1
|
Guzmán-Escalera D, Valdés-Miramontes EH, Iñiguez-Muñoz LE, Reyes-Castillo Z, Espinoza-Gallardo AC. Metabolites Generated from Foods Through Lactic Fermentation and Their Benefits on the Intestinal Microbiota and Health. J Med Food 2025; 28:1-11. [PMID: 39474688 DOI: 10.1089/jmf.2023.0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Metabolites generated in foods with lactic fermentation have been subject of research in recent years due to different beneficial effects attributed to them on the microbiota and health in general, including their properties as antihypertensives, antioxidants, anti-inflammatory, immunomodulatory, and antimicrobial, among others. The present review aims to systematically analyze the results of original research that evaluates effects on the microbiota and health in general, mediated by metabolites generated from the lactic fermentation of foods. The review was carried out in the PubMed database, three studies in humans, four in vivo studies in murine models, four in vitro studies, and the rest focused on the quantification of biofunctional qualities in fermented foods were analyzed. The results of the studies compiled in this systematic review reveal the potential of different food matrices and microorganisms to generate metabolites through lactic fermentation with important properties and effects on the intestinal microbiota and other health benefits. Among these benefits is the increase in short chain fatty acids to which anti-inflammatory properties are associated, as well as bioactive peptides with antihypertensive, antithrombotic, antioxidant, anti-inflammatory, and antimicrobial properties.
Collapse
Affiliation(s)
- Daniela Guzmán-Escalera
- Behavioral Feeding and Nutrition Research Institute, University Center of the South, University of Guadalajara, Jalisco, Mexico
| | - Elia Herminia Valdés-Miramontes
- Behavioral Feeding and Nutrition Research Institute, University Center of the South, University of Guadalajara, Jalisco, Mexico
| | - Laura E Iñiguez-Muñoz
- Behavioral Feeding and Nutrition Research Institute, University Center of the South, University of Guadalajara, Jalisco, Mexico
| | - Zyanya Reyes-Castillo
- Behavioral Feeding and Nutrition Research Institute, University Center of the South, University of Guadalajara, Jalisco, Mexico
| | - Ana C Espinoza-Gallardo
- Behavioral Feeding and Nutrition Research Institute, University Center of the South, University of Guadalajara, Jalisco, Mexico
| |
Collapse
|
2
|
Fan Y, Shang Y, Li F, Liu J, Wang D, Zhang Y, Yu X, Wang W. Effects of cholesterol-lowering probiotic fermentation on the active components and in vitro hypolipidemic activity of sea buckthorn juice. J Food Sci 2024; 89:6308-6320. [PMID: 39223756 DOI: 10.1111/1750-3841.17301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Sea buckthorn has lipid-lowering properties and is widely used in the development of functional foods. In this study, a probiotic (Lactobacillus plantarum, Lp10211) with cholesterol-lowering potential and acid and bile salt resistant was screened for the fermentation of sea buckthorn juice. Changes in the active ingredients, such as sugars and phenolics, before and after fermentation, as well as their in vitro lipid-lowering activities, were compared. The contents of reducing and total sugars decreased substantially after fermentation. Lp10211 primarily utilized fructose for growth and reproduction, with a utilization rate of 76.9%. The phenolic compound content of sea buckthorn juice increased by 37.06% after fermentation and protected the phenolic components from degradation (protocatechuic and p-coumaric acids) and produced new polyphenol (shikimic acid). Enhanced inhibition of pancreatic lipase activity (95.42%) and cholesterol micellar solubility (59.15%) was evident. The antioxidant properties of the fermentation broth were improved. Notably, Lp10211 preserved the color and reversed browning in sea buckthorn juice. The collective findings indicate that fermentation of sea buckthorn juice by Lp10211 may enhance the functional components and lipid-lowering activity of sea buckthorn, which may provide a new approach for the development of lipid-lowering foods.
Collapse
Affiliation(s)
- Ying Fan
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Yueling Shang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Fengwei Li
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Jinbin Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Ya Zhang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| |
Collapse
|
3
|
Khan S, Ahmad F, Khalid N. Applications of Strain-Specific Probiotics in the Management of Cardiovascular Diseases: A Systemic Review. Mol Nutr Food Res 2024; 68:e2300675. [PMID: 38549453 DOI: 10.1002/mnfr.202300675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/14/2024] [Indexed: 05/08/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of global mortality and novel approaches for prevention and management are needed. The human gastrointestinal tract hosts a diverse microbiota that is crucial in maintaining metabolic homeostasis. The formulation of effective probiotics, alone or in combination, has been under discussion due to their impact on cardiovascular and metabolic diseases. Probiotics have been shown to impact cardiovascular health positively. An imbalance in the presence of Firmicutes and Bacteroidetes has been linked to the progression of CVDs due to their impact on bile acid and cholesterol metabolism. The probiotics primarily help in the reduction of plasma low-density lipoprotein levels and attenuation of the proinflammatory markers. These beneficial microorganisms contribute to lowering cholesterol levels and produce essential short-chain fatty acids. The impact of lipid-regulating probiotic strains on human health is quite significant. However, only a few have been tested for potential beneficial efficacy, and ambiguity exists regarding strain dosages, interactions with confounding factors, and potential adverse effects. Hence, more comprehensive studies and randomized trials are needed to understand the mechanisms of probiotics on CVDs and to ensure human health. This review assesses the evidence and highlights the roles of strain-specific probiotics in the management of CVDs.
Collapse
Affiliation(s)
- Saleha Khan
- Department of Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, 54000, Pakistan
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Nauman Khalid
- Department of Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, 54000, Pakistan
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, 59911, United Arab Emirates
| |
Collapse
|
4
|
Pawar A, Zabetakis I, Gavankar T, Lordan R. Milk polar lipids: Untapped potential for pharmaceuticals and nutraceuticals. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
5
|
Zambrano-Cervantes M, González-Córdova AF, Hernández-Mendoza A, Beltrán-Barrientos LM, Rendón-Rosales MÁ, Manzanarez-Quin CG, Torres-Llanez MJ, Vallejo-Cordoba B. Fermented milks with specific Lactobacillus spp. with potential cardioprotective effects. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1749-1760. [PMID: 37179799 PMCID: PMC10122198 DOI: 10.1007/s13197-023-05715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 05/15/2023]
Abstract
In vitro and in vivo studies have reported the potential cardioprotective effects of fermented milks (FM). The aim of the present study was to evaluate the inhibitory activities of angiotensin converting enzyme (ACE), thrombin enzyme (TI) and micellar solubility of cholesterol of FM after 24 and 48 h of fermentation with Limosilactobacillus fermentum (J20, J23, J28 and J38), Lactiplantibacillus plantarum (J25) or Lactiplantibacillus pentosus (J34 and J37) exposed to simulated gastrointestinal digestion. Results showed that FM with J20 and J23 at 48 h of fermentation presented significantly (p < 0.05) higher degree of hydrolysis than other FM, and were not significantly different (p > 0.05) between them. Conversely, peptide relative abundance was significantly (p < 0.05) higher in FM with J20 than FM with J23. Moreover, IC50 (protein concentration necessary to inhibit enzyme activity by 50%) for ACE inhibition were 0.33 and 0.5 mg/mL for FM with J20 and J23, respectively. For TI inhibition, the IC50 were 0.3 and 0.24 mg/mL for FM with J20 and J23, respectively. Results exhibited 51 and 74% inhibition of micellar solubility cholesterol for FM with J20 and J23, respectively. Therefore, these results showed that not only peptide abundance, but also specific peptides might be responsible for these potential cardioprotective effects.
Collapse
Affiliation(s)
- Miriam Zambrano-Cervantes
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46. Col. La Victoria, 833041 Hermosillo, SON México
| | - Aarón F. González-Córdova
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46. Col. La Victoria, 833041 Hermosillo, SON México
| | - Adrián Hernández-Mendoza
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46. Col. La Victoria, 833041 Hermosillo, SON México
| | - Lilia M. Beltrán-Barrientos
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46. Col. La Victoria, 833041 Hermosillo, SON México
| | - Miguel Á. Rendón-Rosales
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46. Col. La Victoria, 833041 Hermosillo, SON México
| | - Carmen G. Manzanarez-Quin
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46. Col. La Victoria, 833041 Hermosillo, SON México
| | - María J. Torres-Llanez
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46. Col. La Victoria, 833041 Hermosillo, SON México
| | - Belinda Vallejo-Cordoba
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas No. 46. Col. La Victoria, 833041 Hermosillo, SON México
| |
Collapse
|
6
|
Yang F, Huang J, He H, Ju X, Ji Y, Deng F, Wang Z, He R. Study on the hypolipidemic activity of rapeseed protein-derived peptides. Food Chem 2023; 423:136315. [PMID: 37167672 DOI: 10.1016/j.foodchem.2023.136315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Hyperlipidaemia, a common chronic disease, is the cause of cardiovascular diseases such as myocardial infarction and atherosclerosis. Generally, drugs for lowering blood lipids have disadvantages such as short or poor efficacy, high toxicity, and side effects. Rapeseed active peptides are excellent substitutes for lipid-lowering drugs because of their high biological safety, strong penetration, and easy absorption by the human body. This study separated and purified the rapeseed peptides using gel chromatography and mass spectrometry. Rapeseed peptides amino acid sequences were determined to obtain Glu-Phe-Leu-Glu-Leu-Leu (EFLELL) peptides with good hypolipidaemic activity and IC50 values of 0.1973 ± 0.05 mM (sodium taurocholate), 0.375 ± 0.03 mM (sodium cholate), and 0.203 ± 0.06 mM (sodium glycine cholate). The EFLELL hypolipidaemic activity was evaluated, and its mechanism of action was investigated using cell lines. Rapeseed peptide treatment significantly decreased the total cholesterol (T-CHO), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels, and the protein and gene expression levels of proprotein convertase subtilisin/kexin type 9 (PCSK9) and low-density lipoprotein cholesterol (LDLR) suggested the mechanism. Molecular docking revealed that the binding energy between rapeseed peptide and LDLR-PCSK9 molecules was -6.3 kcal/mol and -8.1 kcal/mol. In conclusion, the rapeseed peptide EFLELL exerts a favourable hypolipidaemic effect by modulating the LDLR-PCSK9 signalling pathway.
Collapse
Affiliation(s)
- Feiyu Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jiaqiang Huang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Haiyan He
- College of Engineering and Technology, Jiangsu Vocational Institute of Commerce, Nanjing 12047, China
| | - Xingrong Ju
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ying Ji
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Feng Deng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhigao Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Rong He
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
7
|
Ding M, Huang Z, Huang Z, Zhao Z, Zhao D, Shan K, Ke W, Zhang M, Zhou G, Li C. Proteins from different sources in a high-fat food matrix influence lipid hydrolysis through bolus coalescence and interactions with bile salts. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Rul F, Béra-Maillet C, Champomier-Vergès MC, El-Mecherfi KE, Foligné B, Michalski MC, Milenkovic D, Savary-Auzeloux I. Underlying evidence for the health benefits of fermented foods in humans. Food Funct 2022; 13:4804-4824. [PMID: 35384948 DOI: 10.1039/d1fo03989j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fermented foods (FFs) have been a part of our diets for millennia and comprise highly diverse products obtained from plants and animals all over the world. Historically, fermentation has been used to preserve food and render certain raw materials edible. As our food systems evolve towards more sustainability, the health benefits of FFs have been increasingly touted. Fermentation generates new/transformed bioactive compounds that may occur in association with probiotic bacteria. The result can be specific, advantageous functional properties. Yet, when considering the body of human studies on the topic, whether observational or experimental, it is rare to come across findings supporting the above assertion. Certainly, results are lacking to confirm the widespread idea that FFs have general health benefits. There are some exceptions, such as in the case of lactose degradation via fermentation in individuals who are lactose intolerant; the impact of select fermented dairy products on insulin sensitivity; or the benefits of alcohol consumption. However, in other situations, the results fail to categorically indicate whether FFs have neutral, beneficial, or detrimental effects on human health. This review tackles this apparent incongruity by showing why it is complex to test the health effects of FFs and what can be done to improve knowledge in this field.
Collapse
Affiliation(s)
- F Rul
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - C Béra-Maillet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - M C Champomier-Vergès
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - K E El-Mecherfi
- INRAE, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| | - B Foligné
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - M C Michalski
- Univ-Lyon, CarMeN Laboratory, Inserm, U1060, INRAE, UMR1397, Université Claude Bernard Lyon 1, 69310 Pierre Bénite, France
| | - D Milenkovic
- Université Clermont Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France. .,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - I Savary-Auzeloux
- Université Clermont Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France.
| |
Collapse
|
9
|
González-Noriega JA, Valenzuela-Melendres M, Hernández-Mendoza A, Astiazarán-García H, Mazorra-Manzano MÁ, Peña-Ramos EA. Hydrolysates and peptide fractions from pork and chicken skin collagen as pancreatic lipase inhibitors. Food Chem X 2022; 13:100247. [PMID: 35499029 PMCID: PMC9040008 DOI: 10.1016/j.fochx.2022.100247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/11/2022] Open
Abstract
Pork and chicken skin collagen hydrolysates were able to inactivate pancreatic lipase. Hydrolysates had a similar or higher inhibition ability than ultrafiltrated fractions. Fractions >5 and <1 kDa had the highest pancreatic lipase inhibition activity. First report of skin collagen hydrolysates’ ability to inhibit lipase activity. Skin collagen hydrolysates and fractions may act as a novel anti-obesogenic coadjuvant.
The objective of this work was to obtain hydrolysates and peptide fractions from pork (PSC) and chicken (CSC) skin collagen extracts and to evaluate their ability as pancreatic lipase inhibitors. Collagen extracts were hydrolyzed with collagenase or a protease from Bacillus licheniformis (MPRO NX®) at 6, 12, and 24 h. After 24 h incubation, the highest degree of hydrolysis of PSC (p < 0.05) was obtained with collagenase (72.58%), while in CSC was obtained with MPRO NX® (64.45%). Hydrolysates obtained at 24 h had the highest inhibitory activity of lipase (p < 0.05). CSC/collagenase hydrolysates (10 mg/mL) presented the highest inhibitory activity (75.53%) (p < 0.05). Ultrafiltrated fractions >5 kDa from CSC/collagenase and PSC/MPRO NX® hydrolysates were the most bioactive fractions (IC50: 4.33 mg/mL). The highest were obtained by CSC peptides (IC50s: 6.30 and 6.08 mg/mL). These results may be considered as a novel approach to use collagen hydrolysates, or their peptide fractions, as promising natural inhibitors of pancreatic lipase.
Collapse
Affiliation(s)
- Julio Alfonso González-Noriega
- Centro de Investigación en Alimentación y Desarrollo, A.C., Meat Science and Technology Lab., Carr. Gustavo Astiazaran No. 46, Hermosillo Sonora C.P. 83304, Mexico
| | - Martín Valenzuela-Melendres
- Centro de Investigación en Alimentación y Desarrollo, A.C., Meat Science and Technology Lab., Carr. Gustavo Astiazaran No. 46, Hermosillo Sonora C.P. 83304, Mexico
| | - Adrián Hernández-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, A.C., Meat Science and Technology Lab., Carr. Gustavo Astiazaran No. 46, Hermosillo Sonora C.P. 83304, Mexico
| | - Humberto Astiazarán-García
- Centro de Investigación en Alimentación y Desarrollo, A.C., Meat Science and Technology Lab., Carr. Gustavo Astiazaran No. 46, Hermosillo Sonora C.P. 83304, Mexico
| | - Miguel Ángel Mazorra-Manzano
- Centro de Investigación en Alimentación y Desarrollo, A.C., Meat Science and Technology Lab., Carr. Gustavo Astiazaran No. 46, Hermosillo Sonora C.P. 83304, Mexico
| | - Etna Aída Peña-Ramos
- Centro de Investigación en Alimentación y Desarrollo, A.C., Meat Science and Technology Lab., Carr. Gustavo Astiazaran No. 46, Hermosillo Sonora C.P. 83304, Mexico
| |
Collapse
|
10
|
Fermented foods: an update on evidence-based health benefits and future perspectives. Food Res Int 2022; 156:111133. [DOI: 10.1016/j.foodres.2022.111133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
|
11
|
Nasri R, Abdelhedi O, Nasri M, Jridi M. Fermented protein hydrolysates: biological activities and applications. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Rendón-Rosales MÁ, Torres-Llanez MJ, Mazorra-Manzano MA, González-Córdova AF, Hernández-Mendoza A, Vallejo-Cordoba B. In vitro and in silico evaluation of multifunctional properties of bioactive synthetic peptides identified in milk fermented with Lactococcus lactis NRRL B-50571 and NRRL B-50572. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
|
14
|
In Vitro Antioxidant and Antihypertensive Activity of Edible Insects Flours (Mealworm and Grasshopper) Fermented with Lactococcus lactis Strains. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of the present study was to evaluate the potential antioxidant and angiotensin converting enzyme inhibition (ACEI) activity of edible insect flours fermented with Lactococcus lactis strains. For the fermentation, mealworm and grasshoppers flours were dissolved (0.5% w/v) in buffer solution (pH 7.0) and individually inoculated (3%) with Lactococcus lactis strains (NRRL B-50571, NRRL B-50572). The samples were incubated for 72 h at 30 °C, and the pH was recorded. The degree of hydrolysis (DH) and protein content were determined. The total polyphenol compounds, antioxidant activity (ABTS, DPPH, ORAC, and FRAP), and ACEI of the <3 kDa fractions were analyzed. The pH of the fermented samples decreased to 3.5–3.9 (p < 0.05). The fermented grasshopper flour showed an increased DH (0.42%) and overall higher total polyphenol content (8.23 mg Gallic Acid Equivalent/mL). In general, the highest antioxidant activity was for the grasshopper fractions fermented for 24 h by Lactococcus lactis NRRL B-50572, which also showed 23.47% ACEI inhibition with an IC50 of 0.97 mg/mL. The peptide profile obtained increased after fermentation, being higher for the mealworm flour fermented sample. This study presents, for the first time, the use of specific strains of Lactococus lactis for fermenting edible insect-derived products in the production of bioactive compounds with potential antioxidant and antihypertensive activity.
Collapse
|
15
|
Jitpakdee J, Kantachote D, Kanzaki H, Nitoda T. Selected probiotic lactic acid bacteria isolated from fermented foods for functional milk production: Lower cholesterol with more beneficial compounds. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Therapeutic applications and biological activities of bacterial bioactive extracts. Arch Microbiol 2021; 203:4755-4776. [PMID: 34370077 PMCID: PMC8349711 DOI: 10.1007/s00203-021-02505-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
Bacteria are rich in a wide variety of secondary metabolites, such as pigments, alkaloids, antibiotics, and others. These bioactive microbial products serve a great application in human and animal health. Their molecular diversity allows these natural products to possess several therapeutic attributes and biological functions. That's why the current natural drug industry focuses on uncovering all the possible ailments and diseases that could be combated by bacterial extracts and their secondary metabolites. In this paper, we review the major utilizations of bacterial natural products for the treatment of cancer, inflammatory diseases, allergies, autoimmune diseases, infections and other diseases that threaten public health. We also elaborate on the identified biological activities of bacterial secondary metabolites including antibacterial, antifungal, antiviral and antioxidant activities all of which are essential nowadays with the emergence of drug-resistant microbial pathogens. Throughout this review, we discuss the possible mechanisms of actions in which bacterial-derived biologically active molecular entities could possess healing properties to inspire the development of new therapeutic agents in academia and industry.
Collapse
|
17
|
Chai KF, Voo AYH, Chen WN. Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Compr Rev Food Sci Food Saf 2020; 19:3825-3885. [PMID: 33337042 DOI: 10.1111/1541-4337.12651] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/03/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Bioactive peptides (BPs) are specific protein fragments that exert various beneficial effects on human bodies and ultimately influence health, depending on their structural properties and amino acid composition and sequences. By offering promising solutions to solve diverse health issues, the production, characterization, and applications of food-derived BPs have drawn great interest in the current literature and are of particular interest to the food and pharmaceutical industries. The microbial fermentation of protein from various sources is indubitably a novel way to produce BPs with numerous beneficial health effects. Apart from its lower cost as compared to enzymes, the BPs produced from microbial fermentation can be purified without further hydrolysis. Despite these features, current literature shows dearth of information on the BPs produced from food via microbial fermentation. Hence, there is a strong necessity to explore the BPs obtained from food fermentation for the development of commercial nutraceuticals and functional foods. As such, this review focuses on the production of BPs from different food sources, including the extensively studied milk and milk products, with emphasis on microbial fermentation. The structure-activity (antihypertensive, antioxidant, antimicrobial, opiate-like, anti-inflammatory, anticancer/antiproliferative, antithrombotic, hypolipidemic, hypocholesterolemic, and mineral binding) relationship, potential applications, future development, and challenges of BPs obtained from food fermentation are also discussed.
Collapse
Affiliation(s)
- Kong Fei Chai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Amanda Ying Hui Voo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|