1
|
Zhou QY, Pan JQ, Liu W, Jiang ZT, Gao FY, Zhao ZW, Tang CK. Angiotensin II: A novel biomarker in vascular diseases. Clin Chim Acta 2025; 568:120154. [PMID: 39855324 DOI: 10.1016/j.cca.2025.120154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
The renin-angiotensin system (RAS), composed mainly of renin, angiotensin, and aldosterone, is a key endocrine pathway involved in cardiovascular activity regulation. Under physiological conditions, the RAS plays a vital role in water and salt metabolism, blood pressure regulation, and electrolyte balance. Angiotensin II (Ang II) is the most important active component of the RAS, and its receptors are concentrated in vascular, pulmonary, cardiac, and renal tissues in vivo. Moreover, Ang II is closely associated with the development of vascular lesions. Ang II expression is closely associated with atherosclerosis, aortic aneurysm/dissection, ischemic stroke, hypertension, pulmonary hypertension, and type 2 diabetes mellitus. Given the significant pathophysiological role of Ang II in vascular diseases and the availability of advanced detection methods, Ang II holds promise as a reliable biomarker and therapeutic target in clinical settings. This review summarizes the mechanisms through which Ang II contributes to different vascular diseases and discusses its potential application as a biomarker for disease diagnosis.
Collapse
Affiliation(s)
- Qin-Yi Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China; The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421002 Hunan, PR China
| | - Jin-Qian Pan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China
| | - Wang Liu
- The Affiliated Nanhua Hospital, Department of Gastrointestinal Surgery, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, China
| | - Zhen-Tao Jiang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421002 Hunan, PR China
| | - Fang-Ya Gao
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang 421002 Hunan, PR China
| | - Zhen-Wang Zhao
- School of Basic Medicine, Health Science Center, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China.
| |
Collapse
|
2
|
Zeng Y, Fu S, Xia Y, Meng G, Xu X. Itchy E3 Ubiquitin Ligase-Mediated Ubiquitination of Ferritin Light Chain Contributes to Endothelial Ferroptosis in Atherosclerosis. Int J Mol Sci 2024; 25:13524. [PMID: 39769287 PMCID: PMC11677933 DOI: 10.3390/ijms252413524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
This research seeks to investigate the function and fundamental mechanisms of Itchy E3 ubiquitin ligase (ITCH), a HECT (homologous to E6AP carboxyl terminus)-type E3 ubiquitin ligase, in endothelial ferroptosis, particularly in the context of atherosclerosis, which has been underexplored. The levels of ITCH protein in the aortas of mice with atherosclerosis were analyzed. Constructs for ITCH RNA interference were generated and introduced into human aortic endothelial cells (HAECs). The findings indicated that ITCH protein expression was elevated in atherosclerotic mice and HAECs exposed to oxidized low-density lipoprotein (ox-LDL). ITCH downregulation significantly mitigated ox-LDL-induced endothelial injury and dysfunction. Reducing ITCH expression inhibited ox-LDL-induced endothelial ferroptosis. This study also revealed that ITCH mediates ox-LDL-induced ubiquitin-dependent degradation of ferritin light chain (FTL) in HAECs. The protective impact of ITCH knockdown against ox-LDL-induced ferroptosis and endothelial injury was reversed by FTL siRNA. Additionally, in vivo experiments showed that inhibiting ITCH reduced atherosclerosis progression and reversed ferroptosis in the aorta, with an associated increase in FTL protein expression in the aortas of mice. This study demonstrates that ITCH interacts with and regulates the stability of the FTL protein via the ubiquitin-proteasome system, contributing to ox-LDL-induced ferroptosis and endothelial cell dysfunction. Targeting components of the ITCH-FTL pathway holds potential as a therapeutic strategy against atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | - Xiaole Xu
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, China; (Y.Z.); (S.F.); (Y.X.); (G.M.)
| |
Collapse
|
3
|
Halon-Golabek M, Flis DJ, Zischka H, Akdogan B, Wieckowski MR, Antosiewicz J, Ziolkowski W. Amyotrophic lateral sclerosis associated disturbance of iron metabolism is blunted by swim training-role of AKT signaling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167014. [PMID: 38171451 DOI: 10.1016/j.bbadis.2023.167014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Swim training has increased the life span of the transgenic animal model of amyotrophic lateral sclerosis (ALS). Conversely, the progress of the disease is associated with the impairment of iron metabolism and insulin signaling. We used transgenic hmSOD1 G93A (ALS model) and non-transgenic mice in the present study. The study was performed on the muscles taken from trained (ONSET and TERMINAL) and untrained animals at three stages of the disease: BEFORE, ONSET, and TERMINAL. In order to study the molecular mechanism of changes in iron metabolism, we used SH-SY5Y and C2C12 cell lines expression vector pcDNA3.1 and transiently transfected with specific siRNAs. The progress of ALS resulted in decreased P-Akt/Akt ratio, which is associated with increased proteins responsible for iron storage ferritin L, ferritin H, PCBP1, and skeletal muscle iron at ONSET. Conversely, proteins responsible for iron export- TAU significantly decrease. The training partially reverses changes in proteins responsible for iron metabolism. AKT silencing in the SH-SY5Y cell line decreased PCBP2 and ferroportin and increased ferritin L, H, PCBP1, TAU, transferrin receptor 1, and APP. Moreover, silencing APP led to an increase in ferritin L and H. Our data suggest that swim training in the mice ALS model is associated with significant changes in iron metabolism related to AKT activity. Down-regulation of AKT mainly upregulates proteins involved in iron import and storage but decreases proteins involved in iron export.
Collapse
Affiliation(s)
- Małgorzata Halon-Golabek
- Department of Physiotherapy, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Damian Jozef Flis
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Munich, Germany
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Mariusz Roman Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jedrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland.
| | - Wiesław Ziolkowski
- Department of Rehabilitation Medicine, Faculty of Health Sciences Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
4
|
Elumalai S, Karunakaran U, Moon JS, Won KC. Ferroptosis Signaling in Pancreatic β-Cells: Novel Insights & Therapeutic Targeting. Int J Mol Sci 2022; 23:13679. [PMID: 36430158 PMCID: PMC9690757 DOI: 10.3390/ijms232213679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022] Open
Abstract
Metabolic stress impairs pancreatic β-cell survival and function in diabetes. Although the pathophysiology of metabolic stress is complex, aberrant tissue damage and β-cell death are brought on by an imbalance in redox equilibrium due to insufficient levels of endogenous antioxidant expression in β-cells. The vulnerability of β-cells to oxidative damage caused by iron accumulation has been linked to contributory β-cell ferroptotic-like malfunction under diabetogenic settings. Here, we take into account recent findings on how iron metabolism contributes to the deregulation of the redox response in diabetic conditions as well as the ferroptotic-like malfunction in the pancreatic β-cells, which may offer insights for deciphering the pathomechanisms and formulating plans for the treatment or prevention of metabolic stress brought on by β-cell failure.
Collapse
Affiliation(s)
- Suma Elumalai
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea
| | - Udayakumar Karunakaran
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea
| | - Jun-Sung Moon
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea
| | - Kyu-Chang Won
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu 42415, Korea
| |
Collapse
|
5
|
Wang N, Wang H, Ji A, Li N, Chang G, Liu J, Agwunobi DO, Wang H. Proteomic changes in various organs of Haemaphysalis longicornis under long-term starvation. PLoS Negl Trop Dis 2022; 16:e0010692. [PMID: 35994434 PMCID: PMC9394840 DOI: 10.1371/journal.pntd.0010692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022] Open
Abstract
Haemaphysalis longicornis (Neumann), a tick of public health and veterinary importance, spend the major part of their life cycle off-host, especially the adult host-seeking period. Thus, they have to contend with prolonged starvation. Here, we investigated the underlying molecular mechanism of tick starvation endurance in the salivary glands, midguts, ovaries, and Malpighian tubules of starved H. longicornis ticks using the data-independent acquisition quantitative proteomic approach to study the proteome changes. Essential synthases such as glutamate synthase, citrate synthase, and ATP synthase were up-regulated probably due to increased proteolysis and amino acid catabolism during starvation. The up-regulation of succinate dehydrogenase, ATP synthase, cytochrome c oxidase, and ADP/ATP translocase closely fits with an increased oxidative phosphorylation function during starvation. The differential expression of superoxide dismutase, glutathione reductase, glutathione S-transferase, thioredoxin, and peroxiredoxin indicated fasting-induced oxidative stress. The up-regulation of heat shock proteins could imply the activation of a protective mechanism that checks excessive protein breakdown during starvation stress. The results of this study could provide useful information about the vulnerabilities of ticks that could aid in tick control efforts. Ticks are a common blood-sucking parasite, which spread many pathogens that cause serious diseases such as Lyme disease to people. Ixodid ticks can take up to three blood meals in their life. During the long process of waiting for their host in the wild, they have evolved a strong ability to tolerate hunger, which should not take more than a year. To study these tenacious molecular regulatory mechanisms, we conducted the DIA quantitative proteomics technology to perform large-scale protein quantitative research on various tissues of Haemaphysalis longicornis starved for a long time. Through the analysis of thousands of proteins produced by the performed research, the results showed that many proteins in the ticks starved for a long time had expressed quantitative changes such as the increased expression of some synthase enzymes. The large amount of data provided by this study can help to better understand the molecular mechanism of ticks’ long-term hunger tolerance. Although this study focuses on finding possible mechanisms for tick starvation resistance at the protein level, the current findings may well have a bearing on research about special activities such as ultra long-distance space travel in the dormant state of the human body in the future.
Collapse
Affiliation(s)
- Ningmei Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Han Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Aimeng Ji
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Ning Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Guomin Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Jingze Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
- * E-mail: (JL); (DOA); (HW)
| | - Desmond O. Agwunobi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
- * E-mail: (JL); (DOA); (HW)
| | - Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
- * E-mail: (JL); (DOA); (HW)
| |
Collapse
|
6
|
He S, Xue J, Cao P, Hou J, Cui Y, Chang J, Huang L, Han Y, Duan X, Tan K, Fan Y. JNK/Itch Axis Mediates the Lipopolysaccharide-Induced Ubiquitin-Proteasome-Dependent Degradation of Ferritin Light Chain in Murine Macrophage Cells. Inflammation 2021; 45:1089-1100. [PMID: 34837126 DOI: 10.1007/s10753-021-01603-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
Abstract
Ferritin, which is composed of a heavy chain and a light chain, plays a critical role in maintaining iron homeostasis by sequestering iron. The ferritin light chain (FTL) is responsible for the stability of the ferritin complex. We have previously shown that overexpression of FTL decreases the levels of the labile iron pool (LIP) and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-treated murine macrophage cells. The protein level of FTL was downregulated by LPS within a short treatment period. However, the mechanism underlying the LPS-induced changes in the FTL levels is not known. In the present study, we report that LPS induces the ubiquitin-proteasome-dependent degradation of FTL and that the mechanism of LPS-induced FTL degradation involves the JNK/Itch axis. We found that LPS downregulates the protein and mRNA levels of FTL in a time-dependent manner. The proteasome inhibitor MG-132 significantly reverses the LPS-induced decrease in FTL. Furthermore, we observed that LPS treatment cannot cause ubiquitination of the lysine site (K105 and K144) mutant of FTL. Interestingly, LPS-mediated ubiquitin-dependent degradation of FTL is significantly inhibited by the JNK-specific inhibitor SP600125. Moreover, LPS could upregulate the protein level of E3 ubiquitin ligase Itch, a substrate of JNK kinases. Immunoprecipitation analyses revealed an increase in the association of FTL with Itch, a substrate of JNK kinases, in response to LPS stimulation. SP600125 decreased LPS-induced Itch upregulation. Taken together, these results suggest that LPS stimulation leads to the degradation of FTL through the ubiquitin-proteasome proteolytic pathway, and this FTL degradation is mediated by the JNK/Itch axis in murine macrophage cells.
Collapse
Affiliation(s)
- Shufen He
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Jianqi Xue
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Pengxiu Cao
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Jianyuan Hou
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Yan Cui
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Jing Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Liying Huang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Yu Han
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Xianglin Duan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Ke Tan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China.
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
| | - Yumei Fan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China.
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
| |
Collapse
|
7
|
Zhang H, Jiao W, Cui H, Sun Q, Fan H. Combined exposure of alumina nanoparticles and chronic stress exacerbates hippocampal neuronal ferroptosis via activating IFN-γ/ASK1/JNK signaling pathway in rats. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125179. [PMID: 33858114 DOI: 10.1016/j.jhazmat.2021.125179] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/23/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Alumina nanoparticles (AlNPs) exposure causes hippocampal-dependent cognitive dysfunction. However, whether chronic stress exacerbates AlNPs-induced hippocampal lesion and its mechanism remains unclear. This study was aimed to investigate the combined effects and mechanisms of AlNPs and chronic stress on the hippocampal lesion. The behavioral tests demonstrated that combined exposure to AlNPs and chronic restraint stress (CRS) worsened both cognition and depression-like behavior than exposed to AlNPs and CRS alone. Microstructural and ultrastructural observations showed that combined exposure to AlNPs and CRS exacerbated hippocampal damage. Both AlNPs and CRS induced hippocampal neuronal ferroptosis, presenting as iron and glutamate metabolism disorder, GPX4 fluorescence of neurons decrease, LPO and ROS levels increase, and FJB-positive neurons increase. Meanwhile, combined exposure to AlNPs and CRS exacerbated hippocampal neuronal ferroptosis. Mechanism investigation revealed that combined exposure to AlNPs and CRS activated IFN-γ/ASK1/JNK signaling pathway. Furthermore, IFN-γ neutralizing antibody R4-6A2 effectively inhibited the activation of IFN-γ/ASK1/JNK signaling pathway, alleviated hippocampal neuronal ferroptosis and improved cognition ability. ASK1 inhibitor GS-4997 also improved hippocampal neuronal ferroptosis and cognitive dysfunction by inhibiting ASK1/JNK signaling pathway. Together, these results demonstrate that combined exposure to AlNPs and CRS exacerbates hippocampal neuronal ferroptosis via activating IFN-γ/ASK1/JNK signaling pathway.
Collapse
Affiliation(s)
- Haiyang Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenjing Jiao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hailin Cui
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qinghong Sun
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
8
|
Nuclear receptor coactivator 4-mediated ferritinophagy drives proliferation of dental pulp stem cells in hypoxia. Biochem Biophys Res Commun 2021; 554:123-130. [PMID: 33784507 DOI: 10.1016/j.bbrc.2021.03.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 01/18/2023]
Abstract
Nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy has been implicated in the ferroptosis in cancer cells and hematopoiesis in the bone marrow. However, the role of iron metabolism, especially NCOA4-mediated degradation of ferritin, has not been explored in the proliferation of mesenchymal stem cells. The present study was designed to explore the role of NCOA4-mediated ferritinophagy in hypoxia-treated dental pulp stem cells (DPSCs). Hypoxia treatment increased ROS generation, boosted cytosolic labile iron pool, increased expression of transferrin receptor 1 and NCOA4. Moreover, colocalization of LC3B with NCOA4 and ferritin was observed in hypoxia-treated DPSCs, indicating the development of ferritinophagy. Hypoxia promoted the proliferation of DPSCs, but not ferroptosis, under normal serum supplement and serum deprivation. NCOA4 knock-down reduced ferritin degradation and inhibited proliferation of DPSCs under hypoxia. Furthermore, the activation of hypoxia inducible factor 1α and p38 mitogen-activated protein kinase signaling pathway was involved in the upregulation of NCOA4 in hypoxia. Therefore, our present study suggested that NCOA4-mediated ferritinophagy promoted the level of labile iron pool, leading to enhanced iron availability and elevated cell proliferation of DPSCs. Our present study uncovered a physiological role of ferritinophagy in the proliferation and growth of mesenchymal stem cells under hypoxia.
Collapse
|
9
|
Effect of 8-Day Fasting on Leukocytes Expression of Genes and Proteins Involved in Iron Metabolism in Healthy Men. Int J Mol Sci 2021; 22:ijms22063248. [PMID: 33806756 PMCID: PMC8004801 DOI: 10.3390/ijms22063248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022] Open
Abstract
The popularity of fasting and restricted food intake is increasing. While the body's adaptability to dietary insufficiency is crucial for health, molecular mechanisms of adaptive changes are not well understood. Here, we compared the effects of fasting and exercise on the expression of leukocyte genes and proteins involved in the storage, export, and acquisition of iron, an essential element with physiological roles. Healthy men participated in the study (age, 30-70 years; body weight, 60-100 kg; body mass index, 20-29.9 kg/m2). The participants performed an exercise test with a gradually increasing intensity until the individual maximum exercise capacity was reached, before and after 8-d fast. Blood samples were collected before, immediately after, and 3 h after exercise. Gene expression was analyzed by reverse-transcription quantitative polymerase chain reaction and protein levels were analyzed by immunobloting. Eight days of total starvation diet affected the body composition and decreased exercise capacity. Further, fasting decreased the expression of genes associated with iron storage and export, and increased the expression of genes involved in iron acquisition. Conversely, only PCBP2 protein increased after fasting; however, an upward trend was apparent for all proteins. In conclusion, the body adapts to starvation by adjusting iron economy.
Collapse
|
10
|
Mieszkowski J, Stankiewicz B, Kochanowicz A, Niespodziński B, Borkowska A, Antosiewicz J. Effect of Ischemic Preconditioning on Marathon-Induced Changes in Serum Exerkine Levels and Inflammation. Front Physiol 2020; 11:571220. [PMID: 33192567 PMCID: PMC7609818 DOI: 10.3389/fphys.2020.571220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/28/2020] [Indexed: 11/20/2022] Open
Abstract
Participation in a long-distance run, e.g., marathon or ultramarathon, continues to increase. One side effect of long-distance running is excessive inflammation manifested by the rise in inflammatory cytokine levels. We here aimed to elucidate the effects of 10-day ischemic preconditioning (IPC) training on marathon-induced inflammation and to evaluate the role of serum-stored iron in this process. The study involved 19 recreational runners taking part in a marathon. IPC training was performed in the course of four cycles, by inflating and deflating a blood pressure cuff at 5-min intervals (IPC group, n = 10); the control group underwent sham training (n = 9). The levels of inflammatory and others markers (FSTL-1, IL-6, IL-15, leptin, resistin, TIMP-1, OSM, and LIF) were measured before and 24 h after training; and before, immediately after, and 24 h and 7 day after the marathon. The 10-day IPC training increased serum leptin levels. IL-6, IL-10, FLST-1, and resistin levels were increased, while TIMP-1 levels were decreased in all runners after the marathon. The changes were significantly blunted in runners from the IPC group compared with the control group. Baseline serum iron levels correlated with IL-6 and FSTL-1 levels; serum ferritin correlated with IL-6, FSTL-1, and resistin levels after the marathon. Conversely, serum TIMP-1 levels inversely correlated with serum iron levels. Although not evident at baseline, IPC training significantly reduced marathon-induced inflammation. In addition, the reduced responsiveness and attenuation of running-induced inflammation were inversely related to baseline serum iron and ferritin levels.
Collapse
Affiliation(s)
- Jan Mieszkowski
- Department of Gymnastics and Dance, Gdańsk, University of Physical Education and Sport, Gdańsk, Poland
| | - Błażej Stankiewicz
- Department of Biomedical Basis of Physical Culture, Institute of Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Andrzej Kochanowicz
- Department of Gymnastics and Dance, Gdańsk, University of Physical Education and Sport, Gdańsk, Poland
| | - Bartłomiej Niespodziński
- Department of Anatomy and Biomechanics, Institute of Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Andżelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
11
|
Homocysteine-induced decrease in HUVEC cells' resistance to oxidative stress is mediated by Akt-dependent changes in iron metabolism. Eur J Nutr 2020; 60:1619-1631. [PMID: 32794021 PMCID: PMC7987610 DOI: 10.1007/s00394-020-02360-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Hyperhomocysteinemia is an independent risk factor for cardiovascular diseases and also promotes neuronal death in various neurodegenerative diseases. There is evidence that iron can mediate homocysteine (Hcy) toxicity. Thus, the aim of this study was to investigate the effect of Hcy on iron metabolism in HUVEC and SH-SY5Y cells. METHODS HUVEC and SH-SY5Y cells were treated with 3 mM Hcy for a defined time. RESULTS We demonstrate that Hcy induced the upregulation of ferritins type L and H in HUVEC cells in a time-dependent manner and had no effect on the ferritins in SH-SY5Y cells. The change in ferritin expression was preceded by a significant decrease in the cellular level of the active form of Akt kinase in HUVEC but not in SH-SY5Y cells. An increase in ferritin L and H protein levels was observed in the Akt1, Akt2, Akt3 siRNA transfected cells, while in the cells transfected with FOXO3a siRNA, a decrease in both ferritins levels was noticed. Moreover, in the HUVEC cells treated with Hcy for 6 days, the active form of kinase Akt returned to the control level and it was accompanied by a drop in ferritin L and H protein levels. Cytotoxicity of hydrogen peroxide significantly increased in HUVEC cells pre-treated with Hcy for 24 h. CONCLUSIONS These data indicate that Hcy induces an increase in cellular ferritin level, and the process is mediated by alterations in Akt-FOXO3a signaling pathway.
Collapse
|