1
|
Tingelstad HC, Robitaille E, O'Leary TJ, Laroche MA, Larsen P, Reilly T. MSKI reduction strategies: evidence-based interventions to reduce musculoskeletal injuries in military service members. BMJ Mil Health 2024:e002747. [PMID: 39209759 DOI: 10.1136/military-2024-002747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Musculoskeletal injuries (MSKI) are one of the biggest challenges for military services globally, contributing to substantial financial burdens and lost training and working days. Effective evidence-based intervention strategies are essential to reduce MSKI incidence, and research has shown the positive effect of both nutritional interventions and physical training (PT) interventions on reducing MSKI incidence. Levels of vitamin D metabolites have been associated with MSKI and bone stress fracture risk, while calcium and vitamin D supplementation has been shown to reduce the incidence of stress fractures during military training. Protein and carbohydrate supplementation during arduous military training (high volume, high intensity) has also been shown to reduce MSKI risk and the number of limited/missed duty days. PT has played a key role in soldier development to meet the occupational demands of serving in the armed forces. Paradoxically, while PT is fundamental to enhancing soldier readiness, PT can also be a major contributor to MSKI; emerging evidence suggests that the nature of the PT being performed is a risk factor for MSKI. However, strategies like reducing training load and implementing PT programmes using evidence-based training principles can reduce MSKI incidence among military service members by 33-62%, and reduce the financial burdens for military services. This review provides a summary of effective MSKI reduction interventions and provides strategies to enhance the success and adoption of such interventions.
Collapse
Affiliation(s)
- Hans Christian Tingelstad
- Personnel Support Programs, Directorate of Programs, Human Performance Research and Development, Canadian Forces Morale and Welfare Services, Ottawa, Ontario, Canada
| | - E Robitaille
- 31 Canadian Forces Health Services Centre Detachment Meaford, Canadian Armed Forces Health Services Group, Ottawa, Ontario, Canada
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| | - T J O'Leary
- Army Health and Performance Research, Andover, UK
- Army Headquarters, Andover, UK
- Division of Surgery and Interventional Science, UCL, London, UK
| | - M-A Laroche
- Personnel Support Programs, Directorate of Programs, Human Performance Research and Development, Canadian Forces Morale and Welfare Services, Ottawa, Ontario, Canada
| | - P Larsen
- Centre for Medical and Exercise Physiology, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
- School of Allied Health, Exercise and Sport Science, Charles Sturt University, Albury, New South Wales, Australia
| | - T Reilly
- Personnel Support Programs, Directorate of Programs, Human Performance Research and Development, Canadian Forces Morale and Welfare Services, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Harlow J, Blodgett K, Stedman J, Pojednic R. Dietary Supplementation on Physical Performance and Recovery in Active-Duty Military Personnel: A Systematic Review of Randomized and Quasi-Experimental Controlled Trials. Nutrients 2024; 16:2746. [PMID: 39203882 PMCID: PMC11357047 DOI: 10.3390/nu16162746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Warfighters, often called tactical athletes, seek dietary supplementation to enhance training and recovery. Roughly 69% of active-duty US military personnel have reported consuming dietary supplements. The objective of this systematic review was to examine the impact of dietary supplements on muscle-related physical performance and recovery in active-duty military personnel. METHODS Randomized controlled trials and quasi-experimental controlled trials of oral dietary supplementation in active-duty military members were examined. A protocol was registered (PROSPERO CRD42023401472), and a systematic search of MEDLINE and CINAHL was undertaken. Inclusion criteria consisted of studies published between 1990-2023 with outcomes of muscle performance and recovery among active-duty military populations. The risk of bias was assessed with the McMaster University Guidelines and Critical Review Form for Quantitative Studies. RESULTS Sixteen studies were included. Four were conducted on protein or carbohydrate; four on beta-alanine alone, creatine alone, or in combination; two on mixed nutritional supplements; two on probiotics alone or in combination with beta hydroxy-beta methylbutyrate calcium; and four on phytonutrient extracts including oregano, beetroot juice, quercetin, and resveratrol. Ten examined outcomes related to physical performance, and six on outcomes of injury or recovery. Overall, protein, carbohydrate, beta-alanine, creatine, and beetroot juice modestly improved performance, while quercetin did not. Protein, carbohydrates, beta-alanine, probiotics, and oregano reduced markers of inflammation, while resveratrol did not. CONCLUSIONS Nutrition supplementation may have small benefits on muscle performance and recovery in warfighters. However, there are significant limitations in interpretation due to the largely inconsistent evidence of ingredients and comparable outcomes. Thus, there is inadequate practical evidence to suggest how dietary supplementation may affect field performance.
Collapse
Affiliation(s)
- Jacie Harlow
- Department of Health and Human Performance, Norwich University, Northfield, VT 05663, USA (K.B.)
| | - Kylie Blodgett
- Department of Health and Human Performance, Norwich University, Northfield, VT 05663, USA (K.B.)
| | - Jenna Stedman
- Department of Nutrition & Dietetics, Kansas University Medical Center, Kansas City, KS 66103, USA;
| | - Rachele Pojednic
- Department of Health and Human Performance, Norwich University, Northfield, VT 05663, USA (K.B.)
- Stanford Lifestyle Medicine, Stanford Prevention Research Center, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Reljic D, Zieseniss N, Herrmann HJ, Neurath MF, Zopf Y. Protein Supplementation Increases Adaptations to Low-Volume, Intra-Session Concurrent Training in Untrained Healthy Adults: A Double-Blind, Placebo-Controlled, Randomized Trial. Nutrients 2024; 16:2713. [PMID: 39203849 PMCID: PMC11357491 DOI: 10.3390/nu16162713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Combined endurance and resistance training, also known as "concurrent training", is a common practice in exercise routines. While concurrent training offers the benefit of targeting both cardiovascular and muscular fitness, it imposes greater physiological demands on the body compared to performing each modality in isolation. Increased protein consumption has been suggested to support adaptations to concurrent training. However, the impact of protein supplementation on responses to low-volume concurrent training is still unclear. Forty-four untrained, healthy individuals (27 ± 6 years) performed two sessions/week of low-volume high-intensity interval training on cycle ergometers followed by five machine-based resistance training exercises for 8 weeks. Volunteers randomly received (double-blinded) 40 g of whey-based protein (PRO group) or an isocaloric placebo (maltodextrin, PLA group) after each session. Maximal oxygen consumption (VO2max) and overall fitness scores (computed from volunteers' VO2max and one-repetition maximum scores, 1-RM) significantly increased in both groups. The PRO group showed significantly improved 1-RM in all major muscle groups, while the PLA group only improved 1-RM in chest and upper back muscles. Improvements in 1-RM in leg muscles were significantly greater in the PRO group versus the PLA group. In conclusion, our results indicate that adaptations to low-volume concurrent training, particularly leg muscle strength, can be improved with targeted post-exercise protein supplementation in untrained healthy individuals.
Collapse
Affiliation(s)
- Dejan Reljic
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Nilas Zieseniss
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hans Joachim Herrmann
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus Friedrich Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Yurdagül Zopf
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (N.Z.); (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
4
|
Elstad K, Malone C, Luedke J, Jaime SJ, Dobbs WC, Almonroeder T, Kerksick CM, Markert A, Jagim AR. The Effects of Protein and Carbohydrate Supplementation, with and without Creatine, on Occupational Performance in Firefighters. Nutrients 2023; 15:5134. [PMID: 38140393 PMCID: PMC10745745 DOI: 10.3390/nu15245134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The purpose of this study was to assess the effects of protein and carbohydrate supplementation, with and without creatine, on occupational performance in firefighters. METHODS Using a randomized, double-blind approach, thirty male firefighters (age: 34.4 ± 8.4 yrs., height: 1.82 ± 0.07 m; weight: 88.6 ± 12.5 kg; BF%: 17.2 ± 5.8%) were randomized to receive either (A.) 25 g of whey protein isolate + 25 g of carbohydrate powder (ProCarb group); or (B.) ProCarb + 5 g of creatine (Creatine group) in a double-blind fashion over a period of 21-26 days (depending on shift rotations) to evaluate the impact of supplementation on occupation-specific performance. At baseline and following supplementation, firefighters completed a battery of tests. These tests included an aerobic speed test on an air-braked cycle ergometer followed by the hose carry, body drag, stair climb, and Keiser sled hammer for time. RESULTS No significant differences in measures of performance were observed at baseline (p > 0.05). There was a significant main effect for time observed for rescue, stair climb, total time to completion, and time trial performance (p < 0.05). There was a significant group × time (p < 0.05) interaction for rescue and forcible entry. Independent sample t-tests indicated that the Creatine group experienced a greater reduction (from baseline) in completion time for the rescue (1.78 ± 0.57 s, 95% CI: 0.61, 2.95 s, p = 0.004) and forcible entry (2.66 ± 0.97 s, 95% CI: 0.68, 4.65 s, p = 0.01) tests compared to the ProCarb group. No significant group × time interactions were observed for the hose line advance, stair climb, total time to completion, and time trial performance (p > 0.05). CONCLUSIONS The addition of supplemental creatine to a protein and carbohydrate supplement to the diet of career firefighters throughout a three week period improves occupational performance in firefighters in specific areas of high-intensity, repetitive actions.
Collapse
Affiliation(s)
- Kaia Elstad
- Exercise & Sport Science Department, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA (W.C.D.)
| | - Conley Malone
- Medicine & Health Sciences, Des Moines University, Des Moines, IA 50312, USA
| | - Joel Luedke
- Sports Medicine Department, Mayo Clinic Health System, La Crosse, WI 54650, USA (C.M.K.)
| | - Salvador J. Jaime
- Exercise & Sport Science Department, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA (W.C.D.)
| | - Ward C. Dobbs
- Exercise & Sport Science Department, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA (W.C.D.)
| | - Thomas Almonroeder
- Department of Physical Therapy, Trine University, Angola, IN 46703, USA;
| | - Chad M. Kerksick
- Sports Medicine Department, Mayo Clinic Health System, La Crosse, WI 54650, USA (C.M.K.)
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, Lindenwood University, St. Charles, MO 63301, USA
| | - Adam Markert
- La Crosse Fire Department, City of La Crosse, La Crosse, WI 54601, USA;
| | - Andrew R. Jagim
- Exercise & Sport Science Department, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA (W.C.D.)
- Sports Medicine Department, Mayo Clinic Health System, La Crosse, WI 54650, USA (C.M.K.)
| |
Collapse
|
5
|
Chapman S, Roberts J, Roberts AJ, Ogden H, Izard R, Smith L, Chichger H, Struszczak L, Rawcliffe AJ. Pre-sleep protein supplementation does not improve performance, body composition, and recovery in British Army recruits (part 1). Front Nutr 2023; 10:1262044. [PMID: 38144428 PMCID: PMC10748761 DOI: 10.3389/fnut.2023.1262044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Dietary protein is crucial for optimising physical training adaptations such as muscular strength and mass, which are key aims for athletic populations, including British Army recruits. New recruits fail to meet the recommended protein intake during basic training (BT), with negligible amounts consumed in the evening. This study assessed the influence of a daily bolus of protein prior to sleep on performance adaptations, body composition and recovery in British Army recruits. 99 men and 23 women [mean ± standard deviation (SD): age: 21.3 ± 3.5 years, height: 174.8 ± 8.4 cm, body mass 75.4 ± 12.2 kg] were randomised into a dietary control (CON), carbohydrate placebo (PLA), moderate (20 g) protein (MOD) or high (60 g) protein (HIGH) supplementation group. Supplements were isocaloric and were consumed on weekday evenings between 2000 and 2100 for 12 weeks during BT. Performance tests (mid-thigh pull, medicine ball throw, 2 km run time, maximal push-up, and maximal vertical jump) and body composition were assessed at the start and end of BT. Dietary intake, energy expenditure, salivary hormones, urinary nitrogen balance, perceived muscle soreness, rating of perceived exertion, mood, and fatigue were assessed at the start, middle and end of BT. Protein supplementation increased protein intake in HIGH (2.16 ± 0.50 g⸱kg-1⸱day-1) and MOD (1.71 ± 0.48 g⸱kg-1⸱day-1) compared to CON (1.17 ± 0.24 g⸱kg-1⸱day-1) and PLA (1.31 ± 0.29 g⸱kg-1⸱day-1; p < 0.001). Despite this, there was no impact of supplementation on mid-thigh pull performance (CON = 7 ± 19%, PLA = 7 ± 19%, MOD = 0 ± 16%, and HIGH = 4 ± 14%; p = 0.554) or any other performance measures (p > 0.05). Fat-free mass changes were also similar between groups (CON = 4 ± 3%, PLA = 4 ± 4%, MOD = 3 ± 3%, HIGH = 5 ± 4%, p = 0.959). There was no impact of protein supplementation on any other body composition or recovery measure. We conclude no benefits of pre-bed protein supplementation to improve performance, body composition and recovery during BT. It is possible the training stimulus was great enough, limiting the impact of protein supplementation. However, the high degree of inter-participant variability suggests an individualised use of protein supplementation should be explored, particularly in those who consume sub-optimal (<1.6 g⸱kg-1⸱day-1) habitual amounts of protein. Clinical trial registration: The study was registered with ClinicalTrials.gov, U.S. national institutes (identifier: NCT05998590).
Collapse
Affiliation(s)
- Shaun Chapman
- Army Recruit Health and Performance Research, HQ Army Recruiting and Initial Training Command, Medical Branch, UK Ministry of Defence, Upavon, United Kingdom
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Justin Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Andrew J. Roberts
- Army Recruit Health and Performance Research, HQ Army Recruiting and Initial Training Command, Medical Branch, UK Ministry of Defence, Upavon, United Kingdom
| | - Henry Ogden
- Army Recruit Health and Performance Research, HQ Army Recruiting and Initial Training Command, Medical Branch, UK Ministry of Defence, Upavon, United Kingdom
| | - Rachel Izard
- Defence Science and Technology, UK Ministry of Defence, Salisbury, United Kingdom
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, United Kingdom
| | - Havovi Chichger
- Biomedical Science Research Group, School of Life Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Lauren Struszczak
- Public Health and Sports Sciences, University of Exeter, Exeter, United Kingdom
| | - Alex J. Rawcliffe
- Army Recruit Health and Performance Research, HQ Army Recruiting and Initial Training Command, Medical Branch, UK Ministry of Defence, Upavon, United Kingdom
- Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
6
|
Anderson RE, Casperson SL, Kho H, Flack KD. The Role of Dietary Protein in Body Weight Regulation among Active-Duty Military Personnel during Energy Deficit: A Systematic Review. Nutrients 2023; 15:3948. [PMID: 37764730 PMCID: PMC10536394 DOI: 10.3390/nu15183948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Active-duty military personnel are subjected to sustained periods of energy deficit during combat and training, leaving them susceptible to detrimental reductions in body weight. The importance of adequate dietary protein intake during periods of intense physical training is well established, where previous research has primarily focused on muscle protein synthesis, muscle recovery, and physical performance. Research on how protein intake may influence body weight regulation in this population is lacking; therefore, the objective of this review was to evaluate the role of dietary protein in body weight regulation among active-duty military during an energy deficit. A literature search based on fixed inclusion and exclusion criteria was performed. English language peer-reviewed journal articles from inception to 3 June 2023 were selected for extraction and quality assessment. Eight studies were identified with outcomes described narratively. The study duration ranged from eight days to six months. Protein was directly provided to participants in all studies except for one. Three studies supplied additional protein via supplementation. The Downs and Black Checklist was used to assess study quality. Five studies were classified as good, two as fair, and one as excellent. All studies reported mean weight loss following energy deficit: the most severe was 4.0 kg. Protein dose during energy deficit varied from 0.5 g/kg/day to 2.4 g/kg/day. Six studies reported mean reductions in fat mass, with the largest being 4.5 kg. Four studies reported mean reductions in fat-free mass, while two studies reported an increase. Results support the recommendation that greater than 0.8 g/kg/day is necessary to mitigate the impact of energy deficit on a decline in lean body mass, while intakes up to 1.6 g/kg/day may be preferred. However, exact recommendations cannot be inferred as the severity and duration of energy deficit varied across studies. Longer and larger investigations are needed to elucidate protein's role during energy deficit in active-duty military.
Collapse
Affiliation(s)
- Robert E. Anderson
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27517, USA
| | - Shanon L. Casperson
- Grand Forks Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Grand Forks, ND 58203, USA
| | - Hannah Kho
- Department of Dietetics and Human Nutrition, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40506, USA
| | - Kyle D. Flack
- Department of Dietetics and Human Nutrition, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
7
|
Effect of Whey Protein Supplementation on Weight and Body Composition Indicators: A Meta-Analysis of Randomized Clinical Trials. Clin Nutr ESPEN 2022; 50:74-83. [DOI: 10.1016/j.clnesp.2022.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/08/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022]
|
8
|
McAdam JS, Lyons KD, Beck DT, Haun CT, Romero MA, Mumford PW, Roberson PA, Young KC, Lohse KR, Roberts MD, Sefton JM. Whey Protein Supplementation Effects on Body Composition, Performance, and Blood Biomarkers During Army Initial Entry Training. Front Nutr 2022; 9:807928. [PMID: 35330708 PMCID: PMC8940516 DOI: 10.3389/fnut.2022.807928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/25/2022] [Indexed: 11/26/2022] Open
Abstract
This study assesses if a lower dose of whey protein can provide similar benefits to those shown in previous work supplementing Army Initial Entry Training (IET) Soldiers with two servings of whey protein (WP) per day. Eighty-one soldiers consumed one WP or a calorie matched carbohydrate (CHO) serving/day during IET (WP: n = 39, height = 173 ± 8 cm, body mass = 76.8 ± 12.8 kg, age = 21 ± 3 years; CHO: n = 42, 175 ± 8 cm, 77.8 ± 15.3 kg, 23 ± 4 years). Physical performance (push-ups, sit-ups, and a two-mile run) was assessed during weeks two and eight. All other measures (dietary intake, body composition, blood biomarkers) at weeks one and nine. There was a significant group difference for fat mass (p = 0.044) as WP lost 2.1 ± 2.9 kg and had a moderate effect size (Cohen's d: −0.24), whereas the CHO group lost 0.9 ± 2.5 kg and had only a small effect size (d: −0.1). There was no significant group-by-time interaction on fat-free mass (p = 0.069). WP gained 1.2 ± 2.4 (d: 0.1) and CHO gained 0.1 ± 3 (d: 0) kg of FFM on average. There was a significant group by week 1-fat free mass interaction (p = 0.003) indicating individuals with higher initial fat-free mass benefitted more from WP. There were no group differences for push-up (p = 0.514), sit-up (p = 0.429) or run (p = 0.313) performance. For all biomarkers there was a significant effect of time as testosterone (p < 0.01), testosterone to cortisol ratio (p = 0.39), and IGF-1 (p < 0.01) increased across training and cortisol (p = 0.04) and IL-6 (p < 0.01) decreased. There were no differences in groups across IET for any of the biomarkers. We conclude one WP serving is beneficial for FM and for FFM in soldiers with high baseline FFM but may not significantly alter biomarker response or physical performance of IET soldiers who have high relative dietary protein intakes.
Collapse
Affiliation(s)
- Jeremy S. McAdam
- School of Kinesiology, Warrior Research Center, Auburn University, Auburn, AL, United States
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
| | - Kaitlin D. Lyons
- School of Kinesiology, Warrior Research Center, Auburn University, Auburn, AL, United States
| | - Darren T. Beck
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, United States
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine (Auburn Campus), Auburn, AL, United States
| | - Cody T. Haun
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, United States
- Fitomics, LLC, Pelham, AL, United States
| | - Matthew A. Romero
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Petey W. Mumford
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Paul A. Roberson
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Kaelin C. Young
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, United States
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine (Auburn Campus), Auburn, AL, United States
| | - Keith R. Lohse
- Neurorehabilitation Informatics Lab, Department of Health, Kinesiology, and Recreation, University of Utah, Salt Lake City, UT, United States
| | - Michael D. Roberts
- Molecular and Applied Sciences Laboratory, School of Kinesiology, Auburn University, Auburn, AL, United States
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine (Auburn Campus), Auburn, AL, United States
| | - JoEllen M. Sefton
- School of Kinesiology, Warrior Research Center, Auburn University, Auburn, AL, United States
- *Correspondence: JoEllen M. Sefton
| |
Collapse
|
9
|
Sukkar SG, Traverso N, Furfaro AL, Tasso B, Marengo B, Domenicotti C, Pisciotta L, Pasta A, Marinari UM, Pronzato MA, Cottalasso D. Whey proteins inhibit food intake and tend to improve oxidative balance in obese zucker rats. Eat Weight Disord 2021; 26:2453-2461. [PMID: 33426629 DOI: 10.1007/s40519-020-01100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/19/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND/AIMS Whey proteins (WP), obtained from milk after casein precipitation, represent a heterogeneous group of proteins. WP are reported to inhibit food intake in diet-induced experimental obesity; WP have been proposed as adjuvant therapy in oxidative stress-correlated pathologies. This work evaluates the effects of WP in comparison with casein, as a source of alimentary proteins, on food intake, weight growth and some indexes of oxidative equilibrium in Zucker Rats, genetically prone to obesity. METHODS We monitored food intake and weight of Zucker Rats during the experiment, and some markers of oxidative equilibrium. RESULTS WP induced significant decrease of food intake in comparison to casein (WP 80.41 ± 1.069 ml/day; CAS: 88.95 ± 1.084 ml/day; p < 0.0005). Body weight growth was slightly reduced, and the difference was just significant (WP 128.2 ± 6.56 g/day; CAS 145.2 ± 3.29 g/day; p = 0.049), while plasma HNE level was significantly lower in WP than in CAS (WP 41.2 ± 6.3 vs CAS 69.61 ± 4.69 pmol/ml, p = 0.007). Mild amelioration of oxidative equilibrium was indicated by a slight increase of total glutathione both in the liver and in the blood and a significant decrease of plasma 4-hydroxynonenal in the group receiving WP. CONCLUSIONS The effect of WP on food intake and weight growth in Zucker Rats is particularly noteworthy since the nature of their predisposition to obesity is genetic; the possible parallel amelioration of the oxidative balance may constitute a further advantage of WP since oxidative stress is believed to be interwoven to obesity, metabolic syndrome and their complications.
Collapse
Affiliation(s)
- S G Sukkar
- Dietetics and Nutritional Unit, IRCCS Ospedale Policlinico San Martino Di Genova, Largo R. Benzi 2, 16132, Genoa, Italy.
| | - N Traverso
- DIMES, General Pathology Section, University of Genoa, Genoa, Italy
| | - A L Furfaro
- DIMES, General Pathology Section, University of Genoa, Genoa, Italy
| | - B Tasso
- DISCIFAR, University of Genoa, Genoa, Italy
| | - B Marengo
- DIMES, General Pathology Section, University of Genoa, Genoa, Italy
| | - C Domenicotti
- DIMES, General Pathology Section, University of Genoa, Genoa, Italy
| | - L Pisciotta
- Dietetics and Nutritional Unit, IRCCS Ospedale Policlinico San Martino Di Genova, Largo R. Benzi 2, 16132, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, DIMI, Genoa, Italy
| | - A Pasta
- Department of Internal Medicine and Medical Specialties, University of Genoa, DIMI, Genoa, Italy
| | - U M Marinari
- DIMES, General Pathology Section, University of Genoa, Genoa, Italy
| | - M A Pronzato
- DIMES, General Pathology Section, University of Genoa, Genoa, Italy
| | - D Cottalasso
- DIMES, General Pathology Section, University of Genoa, Genoa, Italy
| |
Collapse
|
10
|
Sexton CL, Smith MA, Smith KS, Osburn SC, Godwin JS, Ruple BA, Hendricks AM, Mobley CB, Goodlett MD, Frugé AD, Young KC, Roberts MD. Effects of Peanut Protein Supplementation on Resistance Training Adaptations in Younger Adults. Nutrients 2021; 13:nu13113981. [PMID: 34836236 PMCID: PMC8621247 DOI: 10.3390/nu13113981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
Protein supplementation is a commonly employed strategy to enhance resistance training adaptations. However, little research to date has examined if peanut protein supplementation is effective in this regard. Thus, we sought to determine if peanut protein supplementation (PP; 75 total g/d of powder providing 30 g/d protein, >9.2 g/d essential amino acids, ~315 kcal/d) affected resistance training adaptations in college-aged adults. Forty-seven college-aged adults (n = 34 females, n = 13 males) with minimal prior training experience were randomly assigned to a PP group (n = 18 females, n = 5 males) or a non-supplement group (CTL; n = 16 females, n = 8 males) (ClinicalTrials.gov trial registration NCT04707963; registered 13 January 2021). Body composition and strength variables were obtained prior to the intervention (PRE). Participants then completed 10 weeks of full-body resistance training (twice weekly) and PP participants consumed their supplement daily. POST measures were obtained 72 h following the last training bout and were identical to PRE testing measures. Muscle biopsies were also obtained at PRE, 24 h following the first exercise bout, and at POST. The first two biopsy time points were used to determine myofibrillar protein synthesis (MyoPS) rates in response to a naïve training bout with or without PP, and the PRE and POST biopsies were used to determine muscle fiber adaptations in females only. Dependent variables were analyzed in males and females separately using two-way (supplement × time) repeated measures ANOVAs, unless otherwise stated. The 24-h integrated MyoPS response to the first naïve training bout was similar between PP and CTL participants (dependent samples t-test p = 0.759 for females, p = 0.912 for males). For males, the only significant supplement × time interactions were for DXA-derived fat mass (interaction p = 0.034) and knee extensor peak torque (interaction p = 0.010); these variables significantly increased in the CTL group (p < 0.05), but not the PP group. For females, no significant supplement × time interactions existed, although interactions for whole body lean tissue mass (p = 0.088) and vastus lateralis thickness (p = 0.099) approached significance and magnitude increases in these characteristics favored the PP versus CTL group. In summary, this is the second study to determine the effects of PP supplementation on resistance training adaptations. While PP supplementation did not significantly enhance training adaptations, the aforementioned trends in females, the limited n-size in males, and this being the second PP supplementation study warrant more research to determine if different PP dosing strategies are more effective than the current approach.
Collapse
Affiliation(s)
- Casey L. Sexton
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.L.S.); (M.A.S.); (S.C.O.); (J.S.G.); (B.A.R.); (A.M.H.); (C.B.M.); (K.C.Y.)
| | - Morgan A. Smith
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.L.S.); (M.A.S.); (S.C.O.); (J.S.G.); (B.A.R.); (A.M.H.); (C.B.M.); (K.C.Y.)
| | - Kristen S. Smith
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (K.S.S.); (A.D.F.)
| | - Shelby C. Osburn
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.L.S.); (M.A.S.); (S.C.O.); (J.S.G.); (B.A.R.); (A.M.H.); (C.B.M.); (K.C.Y.)
| | - Joshua S. Godwin
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.L.S.); (M.A.S.); (S.C.O.); (J.S.G.); (B.A.R.); (A.M.H.); (C.B.M.); (K.C.Y.)
| | - Bradley A. Ruple
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.L.S.); (M.A.S.); (S.C.O.); (J.S.G.); (B.A.R.); (A.M.H.); (C.B.M.); (K.C.Y.)
| | - Alex M. Hendricks
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.L.S.); (M.A.S.); (S.C.O.); (J.S.G.); (B.A.R.); (A.M.H.); (C.B.M.); (K.C.Y.)
| | - Christopher B. Mobley
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.L.S.); (M.A.S.); (S.C.O.); (J.S.G.); (B.A.R.); (A.M.H.); (C.B.M.); (K.C.Y.)
| | - Michael D. Goodlett
- Athletics Department, Auburn University, Auburn, AL 36849, USA;
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn, AL 36832, USA
| | - Andrew D. Frugé
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA; (K.S.S.); (A.D.F.)
| | - Kaelin C. Young
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.L.S.); (M.A.S.); (S.C.O.); (J.S.G.); (B.A.R.); (A.M.H.); (C.B.M.); (K.C.Y.)
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn, AL 36832, USA
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (C.L.S.); (M.A.S.); (S.C.O.); (J.S.G.); (B.A.R.); (A.M.H.); (C.B.M.); (K.C.Y.)
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn, AL 36832, USA
- Correspondence: ; Tel.: +1-334-844-1925; Fax: +1-334-944-1467
| |
Collapse
|
11
|
Chapman S, Chung HC, Rawcliffe AJ, Izard R, Smith L, Roberts JD. Does Protein Supplementation Support Adaptations to Arduous Concurrent Exercise Training? A Systematic Review and Meta-Analysis with Military Based Applications. Nutrients 2021; 13:1416. [PMID: 33922458 PMCID: PMC8145048 DOI: 10.3390/nu13051416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
We evaluated the impact of protein supplementation on adaptations to arduous concurrent training in healthy adults with potential applications to individuals undergoing military training. Peer-reviewed papers published in English meeting the population, intervention, comparison and outcome criteria were included. Database searches were completed in PubMed, Web of science and SPORTDiscus. Study quality was evaluated using the COnsensus based standards for the selection of health status measurement instruments checklist. Of 11 studies included, nine focused on performance, six on body composition and four on muscle recovery. Cohen's d effect sizes showed that protein supplementation improved performance outcomes in response to concurrent training (ES = 0.89, 95% CI = 0.08-1.70). When analysed separately, improvements in muscle strength (SMD = +4.92 kg, 95% CI = -2.70-12.54 kg) were found, but not in aerobic endurance. Gains in fat-free mass (SMD = +0.75 kg, 95% CI = 0.44-1.06 kg) and reductions in fat-mass (SMD = -0.99, 95% CI = -1.43-0.23 kg) were greater with protein supplementation. Most studies did not report protein turnover, nitrogen balance and/or total daily protein intake. Therefore, further research is warranted. However, our findings infer that protein supplementation may support lean-mass accretion and strength gains during arduous concurrent training in physical active populations, including military recruits.
Collapse
Affiliation(s)
- Shaun Chapman
- HQ Army Recruiting and Initial Training Command, UK Ministry of Defence, Upavon, Wiltshire SN9 6BE, UK;
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK; (H.C.C.); (L.S.); (J.D.R.)
| | - Henry C. Chung
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK; (H.C.C.); (L.S.); (J.D.R.)
| | - Alex J. Rawcliffe
- HQ Army Recruiting and Initial Training Command, UK Ministry of Defence, Upavon, Wiltshire SN9 6BE, UK;
| | - Rachel Izard
- Defence Science and Technology, Porton Down, UK Ministry of Defence, Salisbury, Wiltshire SP4 0JQ, UK;
| | - Lee Smith
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK; (H.C.C.); (L.S.); (J.D.R.)
| | - Justin D. Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK; (H.C.C.); (L.S.); (J.D.R.)
| |
Collapse
|
12
|
The Influence of Training on New Army Recruits’ Energy and Macronutrient Intakes and Performance: A Systematic Literature Review. J Acad Nutr Diet 2020; 120:1687-1705. [DOI: 10.1016/j.jand.2020.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022]
|
13
|
Markers of Bone Health and Impact of Whey Protein Supplementation in Army Initial Entry Training Soldiers: A Double-Blind Placebo-Controlled Study. Nutrients 2020; 12:nu12082225. [PMID: 32722609 PMCID: PMC7468883 DOI: 10.3390/nu12082225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
Training civilians to be soldiers is a challenging task often resulting in musculoskeletal injuries, especially bone stress injuries. This study evaluated bone health biomarkers (P1NP/CTX) and whey protein or carbohydrate supplementations before and after Army initial entry training (IET). Ninety male IET soldiers participated in this placebo-controlled, double-blind study assessing carbohydrate and whey protein supplementations. Age and fat mass predicted bone formation when controlling for ethnicity, explaining 44% (p < 0.01) of bone formation variations. Age was the only significant predictor of bone resorption (p = 0.02) when controlling for run, fat, and ethnicity, and these factors together explained 32% of the variance in bone resorption during week one (p < 0.01). Vitamin D increased across training (p < 0.01). There was no group by time interaction for supplementation and bone formation (p = 0.75), resorption (p = 0.73), Vitamin D (p = 0.36), or calcium (p = 0.64), indicating no influence of a supplementation on bone biomarkers across training. Age, fitness, fat mass, and ethnicity were important predictors of bone metabolism. The bone resorption/formation ratio suggests IET soldiers are at risk of stress injuries. Male IET soldiers are mildly to moderately deficient in vitamin D and slightly deficient in calcium throughout training. Whey protein or carbohydrate supplementations did not affect the markers of bone metabolism.
Collapse
|
14
|
Dietary Intake and Nitrogen Balance in British Army Infantry Recruits Undergoing Basic Training. Nutrients 2020; 12:nu12072125. [PMID: 32709021 PMCID: PMC7400853 DOI: 10.3390/nu12072125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
We assessed dietary intake and nitrogen balance during 14 weeks of Basic Training (BT) in British Army Infantry recruits. Nineteen men (mean ± SD: age 19.9 ± 2.6 years, height: 175.7 ± 6.5 cm, body mass 80.3 ± 10.1 kg) at the Infantry Training Centre, Catterick (ITC(C)) volunteered. Nutrient intakes and 24-h urinary nitrogen balance were assessed in weeks 2, 6 and 11 of BT. Nutrient intake was assessed using researcher-led weighed food records and food diaries, and Nutritics professional dietary software. Data were compared between weeks using a repeated-measures analysis of variance (ANOVA) with statistical significance set at p ≤ 0.05. There was a significant difference in protein intake (g) between weeks 2 and 11 of BT (115 ± 18 vs. 91 ± 20 g, p = 0.02, ES = 1.26). There was no significant difference in mean absolute daily energy (p = 0.44), fat (p = 0.79) or carbohydrate (CHO) intake (p = 0.06) between weeks. Nitrogen balance was maintained in weeks 2, 6 and 11, but declined throughout BT (2: 4.6 ± 4.1 g, 6: 1.6 ± 4.5 g, 11: -0.2 ± 5.5 g, p = 0.07). A protein intake of 1.5 g·kg-1·d-1 may be sufficient in the early stages of BT, but higher intakes may be individually needed later on in BT.
Collapse
|
15
|
Collins RA, Baker B, Coyle DH, Rollo ME, Burrows TL. Dietary Assessment Methods in Military and Veteran Populations: A Scoping Review. Nutrients 2020; 12:E769. [PMID: 32183380 PMCID: PMC7146105 DOI: 10.3390/nu12030769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
Optimal dietary intake is important for the health and physical performance of military personnel. For military veterans, the complex nature of transition into civilian life and sub-optimal dietary intake is a leading contributor to the increased burden of disease. A scoping review was undertaken to determine what is known about the assessment and reporting of dietary intakes within both military and veteran populations. In addition, this review determines if studies reporting on the dietary intake of military personnel or veterans include comparisons with dietary guidelines. Six databases were searched to identify papers published from the database inception to April 2019. Observational and intervention studies were searched to identify if they assessed and reported whole dietary intake data, reported data exclusively for a military or veteran population, and included only healthy populations. A total of 89 studies were included. The majority of studies used one dietary assessment method (n = 76, 85%) with fewer using multiple methods (n = 13, 15%). The most frequent methodology used was food frequency questionnaires (FFQ) (n = 40, 45%) followed by 24-hour recalls (n = 8, 9%) and food records (n = 8, 9%). The main dietary outcomes reported were macronutrients: carbohydrate, protein, fat, and alcohol (n = 66, 74%) with total energy intake reported in n = 59 (66%). Fifty four (61%) studies reported a comparison with country-specific dietary guidelines and 14 (16%) reported a comparison with the country-specific military guidelines. In conclusion, dietary intake in military settings is most commonly assessed via FFQs and 24-hour recalls. Dietary intake reporting is mainly focused around intakes of energy and macronutrients. Most studies compare against dietary guidelines, however, comparison to specific military dietary guidelines is minimal.
Collapse
Affiliation(s)
- Rebecca A. Collins
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan 2308, Australia; (R.A.C.); (M.E.R.)
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan 2308, Australia
| | - Bradley Baker
- Food and Nutrition, Land Division, Defence Science and Technology Group, Scottsdale 7260, Australia;
| | - Daisy H. Coyle
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan 2308, Australia; (R.A.C.); (M.E.R.)
- The George Institute for Global Health, University of New South Wales, Sydney 2042, Australia
| | - Megan E. Rollo
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan 2308, Australia; (R.A.C.); (M.E.R.)
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan 2308, Australia
| | - Tracy L. Burrows
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan 2308, Australia; (R.A.C.); (M.E.R.)
- Priority Research Centre for Physical Activity and Nutrition, University of Newcastle, Callaghan 2308, Australia
| |
Collapse
|
16
|
Obradović J, Vukadinović Jurišić M, Rakonjac D. The effects of leucine and whey protein supplementation with eight weeks of resistance training on strength and body composition. J Sports Med Phys Fitness 2020; 60:864-869. [PMID: 32118385 DOI: 10.23736/s0022-4707.20.09742-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND In past few decades, supplementation has become very popular within professional and recreational athletes. Most interested among supplements are protein and amino acids. Therefore, the purpose of this study was to examine the effects of leucine supplementation in comparison to whey protein supplementation with placebo group on strength and body composition during 8 weeks of resistance training program. METHODS Thirty male college athletes (mean age±SD =23.92±1.54 years) participated in this investigation and were randomly assigned to one of three groups: whey protein (WP, N.=10), leucine (LEU, N.=10) or placebo (PLA, N.=10). The WP, LEU and PLA performed resistance training for 8 weeks. Strength (1RM bench press, squat, shoulder press) and maximum pull-ups and body composition has been assessed and data was analyzed with mixed-design analysis of variance (P≤0.01). RESULTS The WP group achieved significantly greater (P≤0.01) increases in 1RM bench press than the LEU and PLA groups (+16 kg for WP; + 7.5 kg for LEU and + 5 kg for PLA). The LEU group achieved significantly greater gains (P≤0.01) in fat free mass, muscle mass and significantly decreases (P≤0.01) in fat mass compared to WP and PLA groups. CONCLUSIONS Whey protein supplementation in male collegiate athletes during resistance training achieved greater increase in strength than leucine and placebo groups, and leucine group achieved significantly greater improvement in body composition than whey protein and placebo groups.
Collapse
Affiliation(s)
- Jelena Obradović
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | | | - Dušan Rakonjac
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia -
| |
Collapse
|
17
|
Cadegiani FA, Kater CE. Eating, Sleep, and Social Patterns as Independent Predictors of Clinical, Metabolic, and Biochemical Behaviors Among Elite Male Athletes: The EROS-PREDICTORS Study. Front Endocrinol (Lausanne) 2020; 11:414. [PMID: 32670198 PMCID: PMC7332731 DOI: 10.3389/fendo.2020.00414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 05/26/2020] [Indexed: 11/13/2022] Open
Abstract
Objectives: Physiological hormonal adaptions in athletes and pathological changes that occur in overtraining syndrome among athletes are unclear. The Endocrine and Metabolic Responses on Overtraining Syndrome (EROS) study evaluated 117 markers and unveiled novel hormonal and metabolic beneficial adaptive processes in athletes. The objective of the present study was to uncover which modifiable factors predict the behaviors of clinical and biochemical parameters and to understand their mechanisms and outcomes using the parameters evaluated in the EROS study. Methods: We used multivariate linear regression with 39 participants to analyze five independent variables-the modifiable parameters (caloric, carbohydrate, and protein intake, and sleep quality and duration of concurrent cognitive activity) on 37 dependent variables-that were elected among the parameters evaluated in the EROS study. Results: Carbohydrate intake predicted quick hormonal responses to stress and improved explosive responses during exercise. Protein intake predicted improved body composition and metabolism and caloric intake, regardless of the proportion of macronutrients, predicted muscle recovery, and alertness in the morning. Sleep quality predicted improved mood and excessive concurrent cognitive effort in athletes under intense training predicted impaired metabolism and libido. Conclusions: The results support the premise that eating, sleep, and social patterns modulate metabolic and hormonal function, clinical behaviors, and performance status of male athletes, and should be monitored continuously and actively to avoid dysfunctions.
Collapse
|
18
|
Chapman S, Roberts J, Smith L, Rawcliffe A, Izard R. Sex differences in dietary intake in British Army recruits undergoing phase one training. J Int Soc Sports Nutr 2019; 16:59. [PMID: 31823790 PMCID: PMC6905050 DOI: 10.1186/s12970-019-0327-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/26/2019] [Indexed: 01/15/2023] Open
Abstract
Background British Army Phase One training exposes men and women to challenging distances of 13.5 km·d− 1 vs. 11.8 km·d− 1 and energy expenditures of ~ 4000 kcal·d− 1 and ~ 3000 kcal·d− 1, respectively. As such, it is essential that adequate nutrition is provided to support training demands. However, to date, there is a paucity of data on habitual dietary intake of British Army recruits. The aims of this study were to: (i) compare habitual dietary intake in British Army recruits undergoing Phase One training to Military Dietary Reference Values (MDRVs), and (ii) establish if there was a relative sex difference in dietary intake between men and women. Method Researcher led weighed food records and food diaries were used to assess dietary intake in twenty-eight women (age 21.4 ± 3.0 yrs., height: 163.7 ± 5.0 cm, body mass 65.0 ± 6.7 kg), and seventeen men (age 20.4 ± 2.3 yrs., height: 178.0 ± 7.9 cm, body mass 74.6 ± 8.1 kg) at the Army Training Centre, Pirbright for 8-days in week ten of training. Macro and micronutrient content were estimated using dietary analysis software (Nutritics, Dublin) and assessed via an independent sample t-test to establish if there was a sex difference in daily energy, macro or micronutrient intakes. Results Estimated daily energy intake was less than the MDRV for both men and women, with men consuming a greater amount of energy compared with women (2846 ± 573 vs. 2207 ± 585 kcal·day− 1, p < 0.001). Both sexes under consumed carbohydrate (CHO) when data was expressed relative to body mass with men consuming a greater amount than women (4.8 ± 1.3 vs. 3.8 ± 1.4 g·kg− 1·day− 1, p = 0.025, ES = 0.74). Both sexes also failed to meet MDRVs for protein intake with men consuming more than women (1.5 ± 0.3 vs. 1.3 ± 0.3 g·kg− 1·day− 1, p > 0.030, ES = 0.67). There were no differences in dietary fat intake between men and women (1.5 ± 0.2 vs. 1.5 ± 0.5 g·kg− 1·day− 1, p = 0.483, ES = 0.00). Conclusions Daily EI in men and women in Phase One training does not meet MDRVs. Interventions to increase macronutrient intakes should be considered along with research investigating the potential benefits for increasing different macronutrient intakes on training adaptations.
Collapse
Affiliation(s)
- Shaun Chapman
- HQ Army Recruiting and Initial Training Command, UK Ministry of Defence, Upavon, UK. .,Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, England.
| | - Justin Roberts
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, England
| | - Lee Smith
- Cambridge Centre for Sport and Exercise Sciences, School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, England
| | - Alex Rawcliffe
- HQ Army Recruiting and Initial Training Command, UK Ministry of Defence, Upavon, UK
| | - Rachel Izard
- HQ Army Recruiting and Initial Training Command, UK Ministry of Defence, Upavon, UK
| |
Collapse
|