1
|
Proia P, Rossi C, Alioto A, Amato A, Polizzotto C, Pagliaro A, Kuliś S, Baldassano S. MiRNAs Expression Modulates Osteogenesis in Response to Exercise and Nutrition. Genes (Basel) 2023; 14:1667. [PMID: 37761807 PMCID: PMC10529960 DOI: 10.3390/genes14091667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, many articles have been published describing the impact of physical activity and diet on bone health. This review has aimed to figure out the possible epigenetic mechanisms that influence bone metabolism. Many studies highlighted the effects of macro and micronutrients combined with exercise on the regulation of gene expression through miRs. The present review will describe how physical activity and nutrition can prevent abnormal epigenetic regulation that otherwise could lead to bone-metabolism-related diseases, the most significant of which is osteoporosis. Nowadays, it is known that this effect can be carried out not only by endogenously produced miRs, but also through those intakes through the diet. Indeed, they have also been found in the transcriptome of animals and plants, and it is possible to hypothesise an interaction between miRNAs produced by different kingdoms and epigenetic influences on human gene expression. In particular, the key to the activation pathways triggered by diet and physical activity appears to be the activation of Runt-related transcription factor 2 (RUNX2), the expression of which is regulated by several miRs. Among the main miRs involved are exercise-induced miR21 and 21-5p, and food-induced miR 221-3p and 222-3p.
Collapse
Affiliation(s)
- Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Pascoli 6, 90144 Palermo, Italy; (C.R.); (A.A.); (C.P.); (A.P.)
| | - Carlo Rossi
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Pascoli 6, 90144 Palermo, Italy; (C.R.); (A.A.); (C.P.); (A.P.)
- Centro Medico di Fisioterapia “Villa Sarina”, 91011 Alcamo, Italy
| | - Anna Alioto
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Pascoli 6, 90144 Palermo, Italy; (C.R.); (A.A.); (C.P.); (A.P.)
| | - Alessandra Amato
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n°97, 95123 Catania, Italy;
| | - Caterina Polizzotto
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Pascoli 6, 90144 Palermo, Italy; (C.R.); (A.A.); (C.P.); (A.P.)
| | - Andrea Pagliaro
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Pascoli 6, 90144 Palermo, Italy; (C.R.); (A.A.); (C.P.); (A.P.)
| | - Szymon Kuliś
- Faculty of Physical Education, Józef Piłsudski University of Physical Education, 00-968 Warsaw, Poland;
| | - Sara Baldassano
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy;
| |
Collapse
|
2
|
Tang JY, Chuang YT, Shiau JP, Yen CY, Chang FR, Tsai YH, Farooqi AA, Chang HW. Connection between Radiation-Regulating Functions of Natural Products and miRNAs Targeting Radiomodulation and Exosome Biogenesis. Int J Mol Sci 2023; 24:12449. [PMID: 37569824 PMCID: PMC10419287 DOI: 10.3390/ijms241512449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Exosomes are cell-derived membranous structures primarily involved in the delivery of the payload to the recipient cells, and they play central roles in carcinogenesis and metastasis. Radiotherapy is a common cancer treatment that occasionally generates exosomal miRNA-associated modulation to regulate the therapeutic anticancer function and side effects. Combining radiotherapy and natural products may modulate the radioprotective and radiosensitizing responses of non-cancer and cancer cells, but there is a knowledge gap regarding the connection of this combined treatment with exosomal miRNAs and their downstream targets for radiation and exosome biogenesis. This review focuses on radioprotective natural products in terms of their impacts on exosomal miRNAs to target radiation-modulating and exosome biogenesis (secretion and assembly) genes. Several natural products have individually demonstrated radioprotective and miRNA-modulating effects. However, the impact of natural-product-modulated miRNAs on radiation response and exosome biogenesis remains unclear. In this review, by searching through PubMed/Google Scholar, available reports on potential functions that show radioprotection for non-cancer tissues and radiosensitization for cancer among these natural-product-modulated miRNAs were assessed. Next, by accessing the miRNA database (miRDB), the predicted targets of the radiation- and exosome biogenesis-modulating genes from the Gene Ontology database (MGI) were retrieved bioinformatically based on these miRNAs. Moreover, the target-centric analysis showed that several natural products share the same miRNAs and targets to regulate radiation response and exosome biogenesis. As a result, the miRNA-radiomodulation (radioprotection and radiosensitization)-exosome biogenesis axis in regard to natural-product-mediated radiotherapeutic effects is well organized. This review focuses on natural products and their regulating effects on miRNAs to assess the potential impacts of radiomodulation and exosome biogenesis for both the radiosensitization of cancer cells and the radioprotection of non-cancer cells.
Collapse
Affiliation(s)
- Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-H.T.)
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-H.T.)
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
3
|
Ascorbic acid along with ciprofloxacin regulates S. aureus induced microglial inflammatory responses and oxidative stress through TLR-2 and glucocorticoid receptor modulation. Inflammopharmacology 2022; 30:1303-1322. [PMID: 35704229 DOI: 10.1007/s10787-022-01012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/13/2022] [Indexed: 11/05/2022]
Abstract
Microglial inflammatory responses play a central role in the pathogenesis of S. aureus induced brain infections. Upon activation, microglia produces free radicals (ROS/RNS) and disrupts the cellular antioxidant defense to combat invading microorganisms. Despite conventional antibiotic or steroid therapy, microglial over-activation could not be controlled. So, an attempt had been taken by using a natural antioxidant ascorbic acid along with ciprofloxacin to regulate microglial over-activation by involving TLR-2 and glucocorticoid receptor (GR) in an in-vitro cell culture-based study. Combinatorial treatment during TLR-2 neutralization effectively reduced the bacterial burden at 60 min compared to the GR blocking condition (p < 0.05). Moreover, the infection-induced H2O2, O2.-, and NO release in microglial cell culture was diminished possibly by enhancing SOD and catalase activities in the same condition (p < 0.05). The arginase activity was markedly increased after TLR-2 blocking in the combinatorial group compared to single treatments (p < 0.05). Experimental results indicated that combinatorial treatment may act through up-regulating GR expression by augmenting endogenous corticosterone levels. However, better bacterial clearance could further suppress the TLR-2 mediated pro-inflammatory NF-κB signaling. From Western blot analysis, it was concluded that ciprofloxacin-ascorbic acid combination in presence of anti-TLR-2 antibody exhibited 81.25% inhibition of TLR-2 expression while the inhibition for GR was 3.57% with respect to the infected group. Therefore, during TLR-2 blockade ascorbic acid combination might be responsible for the restoration of redox balance in microglia via modulating TLR-2/GR interaction. The combination treatment could play a major role in the neuroendocrine-immune regulation of S. aureus induced microglial activation.
Collapse
|
4
|
Repurposing Vitamin C for Cancer Treatment: Focus on Targeting the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14112608. [PMID: 35681589 PMCID: PMC9179307 DOI: 10.3390/cancers14112608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The tumor microenvironment (TME) is a complicated network, and several promising TME-targeted therapies, such as immunotherapy and targeted therapies, are now facing problems over low response rates and drug resistance. Vitamin C (VitC) has been extensively studied as a dietary nutrient and multi-targeted natural drug for fighting against tumor cells. The focus has been recently on its crucial functions in the TME. Here, we discuss the potential mechanisms of VitC in several specialized microenvironments, characterize the current status of its preclinical and clinical applications, and offer suggestions for future studies. This article is intended to provide basic researchers and clinicians with a detailed picture of VitC targeting the tumor microenvironment. Abstract Based on the enhanced knowledge on the tumor microenvironment (TME), a more comprehensive treatment landscape for targeting the TME has emerged. This microenvironment provides multiple therapeutic targets due to its diverse characteristics, leading to numerous TME-targeted strategies. With multifaced activities targeting tumors and the TME, vitamin C is renown as a promising candidate for combination therapy. In this review, we present new advances in how vitamin C reshapes the TME in the immune, hypoxic, metabolic, acidic, neurological, mechanical, and microbial dimensions. These findings will open new possibilities for multiple therapeutic avenues in the fight against cancer. We also review the available preclinical and clinical evidence of vitamin C combined with established therapies, highlighting vitamin C as an adjuvant that can be exploited for novel therapeutics. Finally, we discuss unresolved questions and directions that merit further investigation.
Collapse
|
5
|
Global change of microRNA expression induced by vitamin C treatment on immature boar Sertoli cells. Theriogenology 2022; 183:1-9. [DOI: 10.1016/j.theriogenology.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/29/2021] [Accepted: 02/06/2022] [Indexed: 11/23/2022]
|
6
|
Yu Y, Zhang J, Wang J, Sun B. MicroRNAs: The novel mediators for nutrient-modulating biological functions. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Targeting reactive oxygen species in stem cells for bone therapy. Drug Discov Today 2021; 26:1226-1244. [PMID: 33684524 DOI: 10.1016/j.drudis.2021.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/04/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have emerged as key players in regulating the fate and function of stem cells from both non-hematopoietic and hematopoietic lineages in bone marrow, and thus affect the osteoblastogenesis-osteoclastogenesis balance and bone homeostasis. Accumulating evidence has linked ROS and associated oxidative stress with the progression of bone disorders, and ROS-based therapeutic strategies have appeared to achieve favorable outcomes in bone. We review current knowledge of the multifactorial roles and mechanisms of ROS as a target in bone pathology. In addition, we discuss emerging ROS-based therapeutic strategies that show potential for bone therapy. Finally, we highlight the opportunities and challenges facing ROS-targeted stem cell therapeutics for improving bone health.
Collapse
|
8
|
Ruknarong L, Boonthongkaew C, Chuangchot N, Jumnainsong A, Leelayuwat N, Jusakul A, Gaudieri S, Leelayuwat C. Vitamin C supplementation reduces expression of circulating miR-451a in subjects with poorly controlled type 2 diabetes mellitus and high oxidative stress. PeerJ 2021; 9:e10776. [PMID: 33604180 PMCID: PMC7868066 DOI: 10.7717/peerj.10776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background Vitamin C is an essential element required for normal metabolic function. We investigated the effect of vitamin C supplementation on circulating miRNA (miR) expression in subjects with poorly controlled type 2 diabetes mellitus (T2DM). Changes in miR expression were also correlated with clinical measures of disease. Methods Pre- and post-vitamin C supplementation samples from five participants who had increased vitamin C levels, improved oxidative status and polymorphonuclear (PMN) function after receiving 1,000 mg of vitamin C daily for six weeks were screened for miRNA expression using the NanoString miRNA assay. Differences in miRNA expression identified from the miRNA screen were validated by qRT-PCR. Results Four miRNAs showed significantly different expression post-vitamin C supplementation relative to baseline, including the down-regulation of miR-451a (−1.72 fold change (FC), p = 0.036) and up-regulation of miR-1253 (0.62 FC, p = 0.027), miR-1290 (0.53 FC, p = 0.036) and miR-644a (0.5 FC, p = 0.042). The validation study showed only miR-451a expression was significantly different from baseline with vitamin C supplementation. MiR-451a expression was negatively correlated with vitamin C levels (r = − 0.497, p = 0.049) but positively correlated with levels of malondialdehyde (MDA) (r = 0.584, p = 0.017), cholesterol (r = 0.564, p = 0.022) and low-density lipoproteins (LDL) (r = 0.522, p = 0.037). Bioinformatics analysis of the putative target genes of miR-451a indicated gene functions related to signaling pathways involved in cellular processes, such as the mammalian target of rapamycin (mTOR) signaling pathway. Conclusions Vitamin C supplementation altered circulating miR-451a expression. The results from this pilot study suggest that miRNAs could be used as biomarkers to indicate oxidative status in subjects with T2DM and with poor glycemic control and could lead to a novel molecular strategy to reduce oxidative stress in T2DM.
Collapse
Affiliation(s)
- Laongthip Ruknarong
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon kean, Thailand.,Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand.,Exercise and Sport Sciences Development and Research Group (ESRG), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chongchira Boonthongkaew
- Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand.,Exercise and Sport Sciences Development and Research Group (ESRG), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nisa Chuangchot
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon kean, Thailand.,Biomedical Sciences Program, Graduate School, Khon Kaen University, Khon Kaen, Thailand.,Exercise and Sport Sciences Development and Research Group (ESRG), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Amonrat Jumnainsong
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon kean, Thailand.,Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Naruemon Leelayuwat
- Exercise and Sport Sciences Development and Research Group (ESRG), Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Graduate School, Khon Kaen University, Khon Kaen, Thailand
| | - Apinya Jusakul
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon kean, Thailand.,Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia.,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, United States of America
| | - Chanvit Leelayuwat
- Centre for Research and Development of Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical Sciences, Khon Kaen University, Khon kean, Thailand.,Department of Clinical Immunology and Transfusion Sciences, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
9
|
Sak J, Suchodolska M. Artificial Intelligence in Nutrients Science Research: A Review. Nutrients 2021; 13:322. [PMID: 33499405 PMCID: PMC7911928 DOI: 10.3390/nu13020322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Artificial intelligence (AI) as a branch of computer science, the purpose of which is to imitate thought processes, learning abilities and knowledge management, finds more and more applications in experimental and clinical medicine. In recent decades, there has been an expansion of AI applications in biomedical sciences. The possibilities of artificial intelligence in the field of medical diagnostics, risk prediction and support of therapeutic techniques are growing rapidly. The aim of the article is to analyze the current use of AI in nutrients science research. The literature review was conducted in PubMed. A total of 399 records published between 1987 and 2020 were obtained, of which, after analyzing the titles and abstracts, 261 were rejected. In the next stages, the remaining records were analyzed using the full-text versions and, finally, 55 papers were selected. These papers were divided into three areas: AI in biomedical nutrients research (20 studies), AI in clinical nutrients research (22 studies) and AI in nutritional epidemiology (13 studies). It was found that the artificial neural network (ANN) methodology was dominant in the group of research on food composition study and production of nutrients. However, machine learning (ML) algorithms were widely used in studies on the influence of nutrients on the functioning of the human body in health and disease and in studies on the gut microbiota. Deep learning (DL) algorithms prevailed in a group of research works on clinical nutrients intake. The development of dietary systems using AI technology may lead to the creation of a global network that will be able to both actively support and monitor the personalized supply of nutrients.
Collapse
Affiliation(s)
- Jarosław Sak
- Chair and Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
- BioMolecular Resources Research Infrastructure Poland (BBMRI.pl), Poland
| | | |
Collapse
|
10
|
Sun N, Li M, Liu G, Jing M, He F, Cao Z, Zong W, Tang J, Gao C, Liu R. Toxic mechanism of pyrene to catalase and protective effects of vitamin C: Studies at the molecular and cell levels. Int J Biol Macromol 2021; 171:225-233. [PMID: 33418042 DOI: 10.1016/j.ijbiomac.2020.12.169] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
Polycyclic aromatic hydrocarbons, distributing extensively in the soil, would potentially threaten the soil organisms (Eisenia fetida) by triggering oxidative stress. As a ubiquitous antioxidant enzyme, catalase can protect organisms from oxidative damage. To reveal the potential impact of polycyclic aromatic hydrocarbon pyrene (Pyr) on catalase (CAT) and the possible protective effect of Ascorbic acid (vitamin C), multi-spectral and molecular docking techniques were used to investigate the influence of structure and function of catalase by pyrene. Fluorescence and circular dichroism analysis showed that pyrene would induce the microenvironmental changes of CAT amino acid residues and increase the α-helix in the secondary structure. Molecular simulation results indicated that the main binding force of pyrene around the active center of CAT is hydrogen bonding force. Furthermore, pyrene inhibited catalase activity to 69.9% compared with the blank group, but the degree of inhibition was significantly weakened after vitamin C added into the research group. Cell level experiments showed that pyrene can increase the level of ROS in the body cavity cell of earthworms, and put the cells under the threat of potential oxidative damage. Antioxidants-vitamin C has a protective effect on catalase and maintains the stability of intracellular ROS levels to a certain extent.
Collapse
Affiliation(s)
- Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Meifei Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Guiliang Liu
- Shandong Institute for Food and Drug Control, Jinan 250101, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Zhaozhen Cao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
11
|
Zhou Y, Qiao H, Liu L, Dong P, Zhu F, Zhang J, Liu L, Liu L. miR-21 regulates osteogenic and adipogenic differentiation of BMSCs by targeting PTEN. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2021; 21:568-576. [PMID: 34854397 PMCID: PMC8672397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To explore the effects and mechanism of miR-21 on the osteogenic/adipogenic differentiation of mouse BMSCs. METHODS The bilateral ovaries of C57BL/6J mice (n=24) were removed to construct an osteoporosis model. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-21, osteogenic/adipogenic genes, and PTEN. ALP and ARS and ORO staining were used to detect the formation of calcium nodules and lipid droplets in BMSCs. Western blot was used to detect the expression of PTEN. RESULTS miR-21 was significantly down-regulated in osteoporotic mice. The expression of miR-21 was significantly up-regulated after the osteogenic induction of BMSCs, and the expression of miR-21 was significantly down-regulated after the adipogenic induction. Overexpression of miR-21 significantly promoted the osteogenic differentiation of BMSCs and inhibits the adipogenic differentiation of BMSCs. CONCLUSION MiR-21 can promote osteogenic differentiation of BMSCs and inhibit their adipogenic differentiation by negatively regulating PTEN.
Collapse
Affiliation(s)
- Yongtao Zhou
- Department of Orthopedic One Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China,Corresponding author: Yongtao Zhou, Department of Orthopedic One Ward, The Second Affiliated Hospital of Qiqihar Medical University, No.37, Zhonghua West Road, Qiqihar 161000, China E-mail:
| | - Hongwang Qiao
- Department of Orthopedic One Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lili Liu
- Department of Hemodialysis, Qiqihar Jian Hua Hospital, Qiqihar, China
| | - Ping Dong
- Department of Orthopedic Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Fangxu Zhu
- Cancer 2 Word, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Jiawen Zhang
- Department of Neurology Four Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Liping Liu
- Department of Orthopedic One Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Li Liu
- Department of Orthopedic One Ward, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
12
|
Wu J, Liang J, Li M, Lin M, Mai L, Huang X, Liang J, Hu Y, Huang Y. Modulation of miRNAs by vitamin C in H2O2‑exposed human umbilical vein endothelial cells. Int J Mol Med 2020; 46:2150-2160. [PMID: 33125125 PMCID: PMC7595655 DOI: 10.3892/ijmm.2020.4753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Vitamin C plays a protective role in oxidative damage by blocking the effects of free radicals. The present study investigated the mechanisms through which vitamin C partly mediates anti‑apoptotic and antioxidant functions via the regulation of microRNAs (miRNAs or miRs). For this purpose, a global miRNA expression analysis on human umbilical vein endothelial cells (HUVECs) treated with vitamin C was conducted using microarrays containing human precursor and mature miRNA probes. The results revealed that there were 42 identical miRNAs among the differentially expressed miRNAs in the HUVEC group and H2O2 + vitamin C‑treated HUVEC group compared to the H2O2‑exposed HUVEC group, including 41 upregulated miRNAs and 1 down‑regulated miRNA. Using bioinformatics analysis, differentially expressed miRNAs were investigated to identify novel target mRNAs and signaling pathways. Pathway enrichment analyses revealed that apoptosis, the mitogen‑activated protein kinase (MAPK) signaling pathway, phosphoinositide 3‑kinase (PI3K)/Akt signaling pathway and oxidative phosphorylation were significantly enriched. The results from western blot analysis demonstrated that the interleukin (IL)10, matrix metalloproteinase (MMP)2, cAMP‑response element binding protein (CREB) and p‑CREB protein expression levels in HUVECs transfected with hsa‑miR‑3928‑5p and induced by H2O2 were significantly downregulated; the MAPK9, caspase‑3 (CASP3) and p‑CASP3 protein expression levels in HUVECs transfected with hsa‑miR‑323a‑5p and induced by H2O2 were significantly downregulated. The present study therefore demonstrates that vitamin C partly exerts protective effects on HUVECs through the regulation of miRNA/mRNA axis expression.
Collapse
Affiliation(s)
- Jiandi Wu
- Department of Cardiology, Affiliated Foshan Hospital, Southern Medical University
| | - Jingjing Liang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Meijun Li
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Mingzhuo Lin
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Linlin Mai
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Xiaohui Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Jianqiu Liang
- Department of Cardiology, Affiliated Foshan Hospital, Southern Medical University
| | - Yunzhao Hu
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528308, P.R. China
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Foshan, Guangdong 528308, P.R. China
- The George Institute for Global Health, Newtown, New South Wales 2042, Australia
| |
Collapse
|
13
|
|
14
|
Abstract
Epigenetic modifications play an important role in disease pathogenesis and therefore are a focus of intense investigation. Epigenetic changes include DNA, RNA, and histone modifications along with expression of non-coding RNAs. Various factors such as environment, diet, and lifestyle can influence the epigenome. Dietary nutrients like vitamins can regulate both physiological and pathological processes through their direct impact on epigenome. Vitamin A acts as a major regulator of above-mentioned epigenetic mechanisms. B group vitamins including biotin, niacin, and pantothenic acid also participate in modulation of various epigenome. Further, vitamin C has shown to modulate both DNA methylation and histone modifications while few reports have also supported its role in miRNA-mediated pathways. Similarly, vitamin D also influences various epigenetic modifications of both DNA and histone by controlling the regulatory mechanisms. Despite the information that vitamins can modulate the epigenome, the detailed mechanisms of vitamin-mediated epigenetic regulations have not been explored fully and hence further detailed studies are required to decipher their role at epigenome level in both normal and disease pathogenesis. The current review summarizes the available literature on the role of vitamins as epigenetic modifier and highlights the key evidences for developing vitamins as potential epidrugs.
Collapse
Affiliation(s)
- Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suvasmita Rath
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Madison, WI, USA
| | - Varish Ahmad
- Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bushra Ateeq
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur (IIT K), Kanpur, India
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Banfai K, Ernszt D, Pap A, Bai P, Garai K, Belharazem D, Pongracz JE, Kvell K. "Beige" Cross Talk Between the Immune System and Metabolism. Front Endocrinol (Lausanne) 2019; 10:369. [PMID: 31275241 PMCID: PMC6591453 DOI: 10.3389/fendo.2019.00369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/24/2019] [Indexed: 12/25/2022] Open
Abstract
With thymic senescence the epithelial network shrinks to be replaced by adipose tissue. Transcription factor TBX-1 controls thymus organogenesis, however, the same TBX-1 has also been reported to orchestrate beige adipose tissue development. Given these different roles of TBX-1, we have assessed if thymic TBX-1 expression persists and demonstrates this dualism during adulthood. We have also checked whether thymic adipose involution could yield beige adipose tissue. We have used adult mouse and human thymus tissue from various ages to evaluate the kinetics of TBX-1 expression, as well as mouse (TEP1) and human (1889c) thymic epithelial cells (TECs) for our studies. Electron micrographs show multi-locular lipid deposits typical of beige adipose cells. Histology staining shows the accumulation of neutral lipid deposits. qPCR measurements show persistent and/or elevating levels of beige-specific and beige-indicative markers (TBX-1, EAR-2, UCP-1, PPAR-gamma). We have performed miRNome profiling using qPCR-based QuantStudio platform and amplification-free NanoString platform. We have observed characteristic alterations, including increased miR21 level (promoting adipose tissue development) and decreased miR34a level (bias toward beige adipose tissue differentiation). Finally, using the Seahorse metabolic platform we have recorded a metabolic profile (OCR/ECAR ratio) indicative of beige adipose tissue. In summary, our results support that thymic adipose tissue emerging with senescence is bona fide beige adipose tissue. Our data show how the borders blur between a key immune tissue (the thymus) and a key metabolic tissue (beige adipose tissue) with senescence. Our work contributes to the understanding of cross talk between the immune system and metabolism.
Collapse
Affiliation(s)
- Krisztina Banfai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - David Ernszt
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
- Department of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Bai
- Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
- MTA-DE Lendulet Laboratory of Cellular Metabolism, Debrecen, Hungary
- Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Kitti Garai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Djeda Belharazem
- Department of Pathology, University Hospital of Mannheim, Mannheim, Germany
| | - Judit E. Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
- *Correspondence: Krisztian Kvell
| |
Collapse
|