1
|
Jeevarathinam G, Ramniwas S, Singh P, Rustagi S, Mohammed Basheeruddin Asdaq S, Pandiselvam R. Macromolecular, thermal, and nonthermal technologies for reduction of glycemic index in food-A review. Food Chem 2024; 445:138742. [PMID: 38364499 DOI: 10.1016/j.foodchem.2024.138742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Consumers rely on product labels to make healthy choices, especially with regard to the glycemic index (GI) and glycemic load (GL), which identify foods that stabilize blood sugar. Employing both thermal and nonthermal processing techniques can potentially reduce the GI, contributing to improved blood sugar regulation and overall metabolic health. This study concentrates on the most current advances in GI-reduction food processing technologies. Food structure combines fiber, healthy fats, and proteins to slow digestion, reducing GI. The influence of thermal approaches on the physical and chemical modification of starch led to decreased GI. The duration of heating and the availability of moisture also determine the degree of hydrolysis of starch and the glycemic effects on food. At a lower temperature, the parboiling revealed less gelatinization and increased moisture. The internal temperature of the product is raised during thermal and nonthermal treatment, speeds up retrogradation, and reduces the rate of starch breakdown.
Collapse
Affiliation(s)
- G Jeevarathinam
- Department of Food Technology, Hindusthan College of Engineering and Technology, Coimbatore 641 032, Tamil Nadu, India
| | - Seema Ramniwas
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering, GLA University Mathura, Uttar Pradesh 281406, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod-671 124, Kerala, India.
| |
Collapse
|
2
|
Evaluation of The Antioxidant Capacity of Food Products: Methods, Applications and Limitations. Processes (Basel) 2022. [DOI: 10.3390/pr10102031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Assays of total antioxidant capacity (TAC) are popular in the analysis of food products. This review presents the most popular assays of TAC and their limitations, databases of TAC of food products, their application in clinical studies, and the effect of processing on the TAC of food. The importance of sample preparation for TAC assays and striking effects of digestion in the gastrointestinal tract on the TAC of food are discussed. Critical opinions on the validity of food TAC assays are considered. It is concluded that TAC methods can be useful as screening assays for food quality control and as low-cost, high-throughput tools used to discover potential antioxidant sources and follow changes in the content of antioxidants during food processing. However, effects revealed by TAC assays should be followed and explained using more specific methods.
Collapse
|
3
|
Effects of Pretreatment on the Volatile Composition, Amino Acid, and Fatty Acid Content of Oat Bran. Foods 2022; 11:foods11193070. [PMID: 36230147 PMCID: PMC9562890 DOI: 10.3390/foods11193070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Pretreatment improves the edible quality of oat bran and prolongs the shelf life, whereas the effect of pretreatments (i.e., steaming(S-OB), microwaving(M-OB), and hot-air drying(HA-OB)) on the flavor characteristics of oat bran is unknown. This study identified volatile composition using HS-SPME/GC−MS and an electronic nose of oat bran. The amino acid compositions were determined by a High-Speed automatic amino acid analyzer and the fatty acids were determined by gas chromatography. The results showed that steaming and microwaving pretreatments enhanced the nutty notes of oat bran. Sixty-four volatile compounds in four oat brans were identified. OB exhibited higher aroma-active compounds, followed by S-OB, and M-OB, and the HA-OB had the lowest aroma-active compounds. Hexanal, nonanal, (E)-2-octenal,1-octen-3-ol, 2-ethylhexan-1-ol, and 2-pentylfuran were the key volatile compositions in oat bran. The aldehyde content decreased and the esters and ketones increased in steamed oat bran. Microwaving and hot air drying increased the aldehyde content and decreased the ester and alcohol content. Steamed oat bran had the lowest levels of total amino acids (33.54 g/100 g) and bitter taste amino acids (5.66 g/100 g). However, steaming caused a significant reduction in saturated fatty acid content (18.56%) and an increase in unsaturated fatty acid content (79.60%) of oat bran (p < 0.05). Hot air drying did not result in an improvement in aroma. The results indicated that steaming was an effective drying method to improve the flavor quality of oat bran.
Collapse
|
4
|
Rostamabadi H, Karaca AC, Deng L, Colussi R, Narita IMP, Kaur K, Aaliya B, Sunooj KV, Falsafi SR. Oat starch - How physical and chemical modifications affect the physicochemical attributes and digestibility? Carbohydr Polym 2022; 296:119931. [DOI: 10.1016/j.carbpol.2022.119931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/02/2022]
|
5
|
Tang Y, Li S, Yan J, Peng Y, Weng W, Yao X, Gao A, Cheng J, Ruan J, Xu B. Bioactive Components and Health Functions of Oat. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2029477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yong Tang
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Shijuan Li
- College of Plant Protection, Gansu Agricultural University, Lanzhou, P. R. China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing in Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu, P. R. China
| | - Yan Peng
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Anjing Gao
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guizhou, P. R. China
| | - Bingliang Xu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, P. R. China
| |
Collapse
|
6
|
The confrontation of consumer beliefs about the impact of microwave-processing on food and human health with existing research. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Bai X, Zhang M, Zhang Y, Zhang J, Wang C, Zhang Y. Effect of steam, microwave, and hot‐air drying on antioxidant capacity and in vitro digestion properties of polyphenols in oat bran. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Bai
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Meili Zhang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Yuanyuan Zhang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Jing Zhang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Chen Wang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| | - Yakun Zhang
- College of Food Science and Engineering Inner Mongolia Agricultural University Hohhot China
| |
Collapse
|
8
|
Zhang K, Dong R, Hu X, Ren C, Li Y. Oat-Based Foods: Chemical Constituents, Glycemic Index, and the Effect of Processing. Foods 2021; 10:1304. [PMID: 34200160 PMCID: PMC8229445 DOI: 10.3390/foods10061304] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
The desire for foods with lower glycemic indices has led to the exploration of functional ingredients and novel food processing techniques. The glycemic index (GI) is a well-recognized tool to assess the capacity of foods to raise blood glucose levels. Among cereal crops, oats have shown the greatest promise for mitigating glycemic response. This review evaluated decades of research on the effects of oat components on the GI level of oat-based foods with specific emphasis on oat starch, β-glucans, proteins, and phenolics. The effects of commonly used processing techniques in oats on GI level, including heating, cooling, and germination were also discussed. In addition, the GI of oat-based foods in various physical formats such as whole grain, flakes, and flour was systematically summarized. The aim of this review was to synthesize knowledge of the field and to provide a deeper understanding of how the chemical composition and processing of oats affect GI, thereby further benefiting the development of low-GI oat foods.
Collapse
Affiliation(s)
- Kailong Zhang
- Department of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi’an 710119, China; (K.Z.); (R.D.)
| | - Rui Dong
- Department of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi’an 710119, China; (K.Z.); (R.D.)
| | - Xinzhong Hu
- Department of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi’an 710119, China; (K.Z.); (R.D.)
| | - Changzhong Ren
- Baicheng Academy of Agricultural Sciences, Baicheng 137000, China;
| | - Yuwei Li
- Guilin Seamild Food Co., Ltd., Guilin 541000, China;
| |
Collapse
|
9
|
|
10
|
Abstract
Heterocyclic aromatic amines, acrylamide, 5-hydroxymethylfurfural, furan, polycyclic aromatic hydrocarbons, nitrosamines, acrolein, chloropropanols and chloroesters are generated toxicants formed in some foodstuffs, mainly starchy and protein-rich food during thermal treatment such as frying, roasting and baking. The formation of these chemical compounds is associated with development of aromas, colors and flavors. One of the challenges facing the food industry today is to minimize these toxicants without adversely affecting the positive attributes of thermal processing. To achieve this objective, it is essential to have a detailed understanding of the mechanism of formation of these toxicants in processed foods. All reviewed toxicants in that paper are classified as probable, possible or potential human carcinogens and have been proven to be carcinogenic in animal studies. The purpose of that review is to summarize some of the most frequent occurring heat-generated food toxicants during conventional heating, their metabolism and carcinogenicity. Moreover, conventional and microwave heating were also compared as two different heat treatment methods, especially how they change food chemical composition and which thermal food toxicants are formed during specific method.
Collapse
Affiliation(s)
- Agnieszka Koszucka
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland
| | - Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|