1
|
Anvari S, Nikbakht M, Vaezi M, Amini-Kafiabad S, Ahmadvand M. Immune checkpoints and ncRNAs: pioneering immunotherapy approaches for hematological malignancies. Cancer Cell Int 2024; 24:410. [PMID: 39702293 DOI: 10.1186/s12935-024-03596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Hematological malignancies are typically treated with chemotherapy and radiotherapy as the first-line conventional therapies. However, non-coding RNAs (ncRNAs) are a rapidly expanding field of study in cancer biology that influences the growth, differentiation, and proliferation of tumors by targeting immunological checkpoints. This study reviews the results of studies (from 2012 to 2024) that consider the immune checkpoints and ncRNAs in relation to hematological malignancies receiving immunotherapy. This article provides a summary of the latest advancements in immunotherapy for treating hematological malignancies, focusing on the role of immune checkpoints and ncRNAs in the immune response and their capacity for innovative strategies. The paper also discusses the function of immune checkpoints in maintaining immune homeostasis and how their dysregulation can contribute to developing leukemia and lymphoma. Finally, this research concludes with a discussion on the obstacles and future directions in this rapidly evolving field, emphasizing the need for continued research to fully harness the capacity of immune checkpoints and ncRNAs in immunotherapy for hematological malignancies.
Collapse
Affiliation(s)
- Samira Anvari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohsen Nikbakht
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Hematology, Oncology, and Stem Cell Transplantation Research Center Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Amini-Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Nejabat S, Khomartash MS, Mohammadimehr M, Adloo Z, Zanchi FB, Ghorbani M, Nezafat N. Immunoinformatics approach: Developing a multi-epitope vaccine with novel carriers targeting monkeypox virus. FASEB J 2024; 38:e70257. [PMID: 39679938 DOI: 10.1096/fj.202400757rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/12/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Since May 2022, the global spread of monkeypox virus (MPXV) has presented a significant threat to public health. Despite this, there are limited preventive measures available. In this study, different computational tools were employed to design a multi-epitope vaccine targeting MPXV. Three key MPXV proteins, M1R, B6R, and F3L, were chosen for epitope selection, guided by bioinformatic analyses to identify immunodominant epitopes for T- and B-cell activation. To enhance immune stimulation and facilitate targeted delivery of the vaccine to specific cells, the selected epitopes were linked to novel carriers, including the extracellular domain of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), a 12-mer Clec9a binding peptide (CBP-12), and a Toll-like receptor 2 (TLR2) peptide ligand. The designed vaccine construct exhibited strong antigenicity along with nonallergenic and nontoxic properties, with favorable physicochemical characteristics. The validated vaccine's tertiary structure underwent evaluation for interactions with CD80/86, Clec9a, and TLR2 through molecular docking and molecular dynamics simulation. The results ensured the vaccine's stability and high affinity for the aforementioned receptors. In silico immune simulations studies revealed robust innate and adaptive immune responses, including enhanced mucosal immunity essential for protection against MPXV. Ultimately, the DNA sequence of the vaccine construct was synthesized and successfully cloned into the pET-22b(+) vector. Our study, through integration of computational predictions, suggests the proposed vaccine's potential efficacy in safeguarding against MPXV; however, further in vitro and in vivo validations are imperative to assess real-world effectiveness and safety.
Collapse
Affiliation(s)
- Sajjad Nejabat
- Science and Technology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mojgan Mohammadimehr
- Infectious Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
| | - Zahra Adloo
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fernando Berton Zanchi
- Laboratório de Bioinformática e Química Medicinal (LABIOQUIM), Fundação Oswaldo Cruz Rondônia, Porto Velho, Brazil
| | - Mahdi Ghorbani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Rajabi A, Saber A, Kluiver J, van den Berg A, Hosseinpourfeizi MA, Safaralizadeh R. NEAT1 and CHROMR lncRNAs: a promising diagnostic tool for diffuse large B-cell lymphoma especially in elderly patients. Biomark Med 2024; 18:685-693. [PMID: 39263799 PMCID: PMC11404575 DOI: 10.1080/17520363.2024.2389036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024] Open
Abstract
Background: Long non-coding (lnc) RNAs have crucial regulatory roles in molecular pathways, and their dysregulation is associated with the pathogenesis of malignancies such as Diffuse large B-cell lymphoma (DLBCL). Therefore, we aimed to study the NEAT1 and CHROMR expression in DLBCL and explore their association with clinicopathological characteristics.Methods & materials: DLBCL and non-tumor lymph node specimens were obtained to assess the expression levels.Results: NEAT1 and CHROMR expressions were significantly increased in DLBCL, and were linked with the age of DLBCL patients (aged >60). NEAT1 and CHROMR overexpression may serve as moderate-to-good diagnostic biomarkers, with NEAT1 and CHROMR exhibiting area under the curve values of 0.781 and 0.831, respectively.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Aged
- Female
- Middle Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Adult
- Gene Expression Regulation, Neoplastic
- Aged, 80 and over
- Prognosis
- ROC Curve
Collapse
Affiliation(s)
- Ali Rajabi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 5166/15731, Iran
| | - Ali Saber
- Dr. Saber Medical Genetics Laboratory, Almas Complex, Namaz Blvd., Golsar, Rasht, Gilan, 4165685538, Iran
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, 9700RB, The Netherlands
| | | | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 5166/15731, Iran
| |
Collapse
|
4
|
Fares R, Elasmer SM, A. AK, Shaker OG, El-Tahlawi SM, Sabri A, Yaseen SM. Molecular Signature of miR-34a/NEAT-1/p53 Axis in Mycosis Fungoides. Dermatol Res Pract 2024; 2024:3163839. [PMID: 39184920 PMCID: PMC11343631 DOI: 10.1155/2024/3163839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Background Mycosis fungoides (MF) is a type of cutaneous T-cell lymphoma where red rash exists on the skin. Understanding the role of miRNAs and ncRNAs in p53-response has become an open discussion, as they can regulate p53 or its downstream targets, and ncRNAs themselves. Objectives To evaluate the serum levels of NEAT-1, miR-34a, and p53 in MF patients and its relation to healthy controls to indicate whether it has a potential role in the pathogenesis of the disease. Subjects and Methods. This prospective case-control study was carried out on 75 subjects subdivided into two groups, 35 MF patients (stages 1 and II) and 40 matched healthy controls. Their clinical investigations and serum biomarkers (NEAT-1, miR-34a, and p53) were measured. Results There were significant elevations in the expression levels of both NEAT-1 (5.10 ± 1.16) and p53 (277.28 ± 62.02) in the serum of MF patients in comparison with controls (1.01 ± 0.031) and (194.29 ± 16.039), respectively, while the level of miR-34a tends to decrease in MF patients (0.24 ± 0.15). There are no significant difference between MF stages and the level of miR-34a, while in NEAT-1 and p53, there are significant differences with p value <0.05 between the stages and the biomarkers. There is a positive correlation between the %BSA and miR-34a and a slightly positive correlation between NEAT-1 and P53 with (r = 0.353, p=0.037) and (r = 0112, p=0.05), respectively. There were also negative correlations between disease duration and NEAT-1 with (r = -0.341, p=0.045) and between B2 microglobulin level and p53 (r = -0.373, p=0.027). Conclusion The combination of miR-34a, NEAT-1, and p53 may be considered as potential biomarkers that play an active role in the disease process of MF for helping in its early diagnosis and stage identification as well.
Collapse
Affiliation(s)
- Reham Fares
- Department of Medical Biochemistry and Molecular BiologyFaculty of MedicineFayoum University, Fayoum, Egypt
| | - Shimaa M. Elasmer
- Department of Clinical and Chemical PathologyFaculty of MedicineFayoum University, Fayoum, Egypt
| | - Abeer Khalefa A.
- Department of PhysiologyFaculty of MedicineZagazig University, Zagazig, Egypt
| | - Olfat G. Shaker
- Department of Medical Biochemistry and Molecular BiologyFaculty of MedicineCairo University, Cairo, Egypt
| | | | | | - Sara M. Yaseen
- Department of Dermatology, STDs & AndrologyFaculty of MedicineFayoum University, Fayoum, Egypt
| |
Collapse
|
5
|
Rastgar A, Kheyrandish S, Vahidi M, Heidari R, Ghorbani M. Advancements in small interfering RNAs therapy for acute lymphoblastic leukemia: promising results and future perspectives. Mol Biol Rep 2024; 51:737. [PMID: 38874790 DOI: 10.1007/s11033-024-09650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of cancer among children, presenting significant healthcare challenges for some patients, including drug resistance and the need for targeted therapies. SiRNA-based therapy is one potential solution, but problems can arise in administration and the need for a delivery system to protect siRNA during intravenous injection. Additionally, siRNA encounters instability and degradation in the reticuloendothelial system, off-target effects, and potential immune system stimulation. Despite these limitations, some promising results about siRNA therapy in ALL patients have been published in recent years, showing the potential for more effective and precise treatment, reduced side effects, and personalized approaches. While siRNA-based therapies demonstrate safety and efficacy, addressing the mentioned limitations is crucial for further optimization. Advancements in siRNA-delivery technologies and combination therapies hold promise to improve treatment effectiveness and overcome drug resistance. Ultimately, despite its challenges, siRNA therapy has the potential to revolutionize ALL treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Amirhossein Rastgar
- Student Research Committee, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setare Kheyrandish
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Vahidi
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Aja University of Medical Sciences, Tehran, Iran
| | - Reza Heidari
- Cancer Epidemiology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Mahdi Ghorbani
- Department of Hematology, Laboratory Sciences, Faculty of Paramedicine, Aja University of Medical Sciences, Tehran, Iran.
- Infectious Diseases Research Center, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Sharma P, Kaur P, Bhatia P, Trehan A, Sreedharanunni S, Singh M. Novel lncRNAs LINC01221, RP11-472G21.2 and CRNDE are markers of differential expression in pediatric patients with T cell acute lymphoblastic leukemia. Cancer Cell Int 2024; 24:65. [PMID: 38336706 PMCID: PMC10858595 DOI: 10.1186/s12935-024-03255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Pediatric T-cell acute lymphoblastic leukemia (T-ALL) poses significant challenges due to its aggressive nature and resistance to standard treatments. Long non-coding RNAs (lncRNAs) have emerged as potential biomarkers and therapeutic targets in leukemia. This study aims to characterize the lncRNA landscape in pediatric T-ALL, identify specific lncRNAs signatures, and assess their clinical relevance. METHODS RNA sequencing was performed on T-ALL patient and control samples. Differential expression analysis identified dysregulated lncRNAs and mRNAs. Functional enrichment analysis revealed potential roles of these lncRNAs in cancer pathogenesis. Validation of candidate lncRNAs was conducted using real-time PCR. Clinical correlations were assessed, including associations with patients' clinical characteristics and survival outcomes. RESULTS Analysis identified 674 dysregulated lncRNAs in pediatric T-ALL, with LINC01221 and CRNDE showing the most interactions in cancer progression pathways. Functional enrichment indicated involvement in apoptosis, survival, proliferation, and metastasis. Top 10 lncRNAs based on adjusted p value < 0.05 and Fold Change > 2 were selected for validation. Seven lncRNAs LINC01221, PCAT18, LINC00977, RP11-620J15.3, RP11-472G21.2, CTD-2291D10.4, and CRNDE showed correlation with RNA sequencing data. RP11-472G21.2 and CTD-2291D10.4 were highly expressed in T-ALL patients, with RP11-620J15.3 correlating significantly with better overall survival (p = 0.0007) at a median follow up of 32 months. The identified lncRNAs were further analysed in B-ALL patients. Distinct lncRNAs signatures were noted, distinguishing T-ALL from B-ALL and healthy controls, with lineage-specific overexpression of LINC01221 (p < 0.0001), RP11-472G21.2 (p < 0.001) and CRNDE (p = 0.04) in T-ALL. CONCLUSION This study provides insights into the lncRNA landscape of pediatric T-ALL, offering potential diagnostic and prognostic markers. RP11-620J15.3 emerges as a promising prognostic marker, and distinct lncRNAs signatures may aid in the differentiation of T-ALL subtypes. Further research with larger cohorts is warranted to validate these findings and advance personalized treatment strategies for pediatric T-ALL patients.
Collapse
Affiliation(s)
- Pankaj Sharma
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parminder Kaur
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prateek Bhatia
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Trehan
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Minu Singh
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|