1
|
Prathaban M, Prathiviraj R, Ravichandran M, Natarajan SD, Sobanaa M, Hari Krishna Kumar S, Chandrasekar V, Selvin J. Isoptericola haloaureus sp. nov., a dimorphic actinobacterium isolated from mangrove sediments of southeast India, implicating biosaline agricultural significance through nitrogen fixation and salt tolerance genes. Antonie Van Leeuwenhoek 2024; 117:89. [PMID: 38861000 DOI: 10.1007/s10482-024-01985-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Strain MP-1014T, an obligate halophilic actinobacterium, was isolated from the mangrove soil of Thandavarayancholanganpettai, Tamil Nadu, India. A polyphasic approach was utilized to explore its phylogenetic position completely. The isolate was Gram-positive, filamentous, non-motile, and coccoid in older cultures. Ideal growth conditions were seen at 30 °C and pH 7.0, with 5% NaCl (W/V), and the DNA G + C content was 73.3%. The phylogenic analysis of this strain based upon 16S rRNA gene sequence revealed 97-99.8% similarity to the recognized species of the genus Isoptericola. Strain MP-1014T exhibits the highest similarity to I. sediminis JC619T (99.7%), I. chiayiensis KCTC19740T (98.9%), and subsequently to I. halotolerans KCTC19646T (98.6%), when compared with other members within the Isoptericola genus (< 98%). ANI scores of strain MP-1014T are 86.4%, 84.2%, and 81.5% and dDDH values are 59.7%, 53.6%, and 34.8% with I. sediminis JC619T, I. chiayiensis KCTC19740T and I. halotolerans KCTC19646T respectively. The major polar lipids of the strain MP-1014T were phosphatidylinositol, phosphatidylglycerol, diphosphotidylglycerol, two unknown phospholipids, and glycolipids. The predominant respiratory menaquinones were MK9 (H4) and MK9 (H2). The major fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C14:0, C15:0, and C16:0. Also, initial genome analysis of the organism suggests it as a biostimulant for enhancing agriculture in saline environments. Based on phenotypic and genetic distinctiveness, the strain MP-1014 T represents the novel species of the genus Isoptericola assigned Isoptericola haloaureus sp. nov., is addressed by the strain MP-1014 T, given its phenotypic, phylogenetic, and hereditary uniqueness. The type strain is MP-1014T [(NCBI = OP672482.1 = GCA_036689775.1) ATCC = BAA 2646T; DSMZ = 29325T; MTCC = 13246T].
Collapse
Affiliation(s)
- Munisamy Prathaban
- Department of Microbiology, Pondicherry University, Puducherry, 605014, India.
| | | | - Mythili Ravichandran
- Department of Microbiology, Vivekanandha Arts and Science College for Women, Sankagiri, Tamil Nadu, India
| | - Sharmila Devi Natarajan
- School of Biosciences, Mar Athanasios College for Advanced Studies, Thiruvalla, Kerala, India
| | - Murugesan Sobanaa
- Department of Microbiology, Pondicherry University, Puducherry, 605014, India
| | | | | | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry, 605014, India
| |
Collapse
|
2
|
Bushra R, Ahmed I, Li JL, Lian Z, Li S, Ali A, Uzair B, Amin A, Ehsan M, Liu YH, Li WJ. Untapped rich microbiota of mangroves of Pakistan: diversity and community compositions. Folia Microbiol (Praha) 2024; 69:595-612. [PMID: 37843797 DOI: 10.1007/s12223-023-01095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023]
Abstract
The mangrove ecosystem is the world's fourth most productive ecosystem in terms of service value and offering rich biological resources. Microorganisms play vital roles in these ecological processes, thus researching the mangroves-microbiota is crucial for a deeper comprehension of mangroves dynamics. Amplicon sequencing that targeted V4 region of 16S rRNA gene was employed to profile the microbial diversities and community compositions of 19 soil samples, which were collected from the rhizosphere of 3 plant species (i.e., Avicennia marina, Ceriops tagal, and Rhizophora mucronata) in the mangrove forests of Lasbela coast, Pakistan. A total of 67 bacterial phyla were observed from three mangroves species, and these taxa were classified into 188 classes, 453 orders, 759 families, and 1327 genera. We found that Proteobacteria (34.9-38.4%) and Desulfobacteria (7.6-10.0%) were the dominant phyla followed by Chloroflexi (6.6-7.3%), Gemmatimonadota (5.4-6.8%), Bacteroidota (4.3-5.5%), Planctomycetota (4.4-4.9%) and Acidobacteriota (2.7-3.4%), Actinobacteriota (2.5-3.3%), and Crenarchaeota (2.5-3.3%). After considering the distribution of taxonomic groups, we prescribe that the distinctions in bacterial community composition and diversity are ascribed to the changes in physicochemical attributes of the soil samples (i.e., electrical conductivity (ECe), pH, total organic matter (OM), total organic carbon (OC), available phosphorus (P), and extractable potassium (CaCO3). The findings of this study indicated a high-level species diversity in Pakistani mangroves. The outcomes may also aid in the development of effective conservation policies for mangrove ecosystems, which have been hotspots for anthropogenic impacts in Pakistan. To our knowledge, this is the first microbial research from a Pakistani mangrove forest.
Collapse
Affiliation(s)
- Rabia Bushra
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agriculture Research Center (NARC), Islamabad 45500, Pakistan
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agriculture Research Center (NARC), Islamabad 45500, Pakistan.
| | - Jia-Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhenghan Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ahmad Ali
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agriculture Research Center (NARC), Islamabad 45500, Pakistan
| | - Bushra Uzair
- Department of Biological Sciences, International Islamic University, Islamabad 44000, Pakistan
| | - Arshia Amin
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad 45500, Pakistan
| | | | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
3
|
Mondal S, Biswas B, Chowdhury R, Sengupta R, Mandal A, Kotal HN, Giri CK, Ghosh A, Saha S, Begam MM, Mukherjee C, Das I, Basak SK, Mitra Ghosh M, Ray K. Estuarine mangrove niches select cultivable heterotrophic diazotrophs with diverse metabolic potentials-a prospective cross-dialog for functional diazotrophy. Front Microbiol 2024; 15:1324188. [PMID: 38873137 PMCID: PMC11174608 DOI: 10.3389/fmicb.2024.1324188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Biological nitrogen fixation (BNF), an unparalleled metabolic novelty among living microorganisms on earth, globally contributes ~88-101 Tg N year-1 to natural ecosystems, ~56% sourced from symbiotic BNF while ~22-45% derived from free-living nitrogen fixers (FLNF). The success of symbiotic BNF is largely dependent on its interaction with host-plant, however ubiquitous environmental heterotrophic FLNFs face many limitations in their immediate ecological niches to sustain unhindered BNF. The autotrophic FLNFs like cyanobacteria and oceanic heterotrophic diazotrophs have been well studied about their contrivances acclimated/adapted by these organisms to outwit the environmental constraints for functional diazotrophy. However, FLNF heterotrophs face more adversity in executing BNF under stressful estuarine/marine/aquatic habitats. Methods In this study a large-scale cultivation-dependent investigation was accomplished with 190 NCBI accessioned and 45 non-accessioned heterotrophic FLNF cultivable bacterial isolates (total 235) from halophilic estuarine intertidal mangrove niches of Indian Sundarbans, a Ramsar site and UNESCO proclaimed World Heritage Site. Assuming ~1% culturability of the microbial community, the respective niches were also studied for representing actual bacterial diversity via cultivation-independent next-generation sequencing of V3-V4 rRNA regions. Results Both the studies revealed a higher abundance of culturable Gammaproteobacteria followed by Firmicutes, the majority of 235 FLNFs studied belonging to these two classes. The FLNFs displayed comparable selection potential in media for free nitrogen fixers and iron-oxidizing bacteria, linking diazotrophy with iron oxidation, siderophore production, phosphorus solubilization, phosphorus uptake and accumulation as well as denitrification. Discussion This observation validated the hypothesis that under extreme estuarine mangrove niches, diazotrophs are naturally selected as a specialized multidimensional entity, to expedite BNF and survive. Earlier metagenome data from mangrove niches demonstrated a microbial metabolic coupling among C, N, P, S, and Fe cycling in mangrove sediments, as an adaptive trait, evident with the co-abundant respective functional genes, which corroborates our findings in cultivation mode for multiple interrelated metabolic potential facilitating BNF in a challenging intertidal mangrove environment.
Collapse
Affiliation(s)
- Sumana Mondal
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Biswajit Biswas
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
- Department of Microbiology, St. Xavier’s College (Autonomous), Kolkata, India
| | - Rajojit Chowdhury
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
- Department of Botany, Sree Chaitanya College, Habra, India
| | - Rudranil Sengupta
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Anup Mandal
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Hemendra Nath Kotal
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Chayan Kumar Giri
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Anjali Ghosh
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Subhajit Saha
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Mst Momtaj Begam
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
- Department of Botany, Kalimpong College, Darjeeling, India
| | - Chandan Mukherjee
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
- School of Biological and Life Sciences, Galgotias University, Greater Noida, India
| | - Ipsita Das
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | | | | | - Krishna Ray
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| |
Collapse
|
4
|
Hu J, Pradit S, Loh PS, Chen Z, Guo C, Le TPQ, Oeurng C, Sok T, Mohamed CAR, Lee CW, Bong CW, Lu X, Anshari GZ, Kandasamy S, Wang J. Storage and dynamics of soil organic carbon in allochthonous-dominated and nitrogen-limited natural and planted mangrove forests in southern Thailand. MARINE POLLUTION BULLETIN 2024; 200:116064. [PMID: 38290368 DOI: 10.1016/j.marpolbul.2024.116064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/15/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Mangrove forests can help to mitigate climate change by storing a significant amount of carbon (C) in soils. Planted mangrove forests have been established to combat anthropogenic threats posed by climate change. However, the efficiency of planted forests in terms of soil organic carbon (SOC) storage and dynamics relative to that of natural forests is unclear. We assessed SOC and nutrient storage, SOC sources and drivers in a natural and a planted forest in southern Thailand. Although the planted forest stored more C and nutrients than the natural forest, the early-stage planted forest was not a strong sink relative to mudflat. Both forests were predominated by allochthonous organic C and nitrogen limited, with total nitrogen being a major driver of SOC in both cases. SOC showed a significant decline along land-to-sea and depth gradients as a result of soil texture, nutrient availability, and pH in the natural forest.
Collapse
Affiliation(s)
- Jianxiong Hu
- Institute of Marine Geology and Resources, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Siriporn Pradit
- Coastal Oceanography and Climate Change Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand.
| | - Pei Sun Loh
- Institute of Marine Geology and Resources, Ocean College, Zhejiang University, Zhoushan 316021, China.
| | - Zengxuan Chen
- Institute of Marine Geology and Resources, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Chuanyi Guo
- Institute of Marine Geology and Resources, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Thi Phuong Quynh Le
- Institute of Natural Product Chemistry, Vietnam Academy of Science and Technology, Hanoi 11307, Viet Nam
| | - Chantha Oeurng
- Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Phnom Penh 12156, Cambodia
| | - Ty Sok
- Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Phnom Penh 12156, Cambodia
| | - Che Abd Rahim Mohamed
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Choon Weng Lee
- Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chui Wei Bong
- Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Xixi Lu
- Department of Geography, National University of Singapore, Singapore 119260, Singapore
| | - Gusti Z Anshari
- Soil Science Department, Faculty of Agriculture, Tanjungpura University, Pontianak 78124, Indonesia
| | - Selvaraj Kandasamy
- Department of Geology, School of Earth Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, India
| | - Jianjun Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Laanbroek HJ, Rains MC, Verhoeven JTA, Whigham DF. The effect of intentional summer flooding for mosquito control on the nitrogen dynamics of impounded Avicennia germinans mangrove forests. Sci Rep 2024; 14:2165. [PMID: 38272989 PMCID: PMC10811325 DOI: 10.1038/s41598-024-52248-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Coastal wetlands such as mangrove forests are breeding grounds for nuisance-causing insects. Rotational Impoundment Management (RIM) for mosquito control involves annual summer inundation of impounded mangrove forests with estuarine water during the summer half year. However, in addition to controlling mosquitos, RIM may change biogeochemical pathways. This study set out to investigate how RIM quantitatively affects physicochemical soil characteristics and potential nitrifying and denitrifying activities (PNA and PDA), which are key in the global nitrogen cycle. Before and after the implementation of RIM, soil samples were collected annually in habitats differing in size and abundance of black mangroves (Avicennia germinans) in an impoundment with RIM and in an adjacent impoundment with a more open connection to the lagoon. Compared to the non-managed impoundment, soil moisture content, total nitrogen and PDA increased, while salinity decreased after the start of annual summer flooding, but only in the dwarf habitat. In the sparse and dense habitats, total nitrogen and PDA increased independently of summer flooding, whereas soil moisture content and salinity were not affected by RIM. Labile organic nitrogen increased only in the RIM impoundment, irrespective of the habitat type. PNA was generally not affected with time, except in the dwarf habitat in the absence of intentional summer flooding where it increased. Changes in the non-managed impoundment adjacent to the RIM impoundment demonstrate the importance of groundwater exchange in linked ecosystems. The consequences of interventions in the management of mangrove impoundments and adjacent forests for the nitrogen budget are discussed.
Collapse
Affiliation(s)
- H J Laanbroek
- Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands.
- Department of Microbial Ecology, NIOO-KNAW, Wageningen, The Netherlands.
- Smithsonian Environmental Research Station, Edgewater, MD, USA.
| | - M C Rains
- School of Geosciences, University of South Florida, Tampa, FL, USA
| | - J T A Verhoeven
- Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
- Smithsonian Environmental Research Station, Edgewater, MD, USA
| | - D F Whigham
- Smithsonian Environmental Research Station, Edgewater, MD, USA
| |
Collapse
|
6
|
Chinfak N, Sompongchaiyakul P, Charoenpong C, Wu Y, Du J, Jiang S, Zhang J. Riverine and submarine groundwater nutrients fuel high primary production in a tropical bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162896. [PMID: 36933731 DOI: 10.1016/j.scitotenv.2023.162896] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 05/06/2023]
Abstract
River discharge has long been recognized as a major source of nutrients supporting high primary production (PP) in Bandon Bay, while submarine groundwater discharge (SGD) and atmospheric deposition have largely been overlooked. In this study, we evaluated contributions of nutrients via river, SGD and atmospheric deposition, and their roles on PP in the bay. Contribution of nutrients from the three sources during different time of the year was estimated. Nutrients supply from Tapi-Phumduang River accounted for two-fold the amount from SGD while very little supply was from atmospheric deposition. Significant seasonal difference in silicate and dissolved inorganic nitrogen were observed in river water. Dissolved phosphorous in river water was mainly (80 % to 90 %) of DOP in both seasons. For the bay water, DIP in wet season was two-fold higher than in dry season while dissolved organic phosphorus (DOP) was only one half of those measured in dry season. In SGD, dissolved nitrogen was mostly inorganic (with 99 % as NH4+), while dissolved phosphorous was predominantly (DOP). In general, Tapi River is the most important source of nitrogen (NO3-, NO2-, and DON), contributing >70 % of all considered sources, especially in wet season, while SGD is a major source for DSi, NH4+ and phosphorus, contributing 50 % to 90 % of all considered sources. To this end, Tapi River and SGD deliver a large quantity of nutrients and support high PP in the bay (337 to 553 mg-C m-2 day-1).
Collapse
Affiliation(s)
- Narainrit Chinfak
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Penjai Sompongchaiyakul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chawalit Charoenpong
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ying Wu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Jinzhou Du
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Shan Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Jing Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
7
|
Mamidala HP, Ganguly D, Purvaja R, Singh G, Das S, Rao MN, Kazip Ys A, Arumugam K, Ramesh R. Interspecific variations in leaf litter decomposition and nutrient release from tropical mangroves. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116902. [PMID: 36508978 DOI: 10.1016/j.jenvman.2022.116902] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/08/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Efficient nutrient cycling through decomposition of leaf litter often regulates the high productivity and subsequent carbon sequestration of mangrove ecosystems along the land-ocean boundary. To understand the characteristics and the potentials of mangrove leaf litter in supplying organic carbon and nutrients to the coastal waters, four major mangrove species (A. officinalis, R. mucronata, H. littoralis and S. apetala) of Bhitarkanika mangrove forest, Odisha, India, were examined in controlled environmental conditions. Half-life time (t0.5), estimated for decomposition of those mangrove leaf litter materials ranged from 18 to 52 days. During the incubation experiment, organic carbon from mangrove leaf litter was released primarily through physical processes and was available for heterotrophic respiration. Among the four species, leaf litter of S. apetala with the lowest initial C/N ratios, released organic carbon with low molecular weight (labile substances) that has a relatively higher potential to support the aquatic food web. On the contrary, leaf litter of R. mucronata released organic material with relatively higher molecular weight (humic substances, higher aromaticity), which revealed its superior non-labile characteristics in this unique environment. The mean total heterotrophic bacterial (THB) population in the incubation was around nine-fold higher than the control. THB population growth and Chromophoric Dissolved Organic Matter (CDOM) spectral data further suggested the rapid release of highly labile and recalcitrant carbon from S. apetala and R. mucronata (between 7th and 21st day of incubation), respectively. The mean litter fall from the Bhitarkanika mangrove forest was estimated to be 11.32 ± 1.57 Mg ha-1 y-1 and its corresponding carbon content was 5.43 ± 0.75 Mg C ha-1. The study revealed the role of leaf litter leachates as an important food source to microbial communities in the adjacent coastal waters, in addition to a potential carbon sequesterer through long-term burial in mangrove soil and export to the deep sea.
Collapse
Affiliation(s)
- Harikrishna Prasad Mamidala
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India.
| | - D Ganguly
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India.
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India.
| | - Gurmeet Singh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India.
| | - Subhajit Das
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India.
| | - M Nageswar Rao
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India.
| | - Armoury Kazip Ys
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India.
| | - K Arumugam
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India.
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India.
| |
Collapse
|
8
|
Loiola M, Silva AET, Krull M, Barbosa FA, Galvão EH, Patire VF, Cruz ICS, Barros F, Hatje V, Meirelles PM. Mangrove microbial community recovery and their role in early stages of forest recolonization within shrimp ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158863. [PMID: 36126709 DOI: 10.1016/j.scitotenv.2022.158863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Shrimp farming is blooming worldwide, posing a severe threat to mangroves and its multiple goods and ecosystem services. Several studies reported the impacts of aquaculture on mangrove biotic communities, including microbiomes. However, little is known about how mangrove soil microbiomes would change in response to mangrove forest recolonization. Using genome-resolved metagenomics, we compared the soil microbiome of mangrove forests (both with and without the direct influence of shrimp farming effluents) with active shrimp farms and mangroves under a recolonization process. We found that the structure and composition of active shrimp farms microbial communities differ from the control mangrove forests, mangroves under the impact of the shrimp farming effluents, and mangroves under recolonization. Shrimp farming ponds microbiomes have lower microbial diversity and are dominated by halophilic microorganisms, presenting high abundance of multiple antibiotic resistance genes. On the other hand, control mangrove forests, impacted mangroves (exposed to the shrimp farming effluents), and recolonization ponds were more diverse, with a higher abundance of genes related to carbon mobilization. Our data also indicated that the microbiome is recovering in the mangrove recolonization ponds, performing vital metabolic functions and functionally resembling microbiomes found in those soils of neighboring control mangrove forests. Despite highlighting the damage caused by the habitat changes in mangrove soil microbiome community and functioning, our study sheds light on these systems incredible recovery capacity. Our study shows the importance of natural mangrove forest recovery, enhancing ecosystem services by the soil microbial communities even in a very early development stage of mangrove forest, thus encouraging mangrove conservation and restoration efforts worldwide.
Collapse
Affiliation(s)
- Miguel Loiola
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Marcos Krull
- Leibniz Centre for Agricultural Landscape Research (ZALF), Germany
| | | | | | - Vinicius F Patire
- Centro Interdisciplinar de Energia e Ambiente (CIENAM), Universidade Federal da Bahia, Brazil
| | | | - Francisco Barros
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil; Instituto Nacional de Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE), Brazil
| | - Vanessa Hatje
- Centro Interdisciplinar de Energia e Ambiente (CIENAM), Universidade Federal da Bahia, Brazil; Instituto de Química, Universidade Federal da Bahia, Brazil
| | - Pedro Milet Meirelles
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil; Instituto Nacional de Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE), Brazil.
| |
Collapse
|
9
|
Palit K, Rath S, Chatterjee S, Das S. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32467-32512. [PMID: 35182344 DOI: 10.1007/s11356-022-19048-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Mangroves are among the world's most productive ecosystems and a part of the "blue carbon" sink. They act as a connection between the terrestrial and marine ecosystems, providing habitat to countless organisms. Among these, microorganisms (e.g., bacteria, archaea, fungi, phytoplankton, and protozoa) play a crucial role in this ecosystem. Microbial cycling of major nutrients (carbon, nitrogen, phosphorus, and sulfur) helps maintain the high productivity of this ecosystem. However, mangrove ecosystems are being disturbed by the increasing concentration of greenhouse gases within the atmosphere. Both the anthropogenic and natural factors contribute to the upsurge of greenhouse gas concentration, resulting in global warming. Changing climate due to global warming and the increasing rate of human interferences such as pollution and deforestation are significant concerns for the mangrove ecosystem. Mangroves are susceptible to such environmental perturbations. Global warming, human interventions, and its consequences are destroying the ecosystem, and the dreadful impacts are experienced worldwide. Therefore, the conservation of mangrove ecosystems is necessary for protecting them from the changing environment-a step toward preserving the globe for better living. This review highlights the importance of mangroves and their microbial components on a global scale and the degree of vulnerability of the ecosystems toward anthropic and climate change factors. The future scenario of the mangrove ecosystem and the resilience of plants and microbes have also been discussed.
Collapse
Affiliation(s)
- Krishna Palit
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
10
|
Cecchetti AR, Stiegler AN, Gonthier EA, Bandaru SRS, Fakra SC, Alvarez-Cohen L, Sedlak DL. Fate of Dissolved Nitrogen in a Horizontal Levee: Seasonal Fluctuations in Nitrate Removal Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2770-2782. [PMID: 35077168 DOI: 10.1021/acs.est.1c07512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Horizontal levees are a nature-based approach for removing nitrogen from municipal wastewater effluent while simultaneously providing additional benefits, such as flood control. To assess nitrogen removal mechanisms and the efficacy of a horizontal levee, we monitored an experimental system receiving nitrified municipal wastewater effluent for 2 years. Based on mass balances and microbial gene abundance data, we determined that much of the applied nitrogen was most likely removed by heterotrophic denitrifiers that consumed labile organic carbon from decaying plants and added wood chips. Fe(III) and sulfate reduction driven by decay of labile organic carbon also produced Fe(II) sulfide minerals. During winter months, when heterotrophic activity was lower, strong correlations between sulfate release and nitrogen removal suggested that autotrophic denitrifiers oxidized Fe(II) sulfides using nitrate as an electron acceptor. These trends were seasonal, with Fe(II) sulfide minerals formed during summer fueling denitrification during the subsequent winter. Overall, around 30% of gaseous nitrogen losses in the winter were attributable to autotrophic denitrifiers. To predict long-term nitrogen removal, we developed an electron-transfer model that accounted for the production and consumption of electron donors. The model indicated that the labile organic carbon released from wood chips may be capable of supporting nitrogen removal from wastewater effluent for several decades with sulfide minerals, decaying vegetation, and root exudates likely sustaining nitrogen removal over a longer timescale.
Collapse
Affiliation(s)
- Aidan R Cecchetti
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California 94720, United States
- ReNUWIt Engineering Research Center, University of California at Berkeley, Berkeley, California 94720, United States
| | - Angela N Stiegler
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California 94720, United States
- ReNUWIt Engineering Research Center, University of California at Berkeley, Berkeley, California 94720, United States
| | - Emily A Gonthier
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California 94720, United States
- ReNUWIt Engineering Research Center, University of California at Berkeley, Berkeley, California 94720, United States
| | - Siva R S Bandaru
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California 94720, United States
- ReNUWIt Engineering Research Center, University of California at Berkeley, Berkeley, California 94720, United States
| | - David L Sedlak
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California 94720, United States
- ReNUWIt Engineering Research Center, University of California at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Tongununui P, Kuriya Y, Murata M, Sawada H, Araki M, Nomura M, Morioka K, Ichie T, Ikejima K, Adachi K. Mangrove crab intestine and habitat sediment microbiomes cooperatively work on carbon and nitrogen cycling. PLoS One 2022; 16:e0261654. [PMID: 34972143 PMCID: PMC8719709 DOI: 10.1371/journal.pone.0261654] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
Mangrove ecosystems, where litter and organic components are degraded and converted into detrital materials, support rich coastal fisheries resources. Sesarmid (Grapsidae) crabs, which feed on mangrove litter, play a crucial role in material flow in carbon-rich and nitrogen-limited mangrove ecosystems; however, the process of assimilation and conversion into detritus has not been well studied. In this study, we performed microbiome analyses of intestinal bacteria from three species of mangrove crab and five sediment positions in the mud lobster mounds, including the crab burrow wall, to study the interactive roles of crabs and sediment in metabolism. Metagenome analysis revealed species-dependent intestinal profiles, especially in Neosarmatium smithi, while the sediment microbiome was similar in all positions, albeit with some regional dependency. The microbiome profiles of crab intestines and sediments were significantly different in the MDS analysis based on OTU similarity; however, 579 OTUs (about 70% of reads in the crab intestinal microbiome) were identical between the intestinal and sediment bacteria. In the phenotype prediction, cellulose degradation was observed in the crab intestine. Cellulase activity was detected in both crab intestine and sediment. This could be mainly ascribed to Demequinaceae, which was predominantly found in the crab intestines and burrow walls. Nitrogen fixation was also enriched in both the crab intestines and sediments, and was supported by the nitrogenase assay. Similar to earlier reports, sulfur-related families were highly enriched in the sediment, presumably degrading organic compounds as terminal electron acceptors under anaerobic conditions. These results suggest that mangrove crabs and habitat sediment both contribute to carbon and nitrogen cycling in the mangrove ecosystem via these two key reactions.
Collapse
Affiliation(s)
- Prasert Tongununui
- Department of Marine Science and Environment, Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Tambon Maifad, Amphur Sikao, Trang, Thailand
| | - Yuki Kuriya
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Masahiro Murata
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Hideki Sawada
- Maizuru Fisheries Research Station, Field Science Education and Research Center, Kyoto University, Maizuru, Kyoto, Japan
| | - Michihiro Araki
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Mika Nomura
- Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan
| | - Katsuji Morioka
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Tomoaki Ichie
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Kou Ikejima
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Kohsuke Adachi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
- * E-mail:
| |
Collapse
|
12
|
Lugendo BR, Kimirei IA. Anthropogenic nitrogen pollution in mangrove ecosystems along Dar es Salaam and Bagamoyo coasts in Tanzania. MARINE POLLUTION BULLETIN 2021; 168:112415. [PMID: 33930646 DOI: 10.1016/j.marpolbul.2021.112415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Mangroves are among the most productive coastal ecosystems; however, they are prone to anthropogenic pollution due to their land-sea interface position. We used stable nitrogen isotopes and spectrophotometric nitrate analysis to study the anthropogenic pollution in five mangrove ecosystems in Tanzania, including two polluted (Mzinga and Kizinga), one moderate (Kunduchi) and non-polluted (Mbegani and Ras Dege) sites. Also, we tested the suitability of mangrove leaves, roots, sediment, and gastropod as indicators of anthropogenic nitrogen pollution using stable δ15N isotope analysis. Results revealed higher than 10‰ δ15N values in all analysed components and the highest nitrate concentrations of 16.44 mg L-1 in the interstitial waters at the polluted sites, indicating anthropogenic nitrogen inputs. The δ15N enrichment increased in the order: non-polluted < moderate < polluted. The polluted sites are fed by freshwater creeks and probably receive high loads of domestic sewage from the surrounding communities, industries, and agricultural effluents. Therefore, to protect mangrove ecosystems, proper waste and wastewater management upstream are recommended.
Collapse
Affiliation(s)
- Blandina R Lugendo
- School of Aquatic Sciences and Fisheries Technology (SoAF), University of Dar es Salaam P. O. Box 60091, Dar es Salaam, Tanzania; Tanzania Fisheries Research Institute (TAFIRI), P.O. Box 9750, Dar es Salaam, Tanzania.
| | - Ismael A Kimirei
- School of Aquatic Sciences and Fisheries Technology (SoAF), University of Dar es Salaam P. O. Box 60091, Dar es Salaam, Tanzania; Tanzania Fisheries Research Institute (TAFIRI), P.O. Box 9750, Dar es Salaam, Tanzania.
| |
Collapse
|
13
|
Macro- and Micronutrient Cycling and Crucial Linkages to Geochemical Processes in Mangrove Ecosystems. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9050456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High mangrove productivity is sustained by rapid utilization, high retention efficiency and maximum storage of nutrients in leaves, roots, and soils. Rapid microbial transformations and high mineralization efficiencies in tandem with physiological mechanisms conserve scarce nutrients. Macronutrient cycling is interlinked with micronutrient cycling; all nutrient cycles are linked closely to geochemical transformation processes. Mangroves can be N-, P-, Fe-, and Cu-limited; additions of Zn and Mo stimulate early growth until levels above pristine porewater concentrations induce toxicity. Limited nutrient availability is caused by sorption and retention onto iron oxides, clays, and sulfide minerals. Little N is exported as immobilization is the largest transformation process. Mn and S affect N metabolism and photosynthesis via early diagenesis and P availability is coupled to Fe-S redox oscillations. Fe is involved in nitrification, denitrification and anammox, and Mo is involved in NO3− reduction and N2-fixation. Soil Mg, K, Mn, Zn and Ni pool sizes decrease as mangrove primary productivity increases, suggesting increasing uptake and more rapid turnover than in less productive forests. Mangroves may be major contributors to oceanic Mn and Mo cycles, delivering 7.4–12.1 Gmol Mn a−1 to the ocean, which is greater than global riverine input. The global Mo import rate by mangroves corresponds to 15–120% of Mo supply to the oceanic Mo budget.
Collapse
|