1
|
Chen Y, Ouyang J, Tang X, Tong J, Liu H, Liu Z, Gong Y. Black tea extracts enhance stress-induced sleep of Caenorhabditis elegans to resist UV damage. Food Res Int 2024; 196:115025. [PMID: 39614550 DOI: 10.1016/j.foodres.2024.115025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
Black tea is believed to strengthen the ability of the body to defend itself against external stimuli. Here, by examining Caenorhabditis elegans (C. elegans) locomotor behavior over a short period after UV stress, we found that feeding black tea extract (BTE) caused worms to enter a superior stress-induced sleep (SIS) state, which potentially boosting organismal recovery. BTE enhances SIS through KIN-29 mediated epidermal growth factor signaling and modulation of sleep by specific interneurons ALA and RIS. It also inhibits lipid degradation during sleep. These functions were also observed when theaflavins (TFs) were fed. In conclusion, our results describe a new way for BTE-enhanced damage repair in C. elegans after UV stress that relies on enhanced SIS, and confirm the contribution of TFs therein.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Jin Ouyang
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Xiangyue Tang
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Jiewen Tong
- College of Tea Science, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - He Liu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| | - Zhonghua Liu
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China.
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China.
| |
Collapse
|
2
|
El-Saadony MT, Yang T, Saad AM, Alkafaas SS, Elkafas SS, Eldeeb GS, Mohammed DM, Salem HM, Korma SA, Loutfy SA, Alshahran MY, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Ahmed AF, Fahmy MA, El-Tarabily MK, Mahmoud RM, AbuQamar SF, El-Tarabily KA, Lorenzo JM. Polyphenols: Chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits: A review. Int J Biol Macromol 2024; 277:134223. [PMID: 39084416 DOI: 10.1016/j.ijbiomac.2024.134223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 06/17/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Polyphenols, including phenolics, alkaloids, and terpenes, are secondary metabolites that are commonly found in fruits, vegetables, and beverages, such as tea, coffee, wine, chocolate, and beer. These compounds have gained considerable attention and market demand because of their potential health benefits. However, their application is limited due to their low absorption rates and reduced tissue distribution efficiency. Engineering polyphenol-protein complexes or conjugates can enhance the antioxidant properties, bioavailability, and stability of polyphenols and improve digestive enzyme hydrolysis, target-specific delivery, and overall biological functions. Complex polyphenols, such as melanin, tannins, and ellagitannins, can promote gut microbiota balance, bolster antioxidant defense, and improve overall human health. Despite these benefits, the safety of polyphenol complexes must be thoroughly evaluated before their use as functional food additives or supplements. This review provides a detailed overview of the types of macromolecular polyphenols, their chemical composition, and their role in food enrichment. The mechanisms by which complex polyphenols act as antioxidative, anti-inflammatory, and anticancer agents have also been discussed.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg, Russia
| | - Gehad S Eldeeb
- Department of Food Technology, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 12211, Egypt
| | - Mohammad Y Alshahran
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 9088, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Atef F Ahmed
- Department of Biology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Reda M Mahmoud
- Dr Nutrition Pharmaceuticals (DNP), Dubai, 48685, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, W.A., Australia
| | - José M Lorenzo
- Centro Tecnologico´ de La Carne de Galicia, Rúa Galicia No. 4, Parque Tecnologico de Galicia, San Cibrao das Vinas, Ourense, 32900, Spain; Universidad de Vigo, Area´ de Tecnología de Los Alimentos, Facultad de Ciencias de Ourense, Ourense, 32004, Spain
| |
Collapse
|
3
|
Xu J, Wei Y, Huang Y, Weng X, Wei X. Current understanding and future perspectives on the extraction, structures, and regulation of muscle function of tea pigments. Crit Rev Food Sci Nutr 2023; 63:11522-11544. [PMID: 35770615 DOI: 10.1080/10408398.2022.2093327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the aggravating aging of modern society, the sarcopenia-based aging syndrome poses a serious potential threat to the health of the elderly. Natural dietary supplements show great potential to reduce muscle wasting and enhance muscle performance. Tea has been widely recognized for its health-promoting effects. which contains active ingredients such as tea polyphenols, tea pigments, tea polysaccharides, theanine, caffeine, and vitamins. In different tea production processes, the oxidative condensation and microbial transformation of catechins and other natural substances from tea promotes the production of various tea pigments, including theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs). Tea pigments have shown a positive effect on maintaining muscle health. Nevertheless, the relationship between tea pigments and skeletal muscle function has not been comprehensively elucidated. In addition, the numerous research on the extraction and purification of tea pigments is disordered with the limited recent progress due to the complexity of species and molecular structure. In this review, we sort out the strategies for the separation of tea pigments, and discuss the structures of tea pigments. On this basis, the regulation mechanisms of tea pigments on muscle functional were emphasized. This review highlights the current understanding on the extraction methods, molecular structures and regulation mechanisms of muscle function of tea pigments. Furthermore, main limitations and future perspectives are proposed to provide new insights into broadening theoretical research and industrial applications of tea pigments in the future.
Collapse
Affiliation(s)
- Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Environmental and Chemical Engineering, Shanghai University, Baoshan, Shanghai, People's Republic of China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xinchu Weng
- School of Environmental and Chemical Engineering, Shanghai University, Baoshan, Shanghai, People's Republic of China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Yang G, Meng Q, Shi J, Zhou M, Zhu Y, You Q, Xu P, Wu W, Lin Z, Lv H. Special tea products featuring functional components: Health benefits and processing strategies. Compr Rev Food Sci Food Saf 2023; 22:1686-1721. [PMID: 36856036 DOI: 10.1111/1541-4337.13127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/08/2022] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
The functional components in tea confer various potential health benefits to humans. To date, several special tea products featuring functional components (STPFCs) have been successfully developed, such as O-methylated catechin-rich tea, γ-aminobutyric acid-rich tea, low-caffeine tea, and selenium-rich tea products. STPFCs have some unique and enhanced health benefits when compared with conventional tea products, which can meet the specific needs and preferences of different groups and have huge market potential. The processing strategies to improve the health benefits of tea products by regulating the functional component content have been an active area of research in food science. The fresh leaves of some specific tea varieties rich in functional components are used as raw materials, and special processing technologies are employed to prepare STPFCs. Huge progress has been achieved in the research and development of these STPFCs. However, the current status of these STPFCs has not yet been systematically reviewed. Here, studies on STPFCs have been comprehensively reviewed with a focus on their potential health benefits and processing strategies. Additionally, other chemical components with the potential to be developed into special teas and the application of tea functional components in the food industry have been discussed. Finally, suggestions on the promises and challenges for the future study of these STPFCs have been provided. This paper might shed light on the current status of the research and development of these STPFCs. Future studies on STPFCs should focus on screening specific tea varieties, identifying new functional components, evaluating health-promoting effects, improving flavor quality, and elucidating the interactions between functional components.
Collapse
Affiliation(s)
- Gaozhong Yang
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Meng
- College of Food Science, Southwest University, Chongqing, China
| | - Jiang Shi
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Mengxue Zhou
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yin Zhu
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Qiushuang You
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Wenliang Wu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Haipeng Lv
- Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
5
|
Chen B, Zhang W, Lin C, Zhang L. A Comprehensive Review on Beneficial Effects of Catechins on Secondary Mitochondrial Diseases. Int J Mol Sci 2022; 23:ijms231911569. [PMID: 36232871 PMCID: PMC9569714 DOI: 10.3390/ijms231911569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are the main sites for oxidative phosphorylation and synthesis of adenosine triphosphate in cells, and are known as cellular power factories. The phrase "secondary mitochondrial diseases" essentially refers to any abnormal mitochondrial function other than primary mitochondrial diseases, i.e., the process caused by the genes encoding the electron transport chain (ETC) proteins directly or impacting the production of the machinery needed for ETC. Mitochondrial diseases can cause adenosine triphosphate (ATP) synthesis disorder, an increase in oxygen free radicals, and intracellular redox imbalance. It can also induce apoptosis and, eventually, multi-system damage, which leads to neurodegenerative disease. The catechin compounds rich in tea have attracted much attention due to their effective antioxidant activity. Catechins, especially acetylated catechins such as epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), are able to protect mitochondria from reactive oxygen species. This review focuses on the role of catechins in regulating cell homeostasis, in which catechins act as a free radical scavenger and metal ion chelator, their protective mechanism on mitochondria, and the protective effect of catechins on mitochondrial deoxyribonucleic acid (DNA). This review highlights catechins and their effects on mitochondrial functional metabolic networks: regulating mitochondrial function and biogenesis, improving insulin resistance, regulating intracellular calcium homeostasis, and regulating epigenetic processes. Finally, the indirect beneficial effects of catechins on mitochondrial diseases are also illustrated by the warburg and the apoptosis effect. Some possible mechanisms are shown graphically. In addition, the bioavailability of catechins and peracetylated-catechins, free radical scavenging activity, mitochondrial activation ability of the high-molecular-weight polyphenol, and the mitochondrial activation factor were also discussed.
Collapse
|
6
|
Liu S, Meng F, Zhang D, Shi D, Zhou J, Guo S, Chang X. Lonicera caerulea Berry Polyphenols Extract Alleviates Exercise Fatigue in Mice by Reducing Oxidative Stress, Inflammation, Skeletal Muscle Cell Apoptosis, and by Increasing Cell Proliferation. Front Nutr 2022; 9:853225. [PMID: 35356725 PMCID: PMC8959458 DOI: 10.3389/fnut.2022.853225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 12/22/2022] Open
Abstract
Exercise fatigue can exert deleterious effects on the body. This study evaluated the effects and mechanisms by which Lonicera caerulea berry polyphenols extract (LCBP) improved the treadmill endurance of mice. Comparison was performed between the effects at 25°C and low temperatures (-5°C). Energy storage, product metabolism, and other biochemical indices were determined using vitamin C (VC) as a positive control. Co-immunoprecipitation was performed to detect the interaction between different proteins. Dietary supplementation with LCBP significantly prolonged the exhaustion time during treadmill exercise by 20.4% (25 °C) and 27.4% (-5 °C). LCBP significantly regulated the expression of antioxidant and inflammatory proteins, Bcl-2 /Bax apoptosis proteins, and the PKCα -NOx2 / Nox4 pathway proteins, and activated the expression of AMPK-PGC1α -NRF1-TFAM proteins in skeletal muscle mitochondria. The gene and protein expression of miRNA-133a/IGF-1/PI3K/Akt/mTOR in skeletal muscle cells was also activated. Molecular docking confirmed that the main components of LCBP such as cyanidin-3-glucoside, catechin, and chlorogenic acid, have strong binding affinity toward AMPKα. LCBP alleviates exercise fatigue in mice by reducing oxidative stress, inflammation, and apoptosis of skeletal muscle cells, enhances mitochondrial biosynthesis and cell proliferation, reduces fatigue, and enhances performance. These effects are also significant in a low-temperature environment (Graphical Abstract). Consequently, these results provide novel insights into the anti- fatigue roles of LCBP in exercise fatigue.
Collapse
Affiliation(s)
- Suwen Liu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, China
| | - Fanna Meng
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Dong Zhang
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Donglin Shi
- Department of Physical Education, Hebei Sport University, Shijiazhuang, China
| | - Junyi Zhou
- Research Center of Sports Science, Hebei Institute of Sports Science, Shijiazhuang, China
| | - Shuo Guo
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xuedong Chang
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, China
| |
Collapse
|
7
|
Tanaka T, Yasumatsu M, Hirotani M, Matsuo Y, Li N, Zhu HT, Saito Y, Ishimaru K, Zhang YJ. New degradation mechanism of black tea pigment theaflavin involving condensation with epigallocatechin-3-O-gallate. Food Chem 2022; 370:131326. [PMID: 34656020 DOI: 10.1016/j.foodchem.2021.131326] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/05/2021] [Accepted: 10/02/2021] [Indexed: 11/04/2022]
Abstract
Theanaphthoquinone (TNQ) is the initial and main oxidation product of theaflavin, a representative black tea pigment. Nevertheless, TNQ is virtually undetected in the high-performance liquid chromatography analysis of black tea leaves using photodiode array detection. To elucidate the degradation mechanism of theaflavin in the black tea production process, this study investigated the reaction of TNQ with epigallocatechin-3-O-gallate (EGCg), which is the most abundant polyphenol in tea leaves. In citrate-phosphate buffer solution at pH 6 and room temperature, TNQ reacted nonenzymatically with EGCg to afford three products, whose structures were determined on the basis of spectroscopic data. The results indicated that the double bond of the ortho-naphthoquinone moiety in TNQ reacted with the autoxidation product of EGCg. This study demonstrates novel reactions occurring in the process of theaflavin degradation, which might be involved in the formation of thearubigins, the major black tea pigments composing oligomeric catechin oxidation products.
Collapse
Affiliation(s)
- Takashi Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Miho Yasumatsu
- School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mayu Hirotani
- School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yosuke Matsuo
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Na Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong-Tao Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yoshinori Saito
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kanji Ishimaru
- Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, 1 Honjo, Saga 840-8502, Japan
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
8
|
Kwon IS, Park DS, Shin HC, Seok MG, Oh JK. Effects of marine oligomeric polyphenols on body composition and physical ability of elderly individuals with sarcopenia: a pilot study. Phys Act Nutr 2021; 25:1-7. [PMID: 34727682 PMCID: PMC8580584 DOI: 10.20463/pan.2021.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE We aimed to identify the effects of marine oligomeric polyphenol (MOP) intake in elderly individuals with sarcopenia. METHODS Older adults (aged 65 years or older) were recruited based on the diagnostic criterion for sarcopenia and were randomly assigned to the MOP intake group (n=10) or the placebo (PBO) intake group (n=10). To determine the effect of MOP intake received for four weeks, the pre- and post-intake body composition (weight, skeletal muscle mass, and bone density) and senior fitness tests were assessed. RESULTS Our results showed there were significant differences in the skeletal muscle mass (p=0.039), bone density (p=0.020), fat-free mass index (p=0.026), and 2.4 m up and go test (p=0.001) between pretest and post-test. There was a significant difference between the pre-test and post-test and an interaction effect for the one-leg stand test (p=0.010 and p=0.049, respectively). However, there were no significant differences in body fat percentage, calf circumference, grip strength, or the chair rise test. CONCLUSION Some variables exhibited significant differences in the pre- and post-assessments, and there was an interaction effect for the one-leg stand. However, this was insufficient to prove the effectiveness of MOP intake in improving sarcopenia. Therefore, additional studies are essential to examine the effects of MOP intake and exercise intervention on the body composition and fitness of patients over a longer period.
Collapse
Affiliation(s)
- Il-Su Kwon
- Department of Health and Exercise Science, Korea National Sport University, Seoul, Republic of Korea
| | - Deuk-Su Park
- Department of Health and Exercise Science, Korea National Sport University, Seoul, Republic of Korea
| | | | - Myung-Gyu Seok
- Department of Physical Education, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Keun Oh
- Department of Health and Exercise Science, Korea National Sport University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Wu X, Ozawa T, Li Y, Duan J, Zhu K, Huang J, Liu Z, Wang K. Effect of fermentation time and temperature on the of polyphenol compounds change of different Congou black tea. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaofen Wu
- Key Laboratory of Tea Science of Ministry of Education Hunan Agricultural University Changsha China
- Hunan Institute of Nuclear Agricultural Science and Space Breeding Hunan Academy of Agricultural Sciences Changsha China
| | - Tetsuo Ozawa
- Graduate School of Life and Environmental Sciences University of Tsukuba Tsukuba Japan
| | - Yinhua Li
- Key Laboratory of Tea Science of Ministry of Education Hunan Agricultural University Changsha China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients Changsha China
- Co‐Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients Changsha China
| | - Jihua Duan
- Institute of Tea Research Hunan Academy of Agricultural Sciences Changsha China
| | - Kun Zhu
- Key Laboratory of Tea Science of Ministry of Education Hunan Agricultural University Changsha China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education Hunan Agricultural University Changsha China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients Changsha China
- Co‐Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients Changsha China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education Hunan Agricultural University Changsha China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients Changsha China
- Co‐Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients Changsha China
| | - Keqin Wang
- Key Laboratory of Tea Science of Ministry of Education Hunan Agricultural University Changsha China
- Hunan Institute of Nuclear Agricultural Science and Space Breeding Hunan Academy of Agricultural Sciences Changsha China
| |
Collapse
|
10
|
Abstract
Black tea accounts for 70-80% of world tea production, and the polyphenols therein are produced by enzymatic oxidation of four tea catechins during tea fermentation. However, only limited groups of dimeric oxidation products, such as theaflavins, theasinensins, and theacitrins, have been isolated from black tea and chemically characterized. This is largely because of the complexity and heterogeneity of the oxidation products. To determine structures and production mechanisms of uncharacterized black tea polyphenols, in vitro model fermentation experiments using pure catechins and polyphenol oxidase have been applied, and basic oxidation mechanisms have been established. Contemporary methods, such as LC-MS, are also effective to identify catechin oxidation products in black tea. Despite ongoing efforts, almost 60% of the solids in black tea infusion remain uncharacterized. These compounds include the so-called thearubigins, which are a heterogeneous mixture of uncharacterized catechin oxidation products with oligomeric structures. This review summarizes the current knowledge of the production mechanisms of representative black tea polyphenols and presents recent progress in characterization of thearubigins.
Collapse
Affiliation(s)
- Takashi Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Yosuke Matsuo
- Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
11
|
Mirzoev TM. Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling and Strategies for Accelerating Muscle Regrowth. Int J Mol Sci 2020; 21:ijms21217940. [PMID: 33114683 PMCID: PMC7663166 DOI: 10.3390/ijms21217940] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle fibers have a unique capacity to adjust their metabolism and phenotype in response to alternations in mechanical loading. Indeed, chronic mechanical loading leads to an increase in skeletal muscle mass, while prolonged mechanical unloading results in a significant decrease in muscle mass (muscle atrophy). The maintenance of skeletal muscle mass is dependent on the balance between rates of muscle protein synthesis and breakdown. While molecular mechanisms regulating protein synthesis during mechanical unloading have been relatively well studied, signaling events implicated in protein turnover during skeletal muscle recovery from unloading are poorly defined. A better understanding of the molecular events that underpin muscle mass recovery following disuse-induced atrophy is of significant importance for both clinical and space medicine. This review focuses on the molecular mechanisms that may be involved in the activation of protein synthesis and subsequent restoration of muscle mass after a period of mechanical unloading. In addition, the efficiency of strategies proposed to improve muscle protein gain during recovery is also discussed.
Collapse
Affiliation(s)
- Timur M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems RAS, Moscow 123007, Russia
| |
Collapse
|
12
|
Zhu K, Ouyang J, Huang J, Liu Z. Research progress of black tea thearubigins: a review. Crit Rev Food Sci Nutr 2020; 61:1556-1566. [PMID: 32468849 DOI: 10.1080/10408398.2020.1762161] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
As the most abundant component in black tea, thearubigins (TRs) contribute a lot to black tea's characteristic color, mouthfeel, and potential health benefits. But compared to lower molecular weight black tea polyphenols, there are fewer researches that focus on TRs because of their heterogeneity. This review summarized recent research progress on (1) isolation method of TRs; (2) structure analysis and formation mechanism of TRs; (3) biofunctions of TRs, including antioxidation, antimutagenic and anticancer effects, effects on mitochondrial activation, gastrointestinal motility and skeletal health, to show some future research aspects and prospects of TRs.
Collapse
Affiliation(s)
- Kun Zhu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Jie Ouyang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| |
Collapse
|
13
|
García-Conesa MT, Larrosa M. Polyphenol-Rich Foods for Human Health and Disease. Nutrients 2020; 12:nu12020400. [PMID: 32028558 PMCID: PMC7071139 DOI: 10.3390/nu12020400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
Polyphenols are a class of well-known bioactive compounds widely distributed in the plant kingdom and abundant in plant foods and derived food products [...].
Collapse
Affiliation(s)
- María-Teresa García-Conesa
- Quality, Safety and Bioactivity of Plant Foods, Food Science and Technology Department, CEBAS-CSIC, P.O. Box 360, Campus de Espinardo, Espinardo, 30100 Murcia, Spain
- Correspondence: ; Tel.: +34-968-396200 (ext. 6276)
| | - Mar Larrosa
- Food, Microbiota and Health Group, Department of Pharmacy and Biotechnology, Faculty of Biosciences, Universidad Europea de Madrid, c/Tajo s/n Villaviciosa de Odón, 28670 Madrid, Spain;
| |
Collapse
|