy
| | - Hugo Alejandro Carreón-López
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - José Enrique Valdéz-Cerda
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico
| | - Paolo Pozzi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy
| | - Garima Kaushik
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer 305817, India
| | - Juan Francisco Villarreal-Chiu
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico; Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66628, Nuevo León, Mexico
| | - Erika Iveth Cedillo-González
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti, Florence 50121, Italy.
| |
Collapse
|
3
|
Xiong ZW, Meng YJ, Luo CB, Liu ZQ, Li DQ, Li J. Ti 4+-dopamine/sodium alginate multicomponent complex derived N-doped TiO 2@carbon nanocomposites for efficient removal of methylene blue. Int J Biol Macromol 2023:125200. [PMID: 37271270 DOI: 10.1016/j.ijbiomac.2023.125200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/20/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
A one-pot route for the preparation of TiO2@carbon nanocomposite from Ti4+/polysaccharide coordination complex has been developed and shown advantages in operation, cost, environment, etc. However, the photodegradation rate of methylene blue needs to be improved. N-doping has been proven as an efficient means to enhance photodegradation performance. Thus, the present study upgraded the TiO2@carbon nanocomposite to N-doped TiO2@carbon nanocomposite (N-TiO2@C) from Ti4+-dopamine/sodium alginate multicomponent complex. The composites were characterized by FT-IR, XRD, XPS, UV-vis DRS, TG-DTA, and SEM-EDS. TiO2 was a typical rutile phase, and the carboxyl groups existed on N-TiO2@C. The photocatalyst consequently showed high removal efficiency of methylene blue (MB). The cycling experiment additionally indicated the high stability of N-TiO2@C. The present work provided a novel route for preparing N-TiO2@C. Moreover, it can be extended to prepare N-doped polyvalent metal oxides@carbon composites from all water-soluble polysaccharides such as cellulose derivatives, pectin, starch, and guar gum.
Collapse
Affiliation(s)
- Zi-Wei Xiong
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, 830052 Xinjiang, People's Republic of China
| | - Yu-Jie Meng
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, 830052 Xinjiang, People's Republic of China; Nonferrous Metal Research Institute of Xinjiang, Urumchi, 830052 Xinjiang, People's Republic of China
| | - Chao-Bing Luo
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Zun-Qi Liu
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, 830052 Xinjiang, People's Republic of China
| | - De-Qiang Li
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, 830052 Xinjiang, People's Republic of China.
| | - Jun Li
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, 830052 Xinjiang, People's Republic of China
| |
Collapse
|
4
|
Effect of Calcination Temperature of SiO2/TiO2 Photocatalysts on UV-VIS and VIS Removal Efficiency of Color Contaminants. Catalysts 2023. [DOI: 10.3390/catal13010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This paper presents the effect of fumed silica modification and calcination temperature on the physicochemical properties of photocatalysts and their activity under the UV-VIS and VIS light range. The materials were obtained by hydrolysis of titanium tetraisopropoxide (TTIP) combined with a calcination step. The obtained nanomaterials were characterized using analytical methods such as X-ray diffraction XRD, FT-IR/DRS infrared spectroscopy, UV-Vis/DRS spectroscopy and SEM scanning electron microscopy. BET specific surface area and zeta potential were also measured. It was observed that SiO2 modification inhibited the transformation phase of anatase to rutile and the increase in crystallite size during calcination. The calcination process contributed to a change in the surface character of photocatalysts under study from positively to negatively charged. The photocatalytic activity of samples was identified by determining the methylene blue decomposition under UV-VIS and VIS light. Experimental results showed that the addition of SiO2 and the calcination process increased the photoactivity. The obtained materials showed higher activity compared to the reference samples. It was found that the degree of dye removal increased along with increased calcination temperature. The highest activity was observed for photocatalyst SiO2(11.1%)/TiO2_600.
Collapse
|
5
|
Easwaran G, Packialakshmi JS, Syed A, Elgorban AM, Vijayan M, Sivakumar K, Bhuvaneswari K, Palanisamy G, Lee J. Silica nanoparticles derived from Arundo donax L. ash composite with Titanium dioxide nanoparticles as an efficient nanocomposite for photocatalytic degradation dye. CHEMOSPHERE 2022; 307:135951. [PMID: 35964724 DOI: 10.1016/j.chemosphere.2022.135951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Water pollution is a serious problem that threatens both developed and developing countries. Several methods have been used to purify contaminated water, among which the photocatalytic decomposition approach is widely used to purify contaminated water from organic pollutants. In this work, biomass derived SiO2 nanoparticles composite with TiO2 semiconductors used as an efficient photocatalyst for degradation of RhB dye molecules under UV-visible light irradiation is proclaimed. The different weight percentages of Arundo donax L. ash-derived SiO2 nanoparticles combined with TiO2 nanoparticles were prepared through the wet impregnation method. The photocatalytic degradation ability of the as-prepared samples has been scrutinized against the degradation of Rh B dye in which the pronounced photocatalytic degradation efficiency 93.7% is successfully achieved on 50 wt % SiO2-50 wt % TiO2 nanocomposite photocatalyst. The catalytic performance of the nanocomposite decreases with an increase of 50%-75% in SiO2 nanoparticles. There could have been a decrease in degradation efficiency due to an excess amount of SiO2 covering TiO2 nanoparticles, which prevented photons from reaching the nanoparticles. The efficiency of cyclic decomposition of the 50 wt% SiO2-50 wt% TiO2 composite showed only a slight change in photocatalytic capacity compared to the first cycle, which ensures the durability of the sample. However, the hydroxyl radical species play the main role in the degradation process, which has been confirmed by the scavenger test. The probable reaction mechanism is also deliberated in detail. The high photocatalytic performance of novel eco-friendly SiO2-TiO2 photocatalyst make it ideal for water purification applications.
Collapse
Affiliation(s)
- G Easwaran
- Department of Chemistry, Government Polytechnic College, Dharmapuri, 635 205, Tamilnadu, India
| | - J Saranya Packialakshmi
- Department of Food and Nutrition, Kyung Hee University (KHU), 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, South Korea.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - M Vijayan
- Department of Chemistry, Government Polytechnic College, Jolarpet, 635 651, Tamilnadu, India
| | - K Sivakumar
- Department of Chemistry, Adhiyamaan College of Engineering, Hosur, 635 109, Tamilnadu, India.
| | - K Bhuvaneswari
- Department of Electronics and Communication Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - G Palanisamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| |
Collapse
|
6
|
Moradeeya PG, Kumar MA, Sharma A, Basha S. Conductive polymer layered semiconductor for degradation of triclopyr acid and 2,4-dichlorophenoxyacetic acid from aqueous stream using coalesce adsorption-photocatalysis technique. CHEMOSPHERE 2022; 298:134360. [PMID: 35318015 DOI: 10.1016/j.chemosphere.2022.134360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/25/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Polyaniline supported titanium dioxide nanoparticles (PTs) were fabricated using chemical oxidative aniline polymerization in the presence of titanium dioxide with ammonium peroxydisulfate as an oxidant. The synthesized PTs were thoroughly characterized for their morphological and functional features. PTs were employed for the photodegradation of acidic herbicides; 2,4-dichlorophenoxyacetic acid (2,4-D) and triclopyr acid (TCP). PT's surface modifications were imparted and their herbicide removal efficiencies were compared. The best operating conditions for adsorption/photocatalysis were 0.5 g/L photocatalyst, 10 mg/L concentration of individual herbicides resulted in 90.72% removal of TCP at pH 4 and 99.91% removal of 2,4-D at pH 5. Adsorption kinetics of herbicides, onto PT-1 showed the equilibrium attainment within 30 min and experimental data obeyed pseudo-second order model for TCP and 2,4-D removal which was governed by chemisorption. Analysis of TCP and 2,4-D adsorption indicated that the removal followed Sips model for TCP removal while Redlich-Peterson model explained the removal of 2,4-D by PT-1. Rate constants indicated that the amount of TiO2 in the PTs played an important role in removing the herbicides and PT-1 material excellent remarkable activity for three cycles of photodegradation. Thus, this work reports the polymerization of aniline onto TiO2 and their utility as photocatalyst for the expulsion of 2,4-D and TCP from water.
Collapse
Affiliation(s)
- Pareshkumar G Moradeeya
- Department of Environmental Science & Engineering, Marwadi University, Rajkot, 360 003, Gujarat, India; Hyderabad Zonal Centre, CSIR-National Environmental Engineering Research Institute, IICT Campus, Tarnaka, Hyderabad, 500 007, Telangana, India
| | - Madhava Anil Kumar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Archana Sharma
- Department of Environmental Science & Engineering, Marwadi University, Rajkot, 360 003, Gujarat, India
| | - Shaik Basha
- Hyderabad Zonal Centre, CSIR-National Environmental Engineering Research Institute, IICT Campus, Tarnaka, Hyderabad, 500 007, Telangana, India.
| |
Collapse
|
7
|
Irshad M, Ain QT, Zaman M, Aslam MZ, Kousar N, Asim M, Rafique M, Siraj K, Tabish AN, Usman M, Hassan Farooq MU, Assiri MA, Imran M. Photocatalysis and perovskite oxide-based materials: a remedy for a clean and sustainable future. RSC Adv 2022; 12:7009-7039. [PMID: 35424711 PMCID: PMC8982362 DOI: 10.1039/d1ra08185c] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/21/2022] [Indexed: 01/08/2023] Open
Abstract
The massive use of non-renewable energy resources by humankind to fulfill their energy demands is causing severe environmental issues. Photocatalysis is considered one of the potential solutions for a clean and sustainable future because of its cleanliness, inexhaustibility, efficiency, and cost-effectiveness. Significant efforts have been made to design highly proficient photocatalyst materials for various applications such as water pollutant degradation, water splitting, CO2 reduction, and nitrogen fixation. Perovskite photocatalyst materials are gained special attention due to their exceptional properties because of their flexibility in chemical composition, structure, bandgap, oxidation states, and valence states. The current review is focused on perovskite materials and their applications in photocatalysis. Special attention has been given to the structural, stoichiometric, and compositional flexibility of perovskite photocatalyst materials. The photocatalytic activity of perovskite materials in different photocatalysis applications is also discussed. Various mechanisms involved in photocatalysis application from wastewater treatment to hydrogen production are also provided. The key objective of this review is to encapsulate the role of perovskite materials in photocatalysis along with their fundamental properties to provide valuable insight for addressing future environmental challenges.
Collapse
Affiliation(s)
- Muneeb Irshad
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | - Quar Tul Ain
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | - Muhammad Zaman
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | | | - Naila Kousar
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | - Muhammad Asim
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | | | - Khurram Siraj
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | - Asif Nadeem Tabish
- Department of Chemical Engineering, University of Engineering and Technology, New Campus Lahore Pakistan
| | - Muhammad Usman
- Department of Mechanical Engineering, University of Engineering and Technology Lahore 54890 Pakistan
| | - Masood Ul Hassan Farooq
- Department of Basic Sciences, University of Engineering and Technology, New Campus Lahore Pakistan
| | - Mohammed Ali Assiri
- Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University P. O. Box 9004 Abha 61413 Saudia Arabia
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University P. O. Box 9004 Abha 61413 Saudia Arabia
| |
Collapse
|
8
|
Rashed MN, El Taher M, Fadlalla SMM. Photocatalytic degradation of Rhodamine‐B dye using composite prepared from drinking water treatment sludge and nano TiO
2. ENVIRONMENTAL QUALITY MANAGEMENT 2021. [DOI: 10.1002/tqem.21772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Gunjal AR, Sethi YA, Kawade UV, Panmand RP, Ugale CK, Ambekar JD, Nagawade AV, Kale BB. Unique hierarchical SiO 2@ZnIn 2S 4 marigold flower like nanoheterostructure for solar hydrogen production. RSC Adv 2021; 11:14399-14407. [PMID: 35423991 PMCID: PMC8697935 DOI: 10.1039/d1ra01140e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/10/2021] [Indexed: 01/01/2023] Open
Abstract
The novel marigold flower like SiO2@ZnIn2S4 nano-heterostructure was fabricated using an in situ hydrothermal method. The nanoheterostructure exhibits hexagonal structure with marigold flower like morphology. The porous marigold flower assembly was constructed using ultrathin nanosheets. Interestingly, the thickness of the nanopetal was observed to be 5-10 nm and tiny SiO2 nanoparticles (5-7 nm) are decorated on the surface of the nanopetals. As the concentration of SiO2 increases the deposition of SiO2 nanoparticles on ZnIn2S4 nanopetals increases in the form of clusters. The optical study revealed that the band gap lies in the visible range of the solar spectrum. Using X-ray photoelectron spectroscopy (XPS), the chemical structure and valence states of the as-synthesized SiO2@ZnIn2S4 nano-heterostructure were confirmed. The photocatalytic activities of the hierarchical SiO2@ZnIn2S4 nano-heterostructure for hydrogen evolution from H2S under natural sunlight have been investigated with regard to the band structure in the visible region. The 0.75% SiO2@ZnIn2S4 showed a higher photocatalytic activity (6730 μmol-1 h-1 g-1) for hydrogen production which is almost double that of pristine ZnIn2S4. Similarly, the hydrogen production from water splitting was observed to be 730 μmol-1 h-1 g-1. The enhanced photocatalytic activity is attributed to the inhibition of charge carrier separation owing to the hierarchical morphology, heterojunction and crystallinity of the SiO2@ZnIn2S4.
Collapse
Affiliation(s)
- Aarti R Gunjal
- Dr John Barnabas post-graduate School for Biological Studies, Ahmednagar College Ahmednagar India
- Nanocrystalline Laboratory, Centre for Material for Electronic Technology (CMET), Department of Information Technology, Govt. of India Panchawati, Off Pashan Road Pune 411007 India +91 20 2589 8180 +91 20 2589 9273
| | - Yogesh A Sethi
- Dr John Barnabas post-graduate School for Biological Studies, Ahmednagar College Ahmednagar India
| | - Ujjwala V Kawade
- Dr John Barnabas post-graduate School for Biological Studies, Ahmednagar College Ahmednagar India
| | - Rajendra P Panmand
- Microwave Materials Division, Centre for Material for Electronic Technology (CMET) Shoranur Road, Athani Thrissur-680 581 India
| | - Chitra K Ugale
- Dr John Barnabas post-graduate School for Biological Studies, Ahmednagar College Ahmednagar India
| | - Jalindar D Ambekar
- Nanocrystalline Laboratory, Centre for Material for Electronic Technology (CMET), Department of Information Technology, Govt. of India Panchawati, Off Pashan Road Pune 411007 India +91 20 2589 8180 +91 20 2589 9273
| | - Arvind V Nagawade
- Nanocrystalline Laboratory, Centre for Material for Electronic Technology (CMET), Department of Information Technology, Govt. of India Panchawati, Off Pashan Road Pune 411007 India +91 20 2589 8180 +91 20 2589 9273
| | - Bharat B Kale
- Dr John Barnabas post-graduate School for Biological Studies, Ahmednagar College Ahmednagar India
| |
Collapse
|
10
|
Zhang G, Gou B, Yang Y, Liu M, Li X, Xiao L, Hao G, Zhao F, Jiang W. CuO/PbO Nanocomposite: Preparation and Catalysis for Ammonium Perchlorate Thermal Decomposition. ACS OMEGA 2020; 5:32667-32676. [PMID: 33376904 PMCID: PMC7758965 DOI: 10.1021/acsomega.0c05050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/03/2020] [Indexed: 05/24/2023]
Abstract
In this present article, we reported a facile and efficient milling method to prepare a series of CuO/PbO nanocomposite metal oxides (CuO/PbO NMOs), with CuO/PbO molar ratios of 1:2, 1:1, 1:0.5, and 1:0.25 as a potential catalyst to catalyze the thermal decomposition of ammonium perchlorate (AP). The obtained CuO/PbO NMOs were systematically characterized. X-ray diffraction (XRD), X-ray energy-dispersive spectrometry (EDS) and X-ray photoelectron spectroscopy (XPS) analyses showed that the characteristic peaks of CuO/PbO NMOs were almost the superposition of nano CuO and nano PbO, while few new weak peaks were observed resulting from the lattice defects and new structural arrangements and chemical bonds between nano CuO and nano PbO during a high-energy grinding process. Scanning electron microscopy (SEM) and transition electron microscopy (TEM) observations exhibited that the particle sizes of the CuO/PbO NMOs were distributed in the range of 10-20 nm. Thermogravimetric (TG) analysis coupled with differential scanning calorimetric (DSC) techniques verified that CuO/PbO NMOs with a CuO/PbO molar ratio of 1:1 presented the best catalytic effect for AP thermal decomposition among the other CuO/PbO NMOs, as well as the single nano CuO and nano PbO. The outstanding catalytic performance is mainly reflected as follows: shifting the peak temperature of AP in high-temperature decomposition stages from 441.3 to 347.6 °C, increasing the decomposition heat of AP from 941 to 1711 J/g, and decreasing the Gibbs free energy of AP from 199.8 to 172.1 kJ/mol, supporting the existence of a synergistic catalytic effect between nano CuO and nano PbO.
Collapse
Affiliation(s)
- Guangpu Zhang
- National
Special Superfine Powder Engineering Research Center of China, School
of Chemical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| | - Bingwang Gou
- Science
and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Yanpeng Yang
- Gansu
Yinguang Chemical Industry Group Co., Ltd., Baiyin 730900, China
| | - Meng Liu
- Science
and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Xiaojiang Li
- Science
and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Lei Xiao
- National
Special Superfine Powder Engineering Research Center of China, School
of Chemical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| | - Gazi Hao
- National
Special Superfine Powder Engineering Research Center of China, School
of Chemical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| | - Fengqi Zhao
- Science
and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Wei Jiang
- National
Special Superfine Powder Engineering Research Center of China, School
of Chemical Engineering, Nanjing University
of Science and Technology, Nanjing 210094, China
| |
Collapse
|
11
|
Eskalen H, Uruş S, Özgan Ş. Microwave-Assisted Synthesis of Mushrooms Like MWCNT/SiO2@ZnO Nanocomposite: Influence on Nematic Liquid Crystal E7 and Highly Effective Photocatalytic Activity in Degradation of Methyl Blue. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01804-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|