1
|
Deehan EC, Al Antwan S, Witwer RS, Guerra P, John T, Monheit L. Perspective: Revisiting the Concepts of Prebiotic and Prebiotic Effect in Light of Scientific and Regulatory Progress - A Consensus Paper from the Global Prebiotic Association (GPA). Adv Nutr 2024:100329. [PMID: 39481540 DOI: 10.1016/j.advnut.2024.100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
The term prebiotic has been used for almost three decades and has undergone numerous updates over the years. The scientific literature reveals that despite continuous efforts to establish a globally unified definition to guide jurisdictional regulations and product innovations, ambiguity continues to surround the terms prebiotic and prebiotic effect, leading to products that lack in full regulatory adherence being marketed worldwide. Thus, to reflect the current state of scientific research and knowledge and for the continuous advancement of the category, an update to the current prebiotic definition is warranted. This update includes removing the term selectivity, considering additional locations of action besides the gut, highlighting prebiotic performance benefits such as cognitive and athletic, and providing a clear standalone definition for prebiotic effect. The Global Prebiotic Association (GPA) is a leading information and industry hub committed to raising awareness about prebiotics, their emerging and well-established health benefits, and prebiotic product integrity and efficacy. In this position paper, GPA builds on previous prebiotic definitions to propose the following expanded definition for prebiotic: "a compound or ingredient that is utilized by the microbiota producing a health or performance benefit." In addition to prebiotic, GPA also defines prebiotic effect as: "a health or performance benefit that arises from alteration of the composition and/or activity of the microbiota, as a direct or indirect result of the utilization of a specific and well-defined compound or ingredient by microorganisms." With these two definitions, GPA aims to paint a clearer picture for the term prebiotic, and by incorporating an industry point of view, these updated definitions may be used alongside current scientific and regulatory perspectives to move the category forward. STATEMENT OF SIGNIFICANCE: The purpose of this paper is to revisit the concepts of prebiotic and prebiotic effect by providing a scientific-based industry perspective. The proposed definitions of prebiotic and prebiotic effect reflect the recent discoveries in metagenomics and prebiotic research after the International Scientific Association for Probiotics and Prebiotics' (ISAPP's) 2017 prebiotic definition and propose terminology changes that are timely and necessary. These changes aim to maintain the clarity and usefulness of the prebiotic definition to the scientific community, industry, healthcare providers, and consumers, while ensuring scientific validity, comprehensiveness, and justification of each part of the prebiotic definition, including abandoning the term selectivity and introducing concepts of performance benefits and prebiotic effect.
Collapse
Affiliation(s)
- Edward C Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, 68588, USA; Nebraska Food for Health Center, University of Nebraska, Lincoln, NE, 68588, USA; Scientific & Technical Committee, Global Prebiotic Association, 540 N. Dearborn St., Suite 10837, Chicago, IL, 60610, USA.
| | - Santa Al Antwan
- SGS Nutrasource, 120 Research Ln, Guelph, ON, N1G 0B4, Canada
| | - Rhonda S Witwer
- Scientific & Technical Committee, Global Prebiotic Association, 540 N. Dearborn St., Suite 10837, Chicago, IL, 60610, USA; Archer Daniels Midland Company, 4666 Faries Parkway, Decatur, IL, 62525, USA
| | - Paula Guerra
- Scientific & Technical Committee, Global Prebiotic Association, 540 N. Dearborn St., Suite 10837, Chicago, IL, 60610, USA; SGS Nutrasource, 120 Research Ln, Guelph, ON, N1G 0B4, Canada.
| | - Tania John
- Scientific & Technical Committee, Global Prebiotic Association, 540 N. Dearborn St., Suite 10837, Chicago, IL, 60610, USA; SGS Nutrasource, 120 Research Ln, Guelph, ON, N1G 0B4, Canada
| | - Len Monheit
- Scientific & Technical Committee, Global Prebiotic Association, 540 N. Dearborn St., Suite 10837, Chicago, IL, 60610, USA; Global Prebiotic Association / Industry Transparency Center, 540 N. Dearborn St., Suite 10837, Chicago, IL, 60610, USA
| |
Collapse
|
2
|
de Oliveira DP, Todorov SD, Fabi JP. Exploring the Prebiotic Potentials of Hydrolyzed Pectins: Mechanisms of Action and Gut Microbiota Modulation. Nutrients 2024; 16:3689. [PMID: 39519522 PMCID: PMC11547739 DOI: 10.3390/nu16213689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The intestinal microbiota is a complex ecosystem where the microbial community (including bacteria) can metabolize available substrates via metabolic pathways specific to each species, often related in symbiotic relations. As a consequence of using available substrates and microbial growth, specific beneficial metabolites can be produced. When this reflects the health benefits for the host, these substrates can be categorized as prebiotics. Given that most prebiotic candidates must have a low molecular weight to be further metabolized by the microbiota, the role in the preliminary biological pretreatment is crucial. To provide proper substrates to the intestinal microbiota, a strategy could be to decrease the complexity of polysaccharides and reduce the levels of polymerization to low molecular weight for the target molecules, driving better solubilization and the consequent metabolic use by intestinal bacteria. When high molecular weight pectin is degraded (partially depolymerized), its solubility increases, thereby improving its utilization by gut microbiota. With regards to application, prebiotics have well-documented advantages when applied as food additives, as they improve gut health and can enhance drug effects, all shown by in vitro, in vivo, and clinical trials. In this review, we aim to provide systematic evidence for the mechanisms of action and the modulation of gut microbiota by the pectin-derived oligosaccharides produced by decreasing overall molecular weight after physical and/or chemical treatments and to compare with other types of prebiotics.
Collapse
Affiliation(s)
- Débora Preceliano de Oliveira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil;
| | - Svetoslav Dimitrov Todorov
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil;
- ProBacLab, Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Food Research Center (FoRC), CEPIX-USP, University of São Paulo, São Paulo 05508-080, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo 05508-080, SP, Brazil;
| |
Collapse
|
3
|
Stribling & Ibrahim 2023: Commentary to the Editor. Clin Nutr ESPEN 2024; 61:449-450. [PMID: 38777468 DOI: 10.1016/j.clnesp.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/16/2024] [Indexed: 05/25/2024]
|
4
|
Iddrisu I, Monteagudo-Mera A, Poveda C, Shahzad M, Walton GE, Andrews SC. A review of the effect of iron supplementation on the gut microbiota of children in developing countries and the impact of prebiotics. Nutr Res Rev 2024:1-9. [PMID: 38586996 DOI: 10.1017/s0954422424000118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Iron is essential for many physiological functions of the body, and it is required for normal growth and development. Iron deficiency (ID) is the most common form of micronutrient malnutrition and is particularly prevalent in infants and young children in developing countries. Iron supplementation is considered the most effective strategy to combat the risk of ID and ID anaemia (IDA) in infants, although iron supplements cause a range of deleterious gut-related problems in malnourished children. The purpose of this review is to assess the available evidence on the effect of iron supplementation on the gut microbiota during childhood ID and to further assess whether prebiotics offer any benefits for iron supplementation. Prebiotics are well known to improve gut-microbial health in children, and recent reports indicate that prebiotics can mitigate the adverse gut-related effects of iron supplementation in children with ID and IDA. Thus, provision of prebiotics alongside iron supplements has the potential for an enhanced strategy for combatting ID and IDA among children in the developing world. However, further understanding is required before the benefit of such combined treatments of ID in nutritionally deprived children across populations can be fully confirmed. Such enhanced understanding is of high relevance in resource-poor countries where ID, poor sanitation and hygiene, alongside inadequate access to good drinking water and poor health systems, are serious public health concerns.
Collapse
Affiliation(s)
- Ishawu Iddrisu
- Rose Ward, Prospect Park Hospital, Berkshire Healthcare NHS Foundation Trust, Reading, RG30 4EJ, UK
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6EX, UK
| | - Andrea Monteagudo-Mera
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Muhammed Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
- Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Simon C Andrews
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6EX, UK
| |
Collapse
|
5
|
Indrio F, Dinleyici EC, Berni Canani R, Domellöf M, Francavilla R, Guarino A, Gutierrez Castrellon P, Orel R, Salvatore S, Van den Akker CHP, Weizman Z. Prebiotics in the management of pediatric gastrointestinal disorders: Position paper of the ESPGHAN special interest group on gut microbiota and modifications. J Pediatr Gastroenterol Nutr 2024; 78:728-742. [PMID: 38270255 DOI: 10.1002/jpn3.12134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
Prebiotics are substrates that are selectively utilized by host microorganisms conferring a health benefit. Compared to probiotics there are few studies with prebiotics in children. Most studies have been performed using infant formula supplemented with prebiotics, while add-on prebiotic supplementation as prevention or treatment of childhood gastrointestinal disorders has rarely been reported. The aim of this position paper was to summarize evidence and make recommendations for prebiotic supplementation in children with gastrointestinal diseases. Recommendations made are based on publications up to January 1, 2023. Within the scope of the European Society for Paediatric Gastroenterology Hepatology and Nutrition Special Interest Group on Gut Microbiota and Modifications, as in our previous biotic recommendations, at least two randomized controlled clinical trials were required for recommendation. There are some studies showing benefits of prebiotics on selected outcomes; however, we cannot give any positive recommendations for supplementing prebiotics in children with gastrointestinal disorders.
Collapse
Affiliation(s)
- Flavia Indrio
- Department of Experimental Medicine, Pediatric Section, University of Salento, Lecce, Italy
| | - Ener Cagri Dinleyici
- Department of Pediatrics, Eskisehir Osmangazi University Faculty of Medicine, Eskisehir, Turkiye
| | - Roberto Berni Canani
- Department of Translational Medical Sciences-Section of Paediatrics, University of Naples Federico II, Naples, Italy
| | - Magnus Domellöf
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine, Pediatric Section, Children's Hospital 'Giovanni XXIII', University of Bari Aldo Moro, Bari, Italy
| | - Alfredo Guarino
- Department of Translational Medical Sciences-Section of Paediatrics, University of Naples Federico II, Naples, Italy
| | - Pedro Gutierrez Castrellon
- Innovación y Desarrollo de Estrategias en Salud (IDEAS), Mexico City, Mexico
- International Scientific Council for Probiotics A.C., Mexico City, Mexico
| | - Rok Orel
- Department of Gastroenterology, Hepatology and Nutrition, University Medical Centre Ljubljana, University Children's Hospital, Ljubljana, Slovenia
| | - Silvia Salvatore
- Department of Pediatrics, "F. Del Ponte" Hospital, University of Insubria, Varese, Italy
| | - Chris H P Van den Akker
- Department of Pediatrics-Neonatology, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Zvi Weizman
- Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| |
Collapse
|
6
|
Yi W, Wang Q, Xue Y, Cao H, Zhuang R, Li D, Yan J, Yang J, Xia Y, Zhang F. Xylo-oligosaccharides improve functional constipation by targeted enrichment of Bifidobacterium. Food Sci Nutr 2024; 12:1119-1132. [PMID: 38370040 PMCID: PMC10867466 DOI: 10.1002/fsn3.3827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2024] Open
Abstract
Functional constipation (FC) has a negative impact on patients' quality of life. We hypothesized that dietary supplementation with xylo-oligosaccharides (XOS) or fructo-oligosaccharides (FOS) would improve constipation symptoms by influencing the gut microbiota. A randomized double-blind controlled trial was conducted in FC patients. Patients were randomly divided into 6 groups and given a dietary supplement containing XOS at doses of 3, 5, or 10 g/day, FOS at doses of 10 and 20 g/day, or placebo at 5 g/day for one month. We compared improvements in gastrointestinal function after the intervention using the Bristol Stool Form Scale (BSFS), Cleveland Clinic Constipation Score (CCCS), and Quality of Life Scale for Patients with Constipation (PAC-QoL). 16S rRNA sequencing was used to assess changes in the structure of the gut microbiota. Changes in individual bacteria had significant effects in reducing gastrointestinal symptoms during the intervention, even though the flora structure remained unchanged from baseline. Compared to FOS, XOS enriched Bifidobacterium at a lower dose, and patients receiving XOS supplementation showed significant improvements in constipation symptoms without side effects such as diarrhea and flatulence.
Collapse
Affiliation(s)
- Wanya Yi
- Department of NutritionAffiliated Hospital of Jiangnan UniversityWuxiChina
- Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Qinyue Wang
- Department of NutritionAffiliated Hospital of Jiangnan UniversityWuxiChina
- Functional Food Clinical Evaluation CenterAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Yuzheng Xue
- Department of GastroenterologyAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Hong Cao
- Department of NutritionAffiliated Hospital of Jiangnan UniversityWuxiChina
- Functional Food Clinical Evaluation CenterAffiliated Hospital of Jiangnan UniversityWuxiChina
- Department of EndocrinologyAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Ruijuan Zhuang
- Department of GeriatricsAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Dan Li
- Department of NutritionAffiliated Hospital of Jiangnan UniversityWuxiChina
- Functional Food Clinical Evaluation CenterAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Jiai Yan
- Department of NutritionAffiliated Hospital of Jiangnan UniversityWuxiChina
- Functional Food Clinical Evaluation CenterAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Ju Yang
- Department of NutritionAffiliated Hospital of Jiangnan UniversityWuxiChina
- Functional Food Clinical Evaluation CenterAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Yanping Xia
- Department of NutritionAffiliated Hospital of Jiangnan UniversityWuxiChina
- Functional Food Clinical Evaluation CenterAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Feng Zhang
- Department of NutritionAffiliated Hospital of Jiangnan UniversityWuxiChina
- Wuxi School of MedicineJiangnan UniversityWuxiChina
- Functional Food Clinical Evaluation CenterAffiliated Hospital of Jiangnan UniversityWuxiChina
- Yixing Institute of Food and Biotechnology Co., LtdYixing, WuxiChina
| |
Collapse
|
7
|
Salvatore S, Carlino M, Sestito S, Concolino D, Agosti M, Pensabene L. Nutraceuticals and Pain Disorders of the Gut-Brain Interaction in Infants and Children: A Narrative Review and Practical Insights. Nutrients 2024; 16:349. [PMID: 38337634 PMCID: PMC10856962 DOI: 10.3390/nu16030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Different nutraceuticals are often considered by parents of infants and children with abdominal pain and disorders of the gut-brain interaction. Herb extracts and natural compounds have long been used in traditional medicine, but clinical pediatric trials are very limited. This narrative review based on relevant studies identified through a search of the literature in Pubmed and Medline updated to October 2023 focused on the effect of nutraceuticals in infantile colic, functional abdominal pain, and irritable bowel syndrome in children and adolescents. Significant reductions in colic episodes and crying time were reported in two studies on fennel (seeds oil or tea), in three studies on different multiple herbal extracts (all including fennel), in one study on Mentha piperita, and in at least two double-blind randomized controlled studies on Lactobacillus reuteri DSM 17938 and Bifidobacterium lactis BB-12 (108 CFU/day for at least 21 days) in breast-fed infants. Compared to a placebo, in children with functional abdominal pain or irritable bowel syndrome, a significant reduction in pain was reported in two studies supplementing peppermint oil capsules or psyllium fibers, and in one study on corn fiber cookies, partial hydrolyzed guar gum, a specific multiple herbal extract (STW-5), or vitamin D supplementation. To date, there is moderate-certainty evidence with a weak grade of recommendation on Lactobacillus reuteri DSM 17938 (108 CFU/day) in reducing pain intensity in children with functional abdominal pain and for Lactobacillus rhamnosus GG (1-3 × 109 CFU twice daily) in reducing pain frequency and intensity in children with IBS. Further large and well-designed pediatric studies are needed to prove the efficacy and safety of different herbal extracts and prolonged use of studied products in infants and children with pain disorders of the gut-brain interaction.
Collapse
Affiliation(s)
- Silvia Salvatore
- Pediatric Department, Hospital “F. Del Ponte”, University of Insubria, 21100 Varese, Italy; (S.S.); (M.A.)
| | - Mariagrazia Carlino
- Pediatric Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.C.); (S.S.); (D.C.)
| | - Simona Sestito
- Pediatric Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.C.); (S.S.); (D.C.)
| | - Daniela Concolino
- Pediatric Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.C.); (S.S.); (D.C.)
| | - Massimo Agosti
- Pediatric Department, Hospital “F. Del Ponte”, University of Insubria, 21100 Varese, Italy; (S.S.); (M.A.)
| | - Licia Pensabene
- Pediatric Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.C.); (S.S.); (D.C.)
| |
Collapse
|
8
|
Correa ADC, Lopes MS, Perna RF, Silva EK. Fructan-type prebiotic dietary fibers: Clinical studies reporting health impacts and recent advances in their technological application in bakery, dairy, meat products and beverages. Carbohydr Polym 2024; 323:121396. [PMID: 37940290 DOI: 10.1016/j.carbpol.2023.121396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
Fructooligosaccharides (FOS) and inulin are the most used fructans in food manufacturing, including bakery, dairy, meat products and beverages. In this context, this review investigated the recent findings concerning health claims associated with a diet supplemented with fructans according to human trial results. Fructans have been applied in different food classes due to their proven benefits to human health. Human clinical trials have revealed several effects of fructans supplementation on health such as improved glycemic control, growth of beneficial gut bacteria, weight management, positive influence on immune function, and others. These dietary fibers have a wide range of compounds with different molecular sizes, implying a great variety of technological properties depending on the food application of interest. Inulin has been mainly applied as a fat substitute and prebiotic ingredient. In general, inulin reduces the energy content and improves the structure, viscosity, emulsion, and water retention parameters of food products. Meanwhile, FOS have been more successful when used as a sucrose substitute and prebiotic ingredient. However, overall, FOS and inulin are promising alternatives for the development of structured systems dedicated to increase the functionality of foods and beverages besides reducing fat in bakery, dairy, and meat products.
Collapse
Affiliation(s)
- Aline de Carvalho Correa
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Melina Savioli Lopes
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Rafael Firmani Perna
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas - Campus Poços de Caldas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Eric Keven Silva
- School of Food Engineering, University of Campinas, 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
9
|
Dey K, Sheth M, Anand S, Archana G, Raval S. Daily consumption of galactooligosaccharide gummies ameliorates constipation symptoms, gut dysbiosis, degree of depression and quality of life among sedentary university teaching staff: A double-blind randomized placebo control clinical trial. Indian J Gastroenterol 2023; 42:839-848. [PMID: 37751049 DOI: 10.1007/s12664-023-01435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/18/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Functional constipation affects approximately 10% of the Indian population and may reduce the quality of life (QOL) and increase gut dysbiosis. PURPOSE OF STUDY: The study aimed at assessing the impact of galactooligosaccharide (GOS) gummy supplementation on gut health, depression status and QOL of constipated subjects. METHODS A double-blind placebo control clinical trial (CTRI/2021/10/037474) was conducted on sedentary constipated adults (n = 35), who were split into an experimental group (n = 17) and a control group (n = 18), supplemented with 10 g GOS and sugar gummies, respectively, for 30 days. Relative abundance of fecal gut microbes, including Bifidobacterium, Lactobacillus, Clostridium and Bacteroides and phyla Bacteroidetes and Firmicutes using real-time polymerase chain reaction and short-chain fatty acids, was analyzed pre and post supplementation. Constipation profile was studied using Rome IV criteria and the Bristol stool chart. Depression status was studied using the Becks Depression Inventory. The QOL was assessed using patient assessment of constipation. RESULTS GOS gummy supplementation increased Bifidobacterium and Lactobacillus by 1230% and 322%, respectively, (p < 0.001; p < 0.01) with reduced Clostridium by 63%, phylum Firmicutes by 73% and Bacteroidetes by 85% (p < 0.01). The GOS-supplemented group demonstrated a higher F/B ratio (4.2) indicating improved gut health (p < 0.01) with reduced gut dysbiosis and constipation severity. GOS gummies enhanced acetic acid and butyric acid levels compared to the control group (p < 0.01; p < 0.001). Post supplementation, there was 40% reduction in depression (p < 0.01) and 22% improvement in QOL (p < 0.05). CONCLUSIONS This research validates the predicted beneficial benefits of short-term GOS consumption on constipation profile, gut microflora, depression status and quality of life of constipated subjects.
Collapse
Affiliation(s)
- Kankona Dey
- Department of Food and Nutrition, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India.
| | - Mini Sheth
- Department of Food and Nutrition, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Shankar Anand
- Syri Research Private Ltd., Vadodara, 391 740, India
| | - G Archana
- Department of Microbiology and Biotechnology Center, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Shivani Raval
- Department of Microbiology and Biotechnology Center, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| |
Collapse
|
10
|
Nagy DU, Sándor-Bajusz KA, Bódy B, Decsi T, Van Harsselaar J, Theis S, Lohner S. Effect of chicory-derived inulin-type fructans on abundance of Bifidobacterium and on bowel function: a systematic review with meta-analyses. Crit Rev Food Sci Nutr 2023; 63:12018-12035. [PMID: 35833477 DOI: 10.1080/10408398.2022.2098246] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Inulin-type fructans are considered to stimulate the growth of beneficial microorganisms, like Bifidobacterium in the gut and support health. However, both the fructan source and chemical structure may modify these effects. A systematic review was conducted to assess the effects of chicory-derived inulin-type fructans consumed either in specific foods or as dietary supplements on abundance of Bifidobacterium in the gut and on health-related outcomes. Three electronic databases and two clinical trial registries were systematically searched until January 2021. Two authors independently selected randomized controlled trials that investigated with a protocol of minimum seven days supplementation the effect of chicory-derived inulin-type fructans on Bifidobacterium abundance in any population. Meta-analyses with random-effects model were conducted on Bifidobacterium abundance and bowel function parameters. We evaluated risk of bias using Cochrane RoB tool. Chicory-derived inulin-type fructans at a dose of 3-20 g/day significantly increased Bifidobacterium abundance in participants with an age range from 0 to 83 years (standardized mean difference: 0.83, 95% CI: 0.58-1.08; p < 0.01; 50 studies; 2525 participants). Significant bifidogenic effects were observed in healthy individuals and in populations with health impairments, except gastrointestinal disorders. Significant beneficial effects on bowel function parameters were observed in healthy subjects. Chicory-derived inulin-type fructans may have significant bifidogenic effects and may beneficially influence bowel function in healthy individuals. PROSPERO registration number CRD42020162892.
Collapse
Affiliation(s)
- Dávid U Nagy
- Department of Paediatrics, Clinical Center of the University of Pécs, Medical School, University of Pécs, Pécs, Hungary
- Institute of Geobotany/Plant Ecology, Martin-Luther-University, Halle (Saale), Germany
| | - Kinga Amália Sándor-Bajusz
- Department of Paediatrics, Clinical Center of the University of Pécs, Medical School, University of Pécs, Pécs, Hungary
| | - Blanka Bódy
- Department of Paediatrics, Clinical Center of the University of Pécs, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Decsi
- Department of Paediatrics, Clinical Center of the University of Pécs, Medical School, University of Pécs, Pécs, Hungary
| | | | - Stephan Theis
- BENEO-Institute, c/o BENEO GmbH, Obrigheim, (Germany)
| | - Szimonetta Lohner
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
11
|
Salvatore S, Battigaglia MS, Murone E, Dozio E, Pensabene L, Agosti M. Dietary Fibers in Healthy Children and in Pediatric Gastrointestinal Disorders: A Practical Guide. Nutrients 2023; 15:2208. [PMID: 37432354 DOI: 10.3390/nu15092208] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 07/12/2023] Open
Abstract
Dietary fibers include non-digestible plant carbohydrates, lignin and resistant starch. Dietary fibers provide immune, cardiovascular, metabolic and intestinal beneficial effects in humans. Fibers naturally present in foods (fruits, vegetables, legumes, cereals) or used as supplements have different physical, chemical and functional profiles. This narrative review provides an update to the knowledge on the effects of dietary fibers in healthy subjects and in children with gastrointestinal disorders. Soluble fibers are digested by gut bacteria, producing short-chain fatty acids and energy for colonocytes, and may exert prebiotic effects that promote the growth of bifidobacteria and lactobacilli. Non-soluble fibers are bulking agents and may improve intestinal transit. The exact amount and characteristics of the fiber requirement in infants and children need to be further established. There are limited data evaluating fibers in children with gastrointestinal disorders. The low intake of fibers has been associated with constipation, but the intake of excessive fibers is not recommended as it may cause flatulence and abdominal discomfort. Certain fibers (particularly psyllium in irritable bowel syndrome) have shown beneficial effects in children with gastrointestinal disorders, but the limited and heterogenous data do not currently allow a specific recommendation.
Collapse
Affiliation(s)
- Silvia Salvatore
- Pediatric Department, Hospital "F. Del Ponte", Via F. Del Ponte 19, University of Insubria, 21100 Varese, Italy
| | - Maria Serena Battigaglia
- Department of Medical and Surgical Sciences, Pediatric Unit, University Magna Graecia of Catanzaro, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Elena Murone
- Department of Medical and Surgical Sciences, Pediatric Unit, University Magna Graecia of Catanzaro, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Eugenia Dozio
- Dipartimento di Medicina e Chirurgia, University of Insubria, 21100 Varese, Italy
| | - Licia Pensabene
- Department of Medical and Surgical Sciences, Pediatric Unit, University Magna Graecia of Catanzaro, Viale Europa, Germaneto, 88100 Catanzaro, Italy
| | - Massimo Agosti
- Pediatric Department, Hospital "F. Del Ponte", Via F. Del Ponte 19, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
12
|
Tran DL, Sintusek P. Functional constipation in children: What physicians should know. World J Gastroenterol 2023; 29:1261-1288. [PMID: 36925458 PMCID: PMC10011959 DOI: 10.3748/wjg.v29.i8.1261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 02/16/2023] [Indexed: 02/28/2023] Open
Abstract
Functional constipation (FC) is considered the most common functional gastrointestinal disorder in children with a pooled global prevalence of 14.4% (95% confidence interval: 11.2-17.6) when diagnosed based on the Rome IV criteria. Its pathophysiological mechanisms are thought be multifactorial and complicated, resulting in difficult management. Currently, the most effective medication, when used in parallel with toilet training, is osmotic laxatives. Children’s adherence to medication and parental concern regarding long-term laxative use are the main contributors to treatment failure. Recently, novel therapies with a high safety profile have been developed, such as probiotics, synbiotics, serotonin 5-hydroxytryptamine 4 receptor agonists, chloride channel activators, and herbal and transitional medicines; nonetheless, well-designed research to support the use of these therapies is needed. This review aims to focus on multiple aspects of FC in children, including global prevalence, pathogenesis, diagnostic criteria, tools, as well as conventional and novel treatment options, such as non-pharmacological management, including adequate fiber and fluid intake, physiotherapy, or neuromodulators. We also report that in very difficult cases, surgical intervention may be required.
Collapse
Affiliation(s)
- Duc Long Tran
- Thailand and Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Bangkok, Thailand
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 9000, Viet Nam
| | - Palittiya Sintusek
- Thai Pediatric Gastroenterology, Hepatology and Immunology Research Unit, Division of Gastroenterology, Department of Pediatrics, King Chulalongkorn Memorial Hospital and Thai Red Cross, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
West LN, Zakharova I, Huysentruyt K, Chong SY, Aw MM, Darma A, Hegar B, Ng RT, Hasosah M, Toro-Monjaraz E, Cetinkaya M, Chow CM, Muhardi L, Kudla U, Delsing DJM, Vandenplas Y. Reported Prevalence and Nutritional Management of Functional Constipation among Young Children from Healthcare Professionals in Eight Countries across Asia, Europe and Latin America. Nutrients 2022; 14:4067. [PMID: 36235719 PMCID: PMC9572126 DOI: 10.3390/nu14194067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The prevalence of functional constipation (FC) among children varies widely. A survey among healthcare professionals (HCPs) was conducted to better understand the HCP-reported prevalence and (nutritional) management of FC in children 12−36 months old. Methods: An anonymous e-survey using SurveyMonkey was disseminated via emails or WhatsApp among HCPs in eight countries/regions. Results: Data from 2199 respondents were analyzed. The majority of the respondents (65.9%) were from Russia, followed by other countries (Indonesia (11.0%), Malaysia (6.0%)), Mexico, KSA (5.1% (5.7%), Turkey (3.0%), Hong Kong (2.2%), Singapore (1.1%)). In total, 80% of the respondents (n = 1759) were pediatricians. The prevalence of FC in toddlers was reported at less than 5% by 43% of the respondents. Overall, 40% of the respondents reported using ROME IV criteria in > 70% of the cases to diagnose FC, while 11% never uses Rome IV. History of painful defecation and defecations < 2 x/week are the two most important criteria for diagnosing FC. In total, 33% of the respondents reported changing the standard formula to a specific nutritional solution, accompanied by parental reassurance. Conclusion: The most reported prevalence of FC in toddlers in this survey was less than five percent. ROME IV criteria are frequently used for establishing the diagnosis. Nutritional management is preferred over pharmacological treatment in managing FC.
Collapse
Affiliation(s)
| | - Irina Zakharova
- Department of Pediatrics, Russian Medical Academy Continuous Professional Education of the Ministry of Health of Russian Federation, Moscow 125993, Russia
| | - Koen Huysentruyt
- UZ Brussel, KidZ Health Castle, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Sze-Yee Chong
- Department of Pediatrics, Hospital Raja Permaisuri Bainun, Ipoh 30450, Malaysia
| | - Marion M. Aw
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Paediatrics, Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore 119228, Singapore
| | - Andy Darma
- Department of Pediatrics, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Badriul Hegar
- Department of Pediatrics, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Ruey Terng Ng
- Department of Pediatrics, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohammed Hasosah
- Department of Pediatric, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 14611, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Jeddah 11481, Saudi Arabia
| | - Erick Toro-Monjaraz
- Unit of Physiology and Gastrointestinal Motility, Gastroenterology and Nutrition Department, National Institute of Pediatrics, Mexico 04530, Mexico
| | - Merih Cetinkaya
- Department of Neonatology, Health Sciences University, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | | | | | - Urszula Kudla
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands
| | | | - Yvan Vandenplas
- UZ Brussel, KidZ Health Castle, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| |
Collapse
|
14
|
Effect of Fructooligosaccharides Supplementation on the Gut Microbiota in Human: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14163298. [PMID: 36014803 PMCID: PMC9413759 DOI: 10.3390/nu14163298] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Numerous studies have investigated the effects of the supplementation of fructooligosaccharides (FOS) on the number of bacteria in the gut that are good for health, but the results have been inconsistent. Additionally, due to its high fermentability, supplementation of FOS may be associated with adverse gastrointestinal symptoms such as bloating and flatulence. Therefore, we assessed the effects of FOS interventions on the composition of gut microbiota and gastrointestinal symptoms in a systematic review and meta-analysis. Design: All randomized controlled trials published before 10 July 2022 that investigated the effects of FOS supplementation on the human gut microbiota composition and gastrointestinal symptoms and met the selection criteria were included in this study. Using fixed or random-effects models, the means and standard deviations of the differences between the two groups before and after the intervention were combined into weighted mean differences using 95% confidence intervals (CIs). Results: Eight studies containing 213 FOS supplements and 175 controls remained in this meta-analysis. Bifidobacterium spp. counts significantly increased during FOS ingestion (0.579, 95% CI: 0.444−0.714) in comparison with that of the control group. Subgroup analysis showed greater variation in Bifidobacterium spp. in adults (0.861, 95% CI: 0.614−1.108) than in infants (0.458, 95% CI: 0.297−0.619). The increase in Bifidobacterium spp. counts were greater in the group with an intervention duration greater than 4 weeks (0.841, 95% CI: 0.436−1.247) than an intervention time less than or equal to four weeks (0.532, 95% CI: 0.370−0.694), and in the group with intervention doses > 5 g (1.116, 95% CI: 0.685−1.546) the counts were higher than those with doses ≤ 5 g (0.521, 95% CI: 0.379−0.663). No differences in effect were found between FOS intervention and comparators in regard to the abundance of other prespecified bacteria or adverse gastrointestinal symptoms. Conclusions: This is the first meta-analysis to explore the effect of FOS on gut microbiota and to evaluate the adverse effects of FOS intake on the gastrointestinal tract. FOS supplementation could increase the number of colonic Bifidobacterium spp. while higher dose (7.5−15 g/d) and longer duration (>4 weeks) showed more distinct effects and was well tolerated.
Collapse
|
15
|
Pediatric Aspects of Nutrition Interventions for Disorders of Gut-Brain Interaction. Am J Gastroenterol 2022; 117:995-1009. [PMID: 35416794 PMCID: PMC9169765 DOI: 10.14309/ajg.0000000000001779] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/09/2022] [Indexed: 12/11/2022]
Abstract
Dietary factors may play an important role in the generation of symptoms in children with disorders of gut-brain interaction (DGBIs). Although dietary modification may provide successful treatment, there is a relative paucity of controlled trials that have shown the effectiveness of dietary interventions. This study is a narrative review that explores the existing literature on food and pediatric DGBIs. The following have been shown to be beneficial: (i) in infants with colic, removing cow's milk from the infant's diet or from the maternal diet in those who are breastfed; (ii) in infants with regurgitation, adding thickeners to the formula or removing cow's milk protein from the infant's diet or the maternal diet in those who are breastfed; and (iii) in children with pain-predominant DGBIs, using soluble fiber supplementation or a low fermentable oligosaccharides, disaccharides, monosaccharides, and polyols diet. In children with functional constipation, there is no evidence that adding fiber is beneficial. Given that most dietary interventions include restriction of different foods in children, a thoughtful approach and close follow-up are needed.
Collapse
|
16
|
Zhang Q, Zhao W, Zhao Y, Duan S, Liu WH, Zhang C, Sun S, Wang T, Wang X, Hung WL, Wang R. In vitro Study of Bifidobacterium lactis BL-99 With Fructooligosaccharide Synbiotics Effected on the Intestinal Microbiota. Front Nutr 2022; 9:890316. [PMID: 35571919 PMCID: PMC9096902 DOI: 10.3389/fnut.2022.890316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics and prebiotics relieve constipation by altering the composition of the intestinal microbiota. However, their synergistic mechanism of action remains unclear. Herein, an in vitro fermentation model was constructed to examine the synergistic effects of Bifidobacterium lactis BL-99 and fructooligosaccharide (FOS) on the regulation of intestinal microbiota from a population with constipation. The utilization of FOS was promoted by BL-99, and the increase rate being 22.33%. Relative to the BL-99 and the FOS groups, the BL-99_FOS group showed a highly significant increase in acetic acid content (P < 0.01) and a marked decrease in CO2 and H2S contents (P < 0.01) in the fermentation broth. In addition, the BL-99_FOS combination significantly changed the structure of the intestinal microbiota, enhanced the relative abundances of beneficial bacteria that relieved constipation, including Bifidobacterium, Fecalibacterium, Lactobacillus, Subdoligranulum, and Blautia, and decreased those of the harmful bacteria, including Bilophila and Escherichia-Shigella. These findings suggested that BL-99 and FOS synergistically regulated the composition and structure of the intestinal microbiota from the population with constipation and increased acetic acid and decreased CO2 and H2S levels, thereby providing a theoretical basis for the application of synbiotics.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Wen Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Yuyang Zhao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Sufang Duan
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Chao Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Siyuan Sun
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Tingting Wang
- Hangzhou Hailu Medical Technology Co., Ltd., Hangzhou, China
| | - Xin Wang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei-Lian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China.,Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Zhang Q, Zhao W, Zhao Y, Duan S, Liu WH, Zhang C, Sun S, Wang T, Wang X, Hung WL, Wang R. In vitro Study of Bifidobacterium lactis BL-99 With Fructooligosaccharide Synbiotics Effected on the Intestinal Microbiota. Front Nutr 2022; 9:890316. [PMID: 35571919 DOI: 10.3389/fnut.2022.890316if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 03/29/2022] [Indexed: 07/26/2024] Open
Abstract
Probiotics and prebiotics relieve constipation by altering the composition of the intestinal microbiota. However, their synergistic mechanism of action remains unclear. Herein, an in vitro fermentation model was constructed to examine the synergistic effects of Bifidobacterium lactis BL-99 and fructooligosaccharide (FOS) on the regulation of intestinal microbiota from a population with constipation. The utilization of FOS was promoted by BL-99, and the increase rate being 22.33%. Relative to the BL-99 and the FOS groups, the BL-99_FOS group showed a highly significant increase in acetic acid content (P < 0.01) and a marked decrease in CO2 and H2S contents (P < 0.01) in the fermentation broth. In addition, the BL-99_FOS combination significantly changed the structure of the intestinal microbiota, enhanced the relative abundances of beneficial bacteria that relieved constipation, including Bifidobacterium, Fecalibacterium, Lactobacillus, Subdoligranulum, and Blautia, and decreased those of the harmful bacteria, including Bilophila and Escherichia-Shigella. These findings suggested that BL-99 and FOS synergistically regulated the composition and structure of the intestinal microbiota from the population with constipation and increased acetic acid and decreased CO2 and H2S levels, thereby providing a theoretical basis for the application of synbiotics.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Wen Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Yuyang Zhao
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Sufang Duan
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Chao Zhang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Siyuan Sun
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Tingting Wang
- Hangzhou Hailu Medical Technology Co., Ltd., Hangzhou, China
| | - Xin Wang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wei-Lian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Wegh CAM, Baaleman DF, Tabbers MM, Smidt H, Benninga MA. Nonpharmacologic Treatment for Children with Functional Constipation: A Systematic Review and Meta-analysis. J Pediatr 2022; 240:136-149.e5. [PMID: 34536492 DOI: 10.1016/j.jpeds.2021.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To evaluate the effectiveness and safety of nonpharmacologic interventions for the treatment of childhood functional constipation. STUDY DESIGN Randomized controlled trials (RCTs) evaluating nonpharmacologic treatments in children with functional constipation which reported at least 1 outcome of the core outcome set for children with functional constipation. RESULTS We included 52 RCTs with 4668 children, aged between 2 weeks and 18 years, of whom 47% were females. Studied interventions included gut microbiome-directed interventions, other dietary interventions, oral supplements, pelvic floor-directed interventions, electrical stimulation, dry cupping, and massage therapy. An overall high risk of bias was found across the majority of studies. Meta-analyses for treatment success and/or defecation frequency, including 20 RCTs, showed abdominal electrical stimulation (n = 3), Cassia Fistula emulsion (n = 2), and a cow's milk exclusion diet (n = 2 in a subpopulation with constipation as a possible manifestation of cow's milk allergy) may be effective. Evidence from RCTs not included in the meta-analyses, indicated that some prebiotic and fiber mixtures, Chinese herbal medicine (Xiao'er Biantong granules), and abdominal massage are promising therapies. In contrast, studies showed no benefit for the use of probiotics, synbiotics, an increase in water intake, dry cupping, or additional biofeedback or behavioral therapy. We found no RCTs on physical movement or acupuncture. CONCLUSIONS More well-designed high quality RCTs concerning nonpharmacologic treatments for children with functional constipation are needed before changes in current guidelines are indicated.
Collapse
Affiliation(s)
- Carrie A M Wegh
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Department of Pediatric Gastroenterology and Nutrition, Amsterdam, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands.
| | - Desiree F Baaleman
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Department of Pediatric Gastroenterology and Nutrition, Amsterdam, the Netherlands
| | - Merit M Tabbers
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Department of Pediatric Gastroenterology and Nutrition, Amsterdam, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Marc A Benninga
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Department of Pediatric Gastroenterology and Nutrition, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Fan R, Dresler J, Tissen D, Wen L, Czermak P. In situ purification and enrichment of fructo-oligosaccharides by fermentative treatment with Bacillus coagulans and selective catalysis using immobilized fructosyltransferase. BIORESOURCE TECHNOLOGY 2021; 342:125969. [PMID: 34587583 DOI: 10.1016/j.biortech.2021.125969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Fructo-oligosaccharides (FOS) are prebiotic sugar substitutes that can be produced from sucrose using fructosyltransferases (FTases). However, the economic value of this process is limited by inefficient product purification and enzyme reusability. In this study, enzyme-free FOS preparations were produced by immobilizing the FTase on resin carriers. This also increased the catalytic selectivity of the enzyme. However, the crude FOS preparations still contained high concentrations of monosaccharide byproducts and residual disaccharides that must be removed because they lack prebiotic activity. A hybrid process was developed in which fed-batch fermentation was combined with the probiotic bacterium Bacillus coagulans (which selectively utilizes monosaccharides) and the simultaneous conversion of residual sucrose using the FTase to increase FOS purity. This process depleted the monosaccharides and increased the concentration of FOS to 130-170 g·L-1. The residual sucrose was converted to FOS by the immobilized FTase, increasing the overall purity of FOS to 92.1%.
Collapse
Affiliation(s)
- Rong Fan
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392, Giessen, Germany.
| | - Josephine Dresler
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392, Giessen, Germany
| | - Dennis Tissen
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany
| | - Linxuan Wen
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; Faculty of Biology and Chemistry, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany; Faculty of Biology and Chemistry, Justus-Liebig University of Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
20
|
Intestinal Microbiota as a Contributor to Chronic Inflammation and Its Potential Modifications. Nutrients 2021; 13:nu13113839. [PMID: 34836095 PMCID: PMC8618457 DOI: 10.3390/nu13113839] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is a crucial factor in maintaining homeostasis. The presence of commensal microorganisms leads to the stimulation of the immune system and its maturation. In turn, dysbiosis with an impaired intestinal barrier leads to accelerated contact of microbiota with the host’s immune cells. Microbial structural parts, i.e., pathogen-associated molecular patterns (PAMPs), such as flagellin (FLG), peptidoglycan (PGN), lipoteichoic acid (LTA), and lipopolysaccharide (LPS), induce inflammation via activation of pattern recognition receptors. Microbial metabolites can also develop chronic low-grade inflammation, which is the cause of many metabolic diseases. This article aims to systematize information on the influence of microbiota on chronic inflammation and the benefits of microbiota modification through dietary changes, prebiotics, and probiotic intake. Scientific research indicates that the modification of the microbiota in various disease states can reduce inflammation and improve the metabolic profile. However, since there is no pattern for a healthy microbiota, there is no optimal way to modify it. The methods of influencing microbiota should be adapted to the type of dysbiosis. Although there are studies on the microbiota and its effects on inflammation, this subject is still relatively unknown, and more research is needed in this area.
Collapse
|
21
|
Effect of Polydextrose/Fructooligosaccharide Mixture on Constipation Symptoms in Children Aged 4 to 8 Years. Nutrients 2021; 13:nu13051634. [PMID: 34067961 PMCID: PMC8152261 DOI: 10.3390/nu13051634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022] Open
Abstract
Constipation is a frequent problem in children. We evaluated the effect of a mixture (polydextrose [PDX] and fructooligosaccharide [FOS]) in children with constipation. We performed a prospective interventional study with a mixture (PDX 4.17 g and FOS 0.45 g) in a daily dose of food supplement. The intervention lasted 45 days, with visits at 15, 30, and 45 days after administration. The sample comprised 105 patients, of whom 77 completed the intervention. A statistically significant reduction in the frequency of symptoms was observed at the end of the study. The frequency of children with fewer than three bowel movements per week dropped from 59.7% to 11.7%, and there was a decrease in the frequency of Bristol type 1 and 2 dry stools (68.8% to 7.8%), pain on defecation (79.2% to 10.4%), and fear of defecation (68.8% to 3.9%). The proportion of children with abdominal pain symptoms decreased from 84.2% to 2.6% at the end of the study. A relevant limitation of the present study was the lack of a control group treated with placebo. The administration of the PDX/FOS mixture was accompanied by a significant reduction in the frequency of constipation symptoms of the children evaluated. The tolerability was very good, and the rate of adverse effects was low.
Collapse
|
22
|
Singh RS, Singh T, Singh D, Kennedy JF. HPTLC-densitometry quantification of fructooligosaccharides from inulin hydrolysate. Int J Biol Macromol 2021; 177:221-228. [PMID: 33609578 DOI: 10.1016/j.ijbiomac.2021.02.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
The objective of present research was to develop an easy, precise and accurate HPTLC densitometry method for quantification of fructooligosaccharides (FOSs) from inulin hydrolysate. The chromatographic separation of FOSs was performed on pre-coated silica gel (60, F254) TLC plates using a mobile phase (butanol:ethanol:water, 60:24:16), and densitometry evaluation of FOSs was performed at A500. Both kestose and nystose were successfully resolved with Rf value of 0.43 and 0.34, respectively. The accuracy, reliability and reproducibility of developed method was assessed by percent relative standard deviation of kestose and nystose for instrument precision (1.43% and 1.50%), repeatability (1.48% and 1.56%), intra-day precision (1.60% and 1.63%), inter-day precision (1.62% and 1.66%), limit of detection (4.58 ng/spot and 4.58 ng/spot), limit of quantification (13.87 ng/spot and 13.89 ng/spot) and recovery (98.81% and 98.69%). Moreover, overlapping spectra of test sample with standard confirms the specificity of developed method, which was validated as per ICH guidelines.
Collapse
Affiliation(s)
- R S Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India.
| | - Taranjeet Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147 002, India
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 The Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcs B60 4JE, UK
| |
Collapse
|
23
|
Shinohara M, Kiyosue M, Tochio T, Kimura S, Koga Y. Activation of butyrate-producing bacteria as well as bifidobacteria in the cat intestinal microbiota by the administration of 1-kestose, the smallest component of fructo-oligosaccharide. J Vet Med Sci 2020; 82:866-874. [PMID: 32389951 PMCID: PMC7399319 DOI: 10.1292/jvms.19-0640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
1-kestose is a structural component of fructo-oligosaccharides and is composed of 2 fructose residues bound to sucrose through β2-1 bonds. In the present study, the influence of the ingestion of 1-kestose on the intestinal microbiota was investigated in cats. Six healthy cats were administered 1 g/day of 1-kestose for 8 weeks followed by a 2-week wash-out period. Fecal samples were collected from cats after 0, 4, 8, and 10 weeks. The intestinal microbiota was examined by a 16S rRNA gene metagenomic analysis and real-time PCR. Short-chain fatty acids were measured by GC/MS. The results suggested that the intestinal bacterial community structure in feline assigned to this study was divided into 2 types: one group mainly composed of the genus Lactobacillus (GA) and the other mainly composed of the genus Blautia with very few bacteria of Lactobacillus (GB). Furthermore, the number of Bifidobacterium slightly increased after the administration of 1-kestose (at 4 and 8 weeks) (P<0.1). The administration of 1-kestose also increased the abundance of Megasphaera, the butyric acid-producing bacteria, at 4 and 8 weeks (P<0.1). Furthermore, an increase in butyric acid levels was observed after the administration of 1-kestose for 4 weeks (P<0.1). These results suggest that 1-kestose activated butyrate-producing bacteria as well as bifidobacteria and propose its potential as a new generation prebiotic.
Collapse
Affiliation(s)
| | | | - Takumi Tochio
- B Food Science Co., Ltd., Chita, Aichi 478-0046, Japan
| | - Seiji Kimura
- Nisshin Petfood Inc., Nasu-Shiobara, Tochigi 329-2763, Japan
| | - Yasuhiro Koga
- Department of Gastroenterology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan.,Japanese Society for Probiotic Science, Isehara, Kanagawa 259-1143, Japan
| |
Collapse
|
24
|
The Constipation-Relieving Property of d-Tagatose by Modulating the Composition of Gut Microbiota. Int J Mol Sci 2019; 20:ijms20225721. [PMID: 31739640 PMCID: PMC6887738 DOI: 10.3390/ijms20225721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
d-tagatose, a monosaccharide as well as a dietary supplement, has been reported as having a wide range of applicability in the food industry, however, the prebiotic activity, anticonstipation effects, and related mechanisms are still unclear. In this study, using the loperamide-induced constipation Kunming mice as the animal model, the effects of d-tagatose for the prevention of constipation were evaluated by gastrointestinal transit experiment and defecation experiment. Furthermore, the underlying mechanism was clarified by evaluating the change of the biochemical indicators and analyzing 16S rRNA amplicon of gut microbiota among the different mice groups. The results showed that the gastrointestinal transit rate, fecal number, and weight in six hours were significantly enhanced after the administration of d-tagatose. In addition, d-tagatose significantly increased the serum levels of acetylcholine (Ach) and substance P (SP), whereas the serum levels of nitric oxide (NO) were significantly decreased. Moreover, the 16S rRNA sequencing analysis revealed that the changes in the gut microbiota caused by constipation were restored by d-tagatose treatment. In conclusion, this study indicated that the administration of d-tagatose as a dietary supplement can effectively prevent and relieve constipation in Kunming mice, and it is a promising prebiotic candidate with constipation-relieving properties.
Collapse
|
25
|
Forgie AJ, Fouhse JM, Willing BP. Diet-Microbe-Host Interactions That Affect Gut Mucosal Integrity and Infection Resistance. Front Immunol 2019; 10:1802. [PMID: 31447837 PMCID: PMC6691341 DOI: 10.3389/fimmu.2019.01802] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal tract microbiome plays a critical role in regulating host innate and adaptive immune responses against pathogenic bacteria. Disease associated dysbiosis and environmental induced insults, such as antibiotic treatments can lead to increased susceptibility to infection, particularly in a hospital setting. Dietary intervention is the greatest tool available to modify the microbiome and support pathogen resistance. Some dietary components can maintain a healthy disease resistant microbiome, whereas others can contribute to an imbalanced microbial population, impairing intestinal barrier function and immunity. Characterizing the effects of dietary components through the host-microbe axis as it relates to gastrointestinal health is vital to provide evidence-based dietary interventions to mitigate infections. This review will cover the effect of dietary components (carbohydrates, fiber, proteins, fats, polyphenolic compounds, vitamins, and minerals) on intestinal integrity and highlight their ability to modulate host-microbe interactions as to improve pathogen resistance.
Collapse
Affiliation(s)
| | | | - Benjamin P. Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
26
|
Vandenplas Y, Savino F. Probiotics and Prebiotics in Pediatrics: What Is New? Nutrients 2019; 11:nu11020431. [PMID: 30791429 PMCID: PMC6412752 DOI: 10.3390/nu11020431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Yvan Vandenplas
- KidZ Health Castle, UZ Brussel, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| | - Francesco Savino
- Department of Pediatrics, Ospedale Infantile Regina Margherita, Azienda Ospedaliera, Universitaria Città della Salute e della Scienza di Torino, Piazza Polonia, 94, 10126 Turin, Italy.
| |
Collapse
|