1
|
Lashkarbolouk N, Mazandarani M, Pakmehr A, Ejtahed HS. Evaluating the Role of Probiotics, Prebiotics, and Synbiotics Supplementation in Age-related Musculoskeletal Disorders in Older Adults: A Systematic Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10306-3. [PMID: 38907826 DOI: 10.1007/s12602-024-10306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
The aim of this systematic review is to evaluate musculoskeletal changes in response to prebiotics, probiotics, or synbiotics supplementation in older adults or in animal models of aging musculoskeletal disorders. A comprehensive search was conducted on electronic databases, including PubMed/Medline, Cochrane, and Web of Science until April 2024. The quality assessment of clinical trials was conducted using the Cochrane Collaboration tool and for animal studies, the SYRCLE's tool was used. Our literature search resulted in 652 studies. After removing duplicates and screening the articles based on their titles and abstracts, we assessed the full text of 112 articles, which yielded 20 clinical trials and 30 animal studies in our systematic review. Most of human and animal studies reported an improvement in physical performance, a decrease in frailty index, and a lower reduction in bone mineral density in the intervention groups. Body composition tends to increase in muscle ratio, muscle mass, and reduce in appendicular lean mass and muscle atrophy. Also, the intervention induced bone turnover and mineral absorption, significantly increasing Ca, P, and Mg absorption and short-chain fatty acid concentration. Additionally, levels of inflammatory markers such as IL1, IL6, IL17, T helper 17, and TNF-α exhibited a decreasing trend, while an increase in IL10 and IFN-γ was observed. Prebiotics, probiotics, or synbiotics supplementations could effectively improve the physical performance and muscle strength and reduce the risk of bone loss and frailty in the elderly.
Collapse
Affiliation(s)
- Narges Lashkarbolouk
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahdi Mazandarani
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Pakmehr
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Yang Y, Yan Z, Xie Q, Wang Y, Liu Z, Lei M. Lactobacillus plantarum 45 activates SHP2 through inhibition of oxidative stress to regulate osteoblast and osteoclast differentiation. Aging (Albany NY) 2024; 16:6334-6347. [PMID: 38575308 PMCID: PMC11042941 DOI: 10.18632/aging.205708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/19/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND The purpose of this study is to observe LP45 (Lactobacillus plantarum 45) to investigate the mechanism by which LP45 attenuates oxidative stress-induced damage and regulates the osteoblast-osteoclast balance. MATERIALS AND METHODS The oxidative stress level and osteoblast- and osteoclast-related proteins were detected by immunofluorescence staining, Western blotting, ROS fluorescent probe and ELISA. Osteoblast cell proliferation capacity was determined by the CCK-8 assay. X-ray observation and HE staining were used to detect the effect of LP45 on osteoporosis. RESULTS The expression level of SHP2 and Src was significantly increased, and the expression levels of NOX4, P22, P47, IL-1β, NLRP3, IRF3, RANK, β-catenin and INF-β were inhibited in LP45 group and LPS + LP45 group as compared to those in LPS group. Compared with that in LPS group, the concentration of SOD was increased and the concentration of MDA was decreased in LPS + LP45 group. The protein expressions of OPG, RANKL, RUNX3, RANK and β-catenin in LP45 group and LPS + LP45 group increased. The protein expressions of NF-κB, CREB and AP-1 in LP45 group and LPS + LP45 group decreased significantly. The results were also confirmed by immunofluorescence staining and ROS fluorescent probe. X-ray observation and HE staining showed that LP45 could inhibit the progression of osteoporosis. CONCLUSION LP45 can exert its antioxidant effect by inhibiting the production of oxidative stress to activate the SHP2 signaling pathway, thus promoting osteoblast differentiation and repressing osteoclast formation to maintain bone homeostasis and improve bone metabolism.
Collapse
Affiliation(s)
- Yaming Yang
- Department of Clinical Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Zheng Yan
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Qi Xie
- Department of Nutrition, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Yong Wang
- Department of Research, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Zhiying Liu
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Min Lei
- Department of Clinical Nutrition, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
- School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| |
Collapse
|
3
|
Jia M, Luo J, Gao B, Huangfu Y, Bao Y, Li D, Jiang S. Preparation of synbiotic milk powder and its effect on calcium absorption and the bone microstructure in calcium deficient mice. Food Funct 2023; 14:3092-3106. [PMID: 36919678 DOI: 10.1039/d2fo04092a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Calcium deficiency can lead to osteoporosis. Adequate calcium intake can improve calcium deficiency and prevent osteoporosis. Milk powder is the best source of dietary calcium supplements. Probiotics and prebiotics are considered to be beneficial substances for promoting calcium absorption. In this study, synbiotic milk powder (SMP) was prepared by combining the three, and its calcium supplementation effect and osteogenic activity were evaluated in calcium deficient mice. Through prebiotic screening experiments in vitro, after adding 1.2% iso-malto-oligosaccharide, the number of viable bacteria and the calcium enrichment of Lactobacillus plantarum JJBYG12 increased by 8.15% and 94.53% compared with those of the control group. Long-term calcium deficiency led to a significant reduction in calcium absorption and bone calcium content in mice, accompanied by structural deterioration of bone trabeculae. SMP significantly improved apparent calcium absorption, increased serum calcium and phosphorus levels, and decreased ALP activity and CTX-1 levels. In the meantime, the bone mineral density increased significantly, and the number of bone trabeculae and the proliferation and differentiation of osteoblasts also increased. SMP has good dietary calcium supplementation capacity and bone remodeling ability without significant side effects on major organs. These findings provide insights into using SMP as a dietary calcium source to improve bone health.
Collapse
Affiliation(s)
- Mingjie Jia
- School of Forestry, Northeast Forestry University, #26Hexing Road, Harbin 150040, PR China.
| | - Jiayuan Luo
- School of Forestry, Northeast Forestry University, #26Hexing Road, Harbin 150040, PR China.
| | - Bo Gao
- School of Forestry, Northeast Forestry University, #26Hexing Road, Harbin 150040, PR China.
| | - Yunpeng Huangfu
- School of Forestry, Northeast Forestry University, #26Hexing Road, Harbin 150040, PR China.
| | - Yihong Bao
- School of Forestry, Northeast Forestry University, #26Hexing Road, Harbin 150040, PR China. .,Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, PR China
| | - Dehai Li
- School of Forestry, Northeast Forestry University, #26Hexing Road, Harbin 150040, PR China. .,Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, PR China
| | - Shilong Jiang
- Heilongjiang Feihe Dairy Company Limited, Beijing 100015, PR China
| |
Collapse
|
4
|
Bonnefous C, Collin A, Guilloteau LA, Guesdon V, Filliat C, Réhault-Godbert S, Rodenburg TB, Tuyttens FAM, Warin L, Steenfeldt S, Baldinger L, Re M, Ponzio R, Zuliani A, Venezia P, Väre M, Parrott P, Walley K, Niemi JK, Leterrier C. Welfare issues and potential solutions for laying hens in free range and organic production systems: A review based on literature and interviews. Front Vet Sci 2022; 9:952922. [PMID: 35990274 PMCID: PMC9390482 DOI: 10.3389/fvets.2022.952922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
In free-range and organic production systems, hens can make choices according to their needs and desires, which is in accordance with welfare definitions. Nonetheless, health and behavioral problems are also encountered in these systems. The aim of this article was to identify welfare challenges observed in these production systems in the EU and the most promising solutions to overcome these challenges. It is based on a review of published literature and research projects complemented by interviews with experts. We selected EU specific information for welfare problems, however, the selected literature regarding solutions is global. Free range use may increase the risk of infection by some bacteria, viruses and parasites. Preventive methods include avoiding contamination thanks to biosecurity measures and strengthening animals' natural defenses against these diseases which can be based on nutritional means with new diet components such as insect-derived products, probiotics and prebiotics. Phytotherapy and aromatherapy can be used as preventive and curative medicine and vaccines as alternatives to antibiotics and pesticides. Bone quality in pullets and hens prevents keel deviations and is favored by exercise in the outdoor range. Free range use also lead to higher exposure to variable weather conditions and predators, therefore shadow, fences and guard animals can be used to prevent heat stress and predation respectively. Granting a free range provides opportunities for the expression of many behaviors and yet many hens usually stay close to the house. Providing the birds with trees, shelters or attractive plants can increase range use. Small flock sizes, early experiences of enrichment and personality traits have also been found to enhance range use. Severe feather pecking can occur in free range production systems, although flocks using the outdoor area have better plumage than indoors. While many prevention strategies are facilitated in free range systems, the influence of genetics, prenatal and nutritional factors in free range hens still need to be investigated. This review provides information about practices that have been tested or still need to be explored and this information can be used by stakeholders and researchers to help them evaluate the applicability of these solutions for welfare improvement.
Collapse
Affiliation(s)
| | - Anne Collin
- INRAE, Université de Tours, BOA, Nouzilly, France
| | | | - Vanessa Guesdon
- JUNIA, Comportement Animal et Systèmes d'Elevage, Lille, France
| | | | | | - T. Bas Rodenburg
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Frank A. M. Tuyttens
- ILVO, Instituut voor Landbouw-, Visserij- en Voedingsonderzoek, Melle, Belgium
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | - Sanna Steenfeldt
- Department of Animal Science, Aarhus University, Aarhus, Denmark
| | | | - Martina Re
- AIAB, Associazone Italiana per l'Agricultura Biologica, Rome, Italy
| | | | - Anna Zuliani
- Veterinari Senza Frontiere Italia, Sede c/o Istituto Zooprofilattico Sperimentale delle Venezie viale dell'Università, Padova, Italy
| | - Pietro Venezia
- Veterinari Senza Frontiere Italia, Sede c/o Istituto Zooprofilattico Sperimentale delle Venezie viale dell'Università, Padova, Italy
| | - Minna Väre
- Natural Resources Institute Finland (Luke), Bioeconomy and Environment, Helsinki, Finland
| | | | - Keith Walley
- Harper Adams University, Newport, United Kingdom
| | - Jarkko K. Niemi
- Natural Resources Institute Finland (Luke), Bioeconomy and Environment, Seinäjoki, Finland
| | - Christine Leterrier
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
- *Correspondence: Christine Leterrier
| |
Collapse
|
5
|
Jia R, Liu N, Zhu Y, Li Q. Curative Effect of Prebiotics/Probiotics Preparations Combined with Zoledronic Acid + Calcitriol Regimen on Patients with Primary Osteoporosis and Their Influences on Bone Metabolism Markers. Emerg Med Int 2022; 2022:3293362. [PMID: 35912388 PMCID: PMC9334080 DOI: 10.1155/2022/3293362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To explore the curative effect of prebiotics/probiotics preparations combined with zoledronic acid + calcitriol regimen on patients with primary osteoporosis (POP) and the influences of prebiotics/probiotics preparations combined with zoledronic acid + calcitriol regimen on markers of bone metabolism. Methods 126 elderly hospitalized patients with POP in our hospital from January 2020 to December 2021 were divided into the control group (n = 63) and the observation group (n = 63) by the random number table method. The patients in the control group were treated with zoledronic acid and calcitriol, while the patients in the observation group were additionally treated with prebiotics/probiotics preparations. The clinical curative effect, bone metabolism, calcium-phosphorus metabolism indexes, intestinal floras, and cytokines levels before and via treatment between the two groups were compared. Results The total efficiency of the observation group was higher than that of the control group (P < 0.05). After treatment, the levels of bone gla protein (BGP), total propeptide of type I procollagen (PINP), and β-crosslaps (β-CTX) in both groups were lower than those before treatment, and the levels of BGP, total PINP, and β-CTX in the observation group were lower than those in the control group (P < 0.05). The levels of serum P in the both groups after treatment were lower than those before treatment, and the level of serum P in the observation group was lower than that in the control group (P < 0.05). The number of Escherichia coli after treatment in the two groups were less than that before treatment, and the number of Escherichia coli in the observation group was less than that in the control group (P < 0.05). The number of bifidobacteria and lactobacilli in the two groups after treatment were more than that before treatment, and the number of bifidobacteria and lactobacilli in the observation group were more than those in the control group (P < 0.05). After treatment, the levels of IL-6 and TNF-α in the two groups were lower than those before treatment, and the levels of IL-6 and TNF-α in the observation group was lower than those in the control group (P < 0.05). The levels of IGF-1 in the two groups after treatment were higher than those before treatment, and the levels of IGF-1 in the observation group was higher than that in the control group (P < 0.05). Conclusion The response rate of prebiotics/probiotics preparations combined with zoledronic acid + calcitriol regimen is high in the treatment of POP patients, which ameliorates bone metabolism and intestinal floras, and suppresses cytokines release in patients with POP.
Collapse
Affiliation(s)
- Ruipeng Jia
- Department of Orthopaedic, Haikou People's Hospital, Haikou, Hainan 570208, China
| | - Ning Liu
- Department of Orthopaedic, The 942nd Hospital of the PLA Joint Logistic Support Force, Yinchuan, Ningxia 750004, China
| | - Yanyan Zhu
- Department of Clinical Pharmacy, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang 315000, China
| | - Qiaoli Li
- Department of Clinical Pharmacy, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang 315000, China
| |
Collapse
|
6
|
Harahap IA, Suliburska J. Probiotics and Isoflavones as a Promising Therapeutic for Calcium Status and Bone Health: A Narrative Review. Foods 2021; 10:2685. [PMID: 34828966 PMCID: PMC8621960 DOI: 10.3390/foods10112685] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/21/2022] Open
Abstract
Probiotics have potential clinical effects for treating and preventing osteoporosis. Meanwhile, isoflavones have attracted much attention due to their ability to prevent postmenopausal symptoms. Research has established that probiotics and isoflavones can regulate hormones, immune cells, and the gastrointestinal system, acting as links in the gut-bone axis. However, combining the effects of probiotics and isoflavones on calcium status and bone health is a more novel and a still-evolving research area. Lactobacillus and Bifidobacterium are the foremost strains that influence bone health to a significant extent. Among the isoflavones, daidzein, genistein, and the metabolites of genistein (such as equol) stimulate bone formation. It can be concluded that probiotics and isoflavones promote bone health by regulating calcium uptake, gut microbiota, and various metabolic pathways that are associated with osteoblast activity and bone formation. Nevertheless, further experiments of probiotics and isoflavones are still necessary to confirm the association between calcium bioavailability and bone health.
Collapse
|
7
|
Probiotics as a New Regulator for Bone Health: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3582989. [PMID: 34394379 PMCID: PMC8355998 DOI: 10.1155/2021/3582989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023]
Abstract
Despite the proposed role of the gut microbiota-bone axis, findings on the association between probiotic consumption and bone health are conflicting. This systematic review aimed to assess the effect of probiotic consumption on bone health parameters. A systematic literature search of relevant reports published in PubMed/Medline, Web of Science, SCOPUS, EMBASE, and Google scholar before December 2020 was conducted. All clinical trials or experimental studies, which examined the relationship between probiotic consumption and bone health parameters, were included. No limitation was applied during the search. After screening articles based on inclusion criteria, 44 studies remained. In clinical trials, probiotic consumption affects bone health parameters such as serum calcium levels (3.82; 95% CI: 1.05, 6.59 mmol/l), urinary calcium levels (4.85; 95% CI: 1.16, 8.53 mmol/l), and parathyroid hormone (PTH) levels (−5.53; 95% CI: −9.83, −0.86 ng/l). In most studies, Lactobacillus species such as L. helveticus, L. reuteri, and L. casei were consumed and women aged 50 years or older were assessed. Spinal and total hip bone mineral density (BMD) was not affected significantly by probiotic consumption. In 37 animal experiments, probiotic or symbiotic feeding mostly had effects on bone health parameters. Some strains of Bifidobacterium and Lactobacillus including L. reuteri, L. casei, L. paracasei, L. bulgaricus, and L. acidophilus have indicated beneficial effects on bone health parameters. In conclusion, this systematic review and meta-analysis indicate that probiotic supplementation might improve bone health. Further studies are needed to decide on the best probiotic species and appropriate dosages.
Collapse
|
8
|
Di Iorio A, Abate M, Bandinelli S, Barassi G, Cherubini A, Andres-Lacueva C, Zamora-Ros R, Paganelli R, Volpato S, Ferrucci L. Total urinary polyphenols and longitudinal changes of bone properties. The InCHIANTI study. Osteoporos Int 2021; 32:353-362. [PMID: 32793995 PMCID: PMC7838067 DOI: 10.1007/s00198-020-05585-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/03/2020] [Indexed: 10/31/2022]
Abstract
UNLABELLED The aim of this study was to evaluate the association of levels of urinary total polyphenols considered as a proxy measure of polyphenol intake, with longitudinal changes of bone properties, in the InCHIANTI study. Dietary intake of polyphenols appears to be associated with future accelerated deterioration of bone health. INTRODUCTION Polyphenols, micronutrients ingested through plant-based foods, have antioxidant and anti-inflammatory properties and may contribute to osteoporosis prevention. We evaluated associations of high levels of urinary total polyphenols (UTP), a proxy measure of polyphenol intake, with longitudinal changes of bone properties in a representative cohort of free-living participants of the InCHIANTI study. METHODS The InCHIANTI study enrolled representative samples from the registry list of two towns in Tuscany, Italy. Baseline data were collected in 1998 and follow-up visits in 2001 and 2004. Of the 1453 participants enrolled, 956 consented to donate a 24-h urine sample used to assess UTP, had dietary assessment, a physical examination, and underwent a quantitative computerized tomography (pQCT) of the tibia. From pQCT images, we estimated markers of bone mass (BM), diaphyseal design (DD), and material quality (MQ). Mixed models were used to study the relationship between baseline tertiles of UTP with changes of the bone characteristics over the follow-up. RESULTS At baseline, higher levels of UTP were positively correlated with markers of BM, DD, and MQ. Compared with lower tertile of UTP, participants in the intermediate and highest tertiles had higher cortical bone area, cortical mineral content, and cortical thickness. However, participants in the intermediate and highest UTP tertiles experienced accelerated deterioration of these same parameters over the follow-up compared with those in the lowest UTP tertile. CONCLUSIONS Dietary intake of polyphenols estimated by UTP and dietary questionnaire was associated with long-term accelerated deterioration of bone health. Our study does not support the recommendation of increasing polyphenol intake for osteoporosis prevention.
Collapse
Affiliation(s)
- A Di Iorio
- Department of Medicine and Science of Aging, University Centre of Sports Medicine, University "G. d'Annunzio", Chieti, Italy.
| | - M Abate
- Department of Medicine and Science of Aging, University Centre of Sports Medicine, University "G. d'Annunzio", Chieti, Italy
| | - S Bandinelli
- Geriatric Unit, Azienda Toscana Centro, Florence, Italy
| | - G Barassi
- Department of Medicine and Science of Aging, University Centre of Sports Medicine, University "G. d'Annunzio", Chieti, Italy
- Thermal Medicine Center of Castelnuovo della Daunia, Foggia, Italy
| | - A Cherubini
- Geriatrics and Geriatric Emergency Care, Italian National Research Center on Aging (IRCCS-INRCA), Ancona, Italy
| | - C Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - R Zamora-Ros
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - R Paganelli
- Department of Medicine and Science of Aging, University Centre of Sports Medicine, University "G. d'Annunzio", Chieti, Italy
| | - S Volpato
- Department of Medical Science, Section of Internal and Cardiorespiratory Medicine, University of Ferrara, Ferrara, Italy
| | - L Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health USA, Baltimore, MD, 21224, USA
| |
Collapse
|
9
|
Minj J, Chandra P, Paul C, Sharma RK. Bio-functional properties of probiotic Lactobacillus: current applications and research perspectives. Crit Rev Food Sci Nutr 2020; 61:2207-2224. [PMID: 32519883 DOI: 10.1080/10408398.2020.1774496] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lactic acid bacteria as a starter culture are very important component in the fermentation process of dairy and food industry. Application of lactic acid bacteria as probiotic bacteria adds more functionality to the developed product. Gut colonizing bacteria have attractive benefits related to human health. Bio-functional properties such as antimicrobial activity, anti-inflammatory, ACE-inhibitory, antioxidant, antidiarrheal, antiviral, immunomodulatory, hypocholesterolemic, anti-diabetic and anti-cancer activities are the most applicable research areas of lactic acid bacteria. Different strains of Lactobacillus are generally consumed as probiotics and colonize the gastrointestinal tract. Sometimes these bacteria may possess antimicrobial activity and may positively influence the effect of antibiotics. Use of Lactobacillus spp. for the development of functional foods is one of the promising areas of current research and applications. Individual bacterial species have unique biological activity, which may vary from strains to strains and identification of this uniqueness could be helpful in the development of functional and therapeutic food products.
Collapse
Affiliation(s)
- Jagrani Minj
- Department of Food Science and Technology, Nebraska Innovation Campus (NIC), University of Nebraska, Lincoln, Nebraska, USA
| | | | - Catherine Paul
- Department of Food Science and Technology, Nebraska Innovation Campus (NIC), University of Nebraska, Lincoln, Nebraska, USA
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
10
|
Silveira EMS, Santos MCQ, da Silva TCB, Silva FBO, Machado CV, Elias L, Kolberg A, Kroth A, Partata WA. Aging and low-intensity exercise change oxidative biomarkers in brain regions and radiographic measures of femur of Wistar rats. ACTA ACUST UNITED AC 2020; 53:e9237. [PMID: 32401926 PMCID: PMC7228549 DOI: 10.1590/1414-431x20209237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
We investigated changes in oxidative biomarkers in brain regions such as brainstem, cerebellum, and cerebral cortex of 3-, 6-, 18-, 24-, and 30-month-old rats. We also assessed the effects of low-intensity exercise on these biomarkers in these regions of 6-, 18-, and 24-month-old rats that started exercise on a treadmill at 3, 15, and 21 months of age, respectively. Radiographic images of the femur were taken for all rats. A total of 25 rats (age: twelve 6-, ten 18-, ten 24-, and three 30-month-old rats) were used. Lipid hydroperoxide levels increased in cerebellum at 18 months. Total antioxidant activity exhibited lowest values in brainstem at 3 months. Superoxide dismutase activity did not exhibit significant changes during aging. Total thiol content exhibited lowest values in brain regions of 24- and 30-month-old rats. Exercise reduced total thiol content in brainstem at 6 months, but no change occurred in other regions and other ages. Femur increased its length and width and cortical thickness with advancing age. No change occurred in medullary width. Radiolucency increased and sclerosis was found in cortical and medullary bone with advancing age. Exercise reduced radiolucency and medullary sclerosis. Therefore, aging differentially changed oxidative biomarkers in different brain regions and radiographic measures of the femur. Low-intensity exercise only ameliorated some radiographic measurements of femur. Since the present study possessed limitations (small number of rats per group), a beneficial effect of regular low-intensity exercise on oxidative markers in brain cannot be ruled out.
Collapse
Affiliation(s)
- E M S Silveira
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - M C Q Santos
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - T C B da Silva
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - F B O Silva
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - C V Machado
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - L Elias
- Graduada em Medicina Veterinária, Fundação Educacional Dom André Arcoverde (UNIFAA), Centro Universitário de Valença, Valença, RJ, Brasil
| | - A Kolberg
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A Kroth
- Área Ciências da Vida, Universidade do Oeste de Santa Catarina, Joaçaba, SC, Brasil
| | - W A Partata
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
11
|
Abboud M, Papandreou D. Gut Microbiome, Probiotics and Bone: An Updated Mini Review. Open Access Maced J Med Sci 2019; 7:478-481. [PMID: 30834022 PMCID: PMC6390135 DOI: 10.3889/oamjms.2019.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/25/2018] [Accepted: 01/12/2019] [Indexed: 01/29/2023] Open
Abstract
The gut microbiome is now considered as a large organ that has a direct effect on gastrointestinal tract, immune and endocrine system. There is no evidence that gut microbiota regulates the immune system and is responsible for bone formation and destruction. Probiotics have been shown through the gastrointestinal tract to have a positive effect on the management of the healthy bone. This article discusses the latest data available from PubMed and Scopus databases regarding gut microbiome, probiotics and bone briefly.
Collapse
Affiliation(s)
- Myriam Abboud
- Department of Health, CNHS, Zayed University, Dubai, UAE
| | | |
Collapse
|
12
|
Bayat M, Dabbaghmanesh MH, Koohpeyma F, Mahmoodi M, Montazeri-Najafabady N, Bakhshayeshkaram M. The Effects of Soy Milk Enriched with Lactobacillus casei and Omega-3 on the Tibia and L5 Vertebra in Diabetic Rats: a Stereological Study. Probiotics Antimicrob Proteins 2018; 11:1172-1181. [DOI: 10.1007/s12602-018-9482-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|