1
|
Zhu Q, Zhang P, Liu D, Tang L, Yu J, Zhang C, Jiang G. Glucosinolate extract from radish ( Raphanus sativus L.) seed attenuates high-fat diet-induced obesity: insights into gut microbiota and fecal metabolites. Front Nutr 2024; 11:1442535. [PMID: 39176030 PMCID: PMC11340518 DOI: 10.3389/fnut.2024.1442535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Background Radish seed is a functional food with many beneficial health effects. Glucosinolates are characteristic components in radish seed that can be transformed into bioactive isothiocyanates by gut microbiota. Objective The present study aims to assess anti-obesity efficacy of radish seed glucosinolates (RSGs) and explored the underlying mechanisms with a focus on gut microbiota and fecal metabolome. Methods High-fat diet-induced obese mice were supplemented with different doses of RSGs extract for 8 weeks. Changes in body weight, serum lipid, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels; and pathological changes in the liver and adipose tissue were examined. Fecal metabolome and 16S rRNA gene sequencing were used to analyze alterations in fecal metabolite abundance and the gut microbiota, respectively. Results and conclusion Results showed that RSG extract prevented weight gain and decreased serum lipid, ALT, AST levels and lipid deposition in liver and epididymal adipocytes in obese mice. Treatment with RSG extract also increased gut microbiota diversity and altered the dominant bacteria genera in the gut microbiota, decreasing the abundance of Faecalibaculum and increasing the abundance of Allobaculum, Romboutsia, Turicibacter, and Akkermansia. Fecal metabolome results identified 570 differentially abundant metabolites, of which glucosinolate degradation products, such as sulforaphene and 7-methylsulfinylheptyl isothiocyanate, were significantly upregulated after RSG extract intervention. Furthermore, enrichment analysis of metabolic pathways showed that the anti-obesity effects of RSG extract may be mediated by alterations in bile secretion, fat digestion and absorption, and biosynthesis of plant secondary metabolites. Overall, RSG extract can inhibit the development of obesity, and the obesity-alleviating effects of RSG are related to alternative regulation of the gut microbiota and glucosinolate metabolites.
Collapse
Affiliation(s)
- Quanfeng Zhu
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Peng Zhang
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Daqun Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Leilei Tang
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Jiawen Yu
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guojun Jiang
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Hur GH, Lee TK, Cho YJ, Kim JH, Park JHY, Yang H, Lee KW. Optimization of cultivar, germination time and extraction for radish sprout extract with high sulforaphene content. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5010-5020. [PMID: 38314949 DOI: 10.1002/jsfa.13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Cruciferous vegetable sprout has been highlighted as a promising functional material rich in bioactive compounds called isothiocyanates (ITCs) and it can be grown in very short periods in controlled indoor farms. However, because ITCs content depends on multiple factors such as cultivar, germination time and myrosinase activity, those variables need to be controlled during germination or extraction to produce functional materials enriched in ITCs. Sulforaphene (SFEN), an ITC found primarily in radishes (Raphanus sativus L.), exerts beneficial effects on obesity. However, the optimal germination and extraction conditions for radish sprout (RSP) to increase SFEN content remain unascertained, and the extract's anti-obesity effect has yet to be evaluated. RESULTS The present study found that the SFEN content was highest in purple radish sprout (PRSP) among the six cultivars investigated. Optimal SFEN content occurred after 2 days of PRSP germination (2 days PRSP). To maximize the dry matter yield, total ITCs and SFEN contents in RSP extract, we found the optimal conditions for extracting PRSP [27.5 °C, 60 min, 1:75.52 solute/solvent (w/v), no ascorbic acid] using response surface methodology. Consistent with high SFEN content, 2 days PRSP extract significantly outperformed 3 days or 4 days PRSP extract in inhibiting lipid accumulation in 3T3-L1 cells. Moreover, 2 days PRSP extract suppressed adipogenesis and lipogenesis-related protein expression. CONCLUSION Regarding the cultivar, germination time and extraction conditions, optimally produced PRSP extract contains high SFEN content and exerts anti-obesity effects. Thus, we suggest PRSP extract as a potent functional material for obesity prevention. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gi Hyun Hur
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Tae Kyung Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Yeon-Jin Cho
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Jong Hun Kim
- Department of Food Science and Biotechnology, Sungshin University, Seoul, Republic of Korea
- Basic Science Research Institute, Sungshin University, Seoul, Republic of Korea
| | | | - Hee Yang
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang, Republic of Korea
- Center for Food and Bio convergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Spezzini J, Piragine E, Flori L, Calderone V, Martelli A. Natural H 2S-donors: A new pharmacological opportunity for the management of overweight and obesity. Phytother Res 2024; 38:2388-2405. [PMID: 38430052 DOI: 10.1002/ptr.8181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
The prevalence of overweight and obesity has progressively increased in the last few years, becoming a real threat to healthcare systems. To date, the clinical management of body weight gain is an unmet medical need, as there are few approved anti-obesity drugs and most require an extensive monitoring and vigilance due to risk of adverse effects and poor patient adherence/persistence. Growing evidence has shown that the gasotransmitter hydrogen sulfide (H2S) and, therefore, H2S-donors could have a central role in the prevention and treatment of overweight/obesity. The main natural sources of H2S-donors are plants from the Alliaceae (garlic and onion), Brassicaceae (e.g., broccoli, cabbage, and wasabi), and Moringaceae botanical families. In particular, polysulfides and isothiocyanates, which slowly release H2S, derive from the hydrolysis of alliin from Alliaceae and glucosinolates from Brassicaceae/Moringaceae, respectively. In this review, we describe the emerging role of endogenous H2S in regulating adipose tissue function and the potential efficacy of natural H2S-donors in animal models of overweight/obesity, with a final focus on the preliminary results from clinical trials. We conclude that organosulfur-containing plants and their extracts could be used before or in combination with conventional anti-obesity agents to improve treatment efficacy and reduce inflammation in obesogenic conditions. However, further high-quality studies are needed to firmly establish their clinical efficacy.
Collapse
Affiliation(s)
| | | | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, Pisa, Italy
- Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Center "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, Pisa, Italy
- Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Yu Y, Fu Q, Li J, Zen X, Li J. E3 ubiquitin ligase COP1-mediated CEBPB ubiquitination regulates the inflammatory response of macrophages in sepsis-induced myocardial injury. Mamm Genome 2024; 35:56-67. [PMID: 37980295 DOI: 10.1007/s00335-023-10027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
CCAAT/enhancer-binding protein beta (CEBPB) has been associated with sepsis. However, its role in sepsis-induced myocardial injury (SIMI) remains ill-defined. This research was designed to illustrate the involvement of CEBPB in SIMI and its upstream modifier. The transcriptomic changes in heart biopsies of mice that had undergone polymicrobial sepsis were downloaded from the GEO dataset for KEGG enrichment analysis. CEBPB, on the TNF signaling pathway, was significantly enhanced in the myocardial tissues of mice with SIMI. Downregulation of CEBPB alleviated SIMI, as evidenced by minor myocardial injury and inflammatory manifestations. Moreover, ubiquitination modification of CEBPB by constitutive photomorphogenesis protein 1 homolog (COP1) led to the degradation of CEBPB and inhibited inflammatory responses in macrophages. Upregulation of COP1 protected against SIMI in mice overexpressing CEBPB. Collectively, our findings demonstrated that COP1 protected the heart against SIMI through the ubiquitination modification of CEBPB, which might be a novel therapeutic approach in the future.
Collapse
Affiliation(s)
- Yangzi Yu
- Department of Geriatrics, Tianjin Nankai Hospital, Tianjin, 300102, P.R. China
| | - Qiang Fu
- Department of Critical Care Medicine, Tianjin Forth Central Hospital, No. 3, Zhongshan Road, Hebei District, Tianjin, 300142, P.R. China.
| | - Jiarui Li
- Department of Geriatrics, Tianjin Nankai Hospital, Tianjin, 300102, P.R. China
| | - Xianming Zen
- Department of Geriatrics, Tianjin Nankai Hospital, Tianjin, 300102, P.R. China
| | - Jing Li
- Department of Ultrasound, Tianjin Nankai Hospital, Tianjin, 300102, P.R. China
| |
Collapse
|
5
|
Lee TK, Hur G, Kim JH, Park JHY, Yang H, Lee KW. Micro-grinding-based production for sulforaphene-enriched radish seeds extract via facilitating glucosinolates-myrosinase reaction, and evaluation of its anti-adipogenic effects. Food Chem 2023; 429:136864. [PMID: 37506660 DOI: 10.1016/j.foodchem.2023.136864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Sulforaphene (SFEN), an isothiocyanate (ITC) abundant in radish (Raphanus sativus) seeds (RS), has many health benefits, including anti-obesity effects. SFEN content is affected by multiple factors during processing, such as glucoraphenin (GLE) (the precursor of SFEN) availability, myrosinase (essential for conversion from GLE to SFEN) activity, and SFEN stability. We examined the physiochemical-properties and anti-adipogenic effects of SFEN-enriched RSE produced by two processes, roasting and micro-grinding. The roasting process lowered SFEN content and myrosinase activity over 50 °C. However, among micro-grinding conditions, smaller particle size (#2 grind, ≈11.31 μm) more effectively increased SFEN content in RS compared to larger particles (#1 grind, ≈ 179.50 μm) by accelerating available GLE and myrosinase release from RS. Grind #2 also effectively inhibited the adipogenesis of 3T3-L1 pre-adipocytes compared to #1. Thus, micro-grinding can be suggested for producing SFEN-enriched RSE with anti-adipogenic activity as a functional material for obesity prevention or treatment.
Collapse
Affiliation(s)
- Tae Kyung Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Gihyun Hur
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Hun Kim
- Department of Food Science and Biotechnology, Sungshin University, Seoul 01133, Republic of Korea; Basic Science Research Institute, Sungshin University, Seoul 01133, Republic of Korea
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee Yang
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Center for Food and Bio convergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Kim MS, Baek JH, Lee J, Sivaraman A, Lee K, Chun KH. Deubiquitinase USP1 enhances CCAAT/enhancer-binding protein beta (C/EBPβ) stability and accelerates adipogenesis and lipid accumulation. Cell Death Dis 2023; 14:776. [PMID: 38012162 PMCID: PMC10681981 DOI: 10.1038/s41419-023-06317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Dysregulation of the ubiquitin-proteasome system has been implicated in the pathogenesis of several metabolic disorders, including obesity, diabetes, and non-alcoholic fatty liver disease; however, the mechanisms controlling pathogenic metabolic disorders remain unclear. Transcription factor CCAAT/enhancer binding protein beta (C/EBPβ) regulates adipogenic genes. The study showed that the expression level of C/EBPβ is post-translationally regulated by the deubiquitinase ubiquitin-specific protease 1 (USP1) and that USP1 expression is remarkably upregulated during adipocyte differentiation and in the adipose tissue of mice fed a high-fat diet (HFD). We found that USP1 directly interacts with C/EBPβ. Knock-down of USP1 decreased C/EBPβ protein stability and increased its ubiquitination. Overexpression of USP1 regulates its protein stability and ubiquitination, whereas catalytic mutant of USP1 had no effect on them. It suggests that USP1 directly deubiquitinases C/EBPβ and increases the protein expression, leading to adipogenesis and lipid accumulation. Notably, the USP1-specific inhibitor ML323-originally developed to sensitize cancer cells to DNA-damaging agents-decreased adipocyte differentiation and lipid accumulation in 3T3-L1 cells without cytotoxicity. Oral gavage of ML323 was administered to HFD-fed mice, which showed weight loss and improvement in insulin and glucose sensitivity. Both fat mass and adipocyte size in white adipose tissues were significantly reduced by ML323 treatment, which also reduced the expression of genes involved in adipogenesis and inflammatory responses. ML323 also reduced lipid accumulation, hepatic triglycerides, free fatty acids, and macrophage infiltration in the livers of HFD-fed mice. Taken together, we suggest that USP1 plays an important role in adipogenesis by regulating C/EBPβ ubiquitination, and USP1-specific inhibitor ML323 is a potential treatment option and further study by ML323 is needed for clinical application for metabolic disorders.
Collapse
Affiliation(s)
- Myung Sup Kim
- Department of Biochemistry & Molecular Biology, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Seoul, Republic of Korea
- Institute of Genetic Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jung-Hwan Baek
- Department of Biochemistry & Molecular Biology, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Seoul, Republic of Korea
- Institute of Genetic Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - JinAh Lee
- Department of Biochemistry & Molecular Biology, Seoul, Republic of Korea
| | - Aneesh Sivaraman
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry & Molecular Biology, Seoul, Republic of Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Seoul, Republic of Korea.
- Institute of Genetic Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
7
|
Zhou Y, Zhang B, Wang Y, Hu R. Effects of Sulforaphene on the Cariogenic Properties of Streptococcus Mutans In Vitro and Dental Caries Development In Vivo. Antibiotics (Basel) 2023; 12:1359. [PMID: 37760656 PMCID: PMC10525627 DOI: 10.3390/antibiotics12091359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Sulforaphene (SFE) is a common nutritional supplement with antibacterial, anti-cancer, and anti-inflammatory effects. However, the effects of SFE on the cariogenicity of Streptococcus mutans and dental caries have not been reported. The objectives of this study were to investigate the caries-controlling potential of SFE. The effects of SFE on S. mutans were investigated using the broth microdilution method, crystal violet staining, SEM observation, acid tolerance assays, lactic acid quantification, and polysaccharide measurements. A rat caries model was established to evaluate the caries-controlling effects and biocompatibility of SFE in vivo. SFE inhibited S. mutans growth and biofilm formation. Furthermore, SFE restrained the cariogenic properties of S. mutans, including its acid production, acid tolerance, and extracellular polysaccharide production, without affecting the bacterial viability at sub-inhibitory levels. In the rat caries model, SFE significantly arrested the onset and development of dental caries. Moreover, no visible hemolytic phenomenon or cytotoxicity was detected in the SFE groups. After four weeks of SFE treatment, all rats remained in apparent good health with no significant differences in weight gain; their hemogram and biochemical parameters were normal; no pathological changes were observed in the oral mucosa, liver, or kidneys. In conclusion, SFE was safe and inhibited the development of caries effectively.
Collapse
Affiliation(s)
- Yuehong Zhou
- The College of Renji, Wenzhou Medical University, Wenzhou 325000, China
| | - Binhan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- The College of Life Science, Sichuan University, Chengdu 610041, China
| | - Yufei Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rongdang Hu
- The College of Renji, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
8
|
Lee TK, Hur G, Choi J, Ban C, Kim JY, Yang H, Park JHY, Lee KW, Kim JH. Enhancing stability and bioavailability of sulforaphene in radish seed extracts using nanoemulsion made with high oleic sunflower oil. Food Sci Biotechnol 2023; 32:1269-1279. [PMID: 37362810 PMCID: PMC10290006 DOI: 10.1007/s10068-023-01304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 04/07/2023] Open
Abstract
The effect of nanoemulsions on the stability and bioavailability of sulforaphene (SFEN) in radish seed extract (RSE) was investigated. Four types of oil were used as lipid ingredients of the nanoemulsions: soybean, high oleic acid sunflower, coconut, and hydrogenated palm oils. SFEN in RSE nanoemulsions showed greater stability to temperature, acid, and alkaline conditions than SFEN in RSE suspended in water (RSE-S). Particularly under alkaline conditions, the half-life of SFEN in the nanoemulsion with high oleic sunflower oil (RSE-HOSO) was 8 times longer than that of RSE-S. Furthermore, in the pharmacokinetics study, it was observed that AUC0-8 increased and oral clearance (CL/F) decreased significantly in rats orally administered RSE-HOSO compared with RSE-S (p < 0.05). This study indicates that the type of oil used in nanoemulsions affects the stability and bioavailability of SFEN in RSE. These results may provide a guideline for the development of functional foods containing RSE. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01304-2.
Collapse
Affiliation(s)
- Tae Kyung Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Gihyun Hur
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jeongyoon Choi
- Department of Next Generation Applied Sciences, Graduate School, Sungshin Women’s University, Seoul, 01133 Republic of Korea
| | - Choongjin Ban
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504 Republic of Korea
| | - Jong-Yea Kim
- Department of Food Science and Biotechnology, Institute of Fermentation and Brewing, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Hee Yang
- Department of Food and Nutrition, Kookmin University, Seoul, 02707 Republic of Korea
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, Seoul, 08826 Republic of Korea
| | - Ki Won Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, 08826 Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229 Republic of Korea
| | - Jong Hun Kim
- Department of Food Science and Biotechnology, Institute for Basic Sciences, Sungshin Women’s University, Seoul, 01133 Republic of Korea
| |
Collapse
|
9
|
Shin SH, Hur G, Kim NR, Park JHY, Lee KW, Yang H. A machine learning-integrated stepwise method to discover novel anti-obesity phytochemicals that antagonize the glucocorticoid receptor. Food Funct 2023; 14:1869-1883. [PMID: 36723137 DOI: 10.1039/d2fo03466b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
As a type of stress hormone, glucocorticoids (GCs) affect numerous physiological pathways by binding to the glucocorticoid receptor (GR) and regulating the transcription of various genes. However, when GCs are dysregulated, the resulting hypercortisolism may contribute to various metabolic disorders, including obesity. Thus, attempts have been made to discover potent GR antagonists that can reverse excess-GC-related metabolic diseases. Phytochemicals are a collection of valuable bioactive compounds that are known for their wide variety of chemotypes. Recently, various computational methods have been developed to obtain active phytochemicals that can modulate desired target proteins. In this study, we developed a workflow comprising two consecutive quantitative structure-activity relationship-based machine learning models to discover novel GR-antagonizing phytochemicals. These two models collectively identified 65 phytochemicals that bind to and antagonize GR. Of these, nine commercially available phytochemicals were validated for GR-antagonist and anti-obesity activities. In particular, we confirmed that demethylzeylasteral, a phytochemical of the Tripterygium wilfordii Radix, exhibits potent anti-obesity activity in vitro through GR antagonism.
Collapse
Affiliation(s)
- Seo Hyun Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Gihyun Hur
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Na Ra Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jung Han Yoon Park
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea. .,Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| | - Hee Yang
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
10
|
Hwang HJ, Kim JE, Lee KW. Sulforaphene Attenuates Cutibacterium acnes-Induced Inflammation. J Microbiol Biotechnol 2022; 32:1390-1395. [PMID: 36437519 PMCID: PMC9720075 DOI: 10.4014/jmb.2209.09051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022]
Abstract
Acne is a chronic inflammatory disease of the sebaceous gland attached to the hair follicles. Cutibacterium acnes is a major cause of inflammation caused by acne. It is well known that C. acnes secretes a lipolytic enzyme to break down lipids in sebum, and free fatty acids produced at this time accelerate the inflammatory reaction. There are several drugs used to treat acne; however, each one has various side effects. According to previous studies, sulforaphene (SFEN) has several functions associated with lipid metabolism, brain function, and antibacterial and anti-inflammatory activities. In this study, we examined the effects of SFEN on bacterial growth and inflammatory cytokine production induced by C. acnes. The results revealed that SFEN reduced the growth of C. acnes and inhibited proinflammatory cytokines in C. acnes-treated HaCaT keratinocytes through inhibiting NF-κB-related pathways. In addition, SFEN regulated the expression level of IL-1α, a representative pro-inflammatory cytokine expressed in co-cultured HaCaT keratinocytes and THP-1 monocytes induced by C. acnes. In conclusion, SFEN showed antibacterial activity against C. acnes and controlled the inflammatory response on keratinocytes and monocytes. This finding means that SFEN has potential as both a cosmetic material for acne prevention and a pharmaceutical material for acne treatment.
Collapse
Affiliation(s)
- Hwan Ju Hwang
- WCU Biomodulation Major and Research Institute of Agriculture and Life Sciences, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Eun Kim
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea,Corresponding authors J.E. Kim Phone: +82-43-820-5245 Fax: +82-43-820-5240 E-mail:
| | - Ki Won Lee
- WCU Biomodulation Major and Research Institute of Agriculture and Life Sciences, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea,
K.W. Lee Phone: +82-2-880-4661 Fax: +82-2-878-6178 E-mail:
| |
Collapse
|
11
|
Li N, Wu X, Zhuang W, Wu C, Rao Z, Du L, Zhou Y. Cruciferous vegetable and isothiocyanate intake and multiple health outcomes. Food Chem 2021; 375:131816. [PMID: 34929422 DOI: 10.1016/j.foodchem.2021.131816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/22/2021] [Accepted: 12/05/2021] [Indexed: 02/05/2023]
Abstract
Isothiocyanates, bioactive phytochemicals of cruciferous vegetables, have chemopreventative efficacy. To clarify evidence of associations between cruciferous vegetable and isothiocyanate intake and various health outcomes, we conducted an umbrella review of meta-analyses and systematic reviews in humans. A total of 413 articles were identified, and 57 articles with 24 health outcomes were included. Consumption of cruciferous vegetables was associated with a reduced risk of all-cause mortality, cancers, and depression. Dose-response analyses revealed that a per 100 g/d increment was associated with a 10% decrease in the risk of all-cause mortality. Warfarin resistance caused by vitamin K-rich broccoli was reported. Caution was warranted for those allergies/hypersensitivities to the Brassica genus. The intake of cruciferous vegetables is generally safe and beneficial in humans. However the quality of the majority (68%) of evidence was low.
Collapse
Affiliation(s)
- Ni Li
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoting Wu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Zhuang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chuncheng Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyong Rao
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Du
- Chinese Evidence-based Medicine/Cochrane Center, Chengdu 610041, China
| | - Yong Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Ortega-Hernández E, Antunes-Ricardo M, Jacobo-Velázquez DA. Improving the Health-Benefits of Kales ( Brassica oleracea L. var. acephala DC) through the Application of Controlled Abiotic Stresses: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2629. [PMID: 34961097 PMCID: PMC8706317 DOI: 10.3390/plants10122629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022]
Abstract
Kale (Brassica oleracea L. var. acephala DC) is a popular cruciferous vegetable originating from Central Asia, and is well known for its abundant bioactive compounds. This review discusses the main kale phytochemicals and emphasizes molecules of nutraceutical interest, including phenolics, carotenoids, and glucosinolates. The preventive and therapeutic properties of kale against chronic and degenerative diseases are highlighted according to the most recent in vitro, in vivo, and clinical studies reported. Likewise, it is well known that the application of controlled abiotic stresses can be used as an effective tool to increase the content of phytochemicals with health-promoting properties. In this context, the effect of different abiotic stresses (saline, exogenous phytohormones, drought, temperature, and radiation) on the accumulation of secondary metabolites in kale is also presented. The information reviewed in this article can be used as a starting point to further validate through bioassays the effects of abiotically stressed kale on the prevention and treatment of chronic and degenerative diseases.
Collapse
Affiliation(s)
- Erika Ortega-Hernández
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León C.P. 64849, Mexico;
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León C.P. 64849, Mexico;
| | - Daniel A. Jacobo-Velázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco C.P. 45138, Mexico
| |
Collapse
|
13
|
Gao L, Du F, Wang J, Zhao Y, Liu J, Cai D, Zhang X, Wang Y, Zhang S. Examination of the differences between sulforaphane and sulforaphene in colon cancer: A study based on next-generation sequencing. Oncol Lett 2021; 22:690. [PMID: 34457045 PMCID: PMC8358736 DOI: 10.3892/ol.2021.12951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 06/08/2021] [Indexed: 12/29/2022] Open
Abstract
Sulforaphane and sulforaphene are isothiocyanate compounds derived from cruciferous vegetables that have demonstrated antiproliferative properties against colon cancer. However, the underlying mechanism of action of these two compounds has yet to be elucidated. The aim of the present study was to examine the effects of sulforaphane and sulforaphene on colon cancer using next-generation sequencing (NGS). The SW480 colon cancer cell line was cultured with 25 µmol/l sulforaphane or sulforaphene. Total RNA was extracted from the cells following 48 h of incubation with these compounds, and NGS was performed. Pearson's correlation and principal component analyses were performed on the NGS data in order to determine sample homogeneity followed by hierarchical clustering, chromosomal location, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. A total of 873 probes in the sulforaphene group were differentially expressed compared with the control group. Similarly, 959 probes in the sulforaphane group were differentially expressed compared with the control group. The differentially expressed genes were dispersed on the chromosomes, across 22 pairs of autosomes, as well as the X and Y chromosomes. GO and KEGG analyses demonstrated that both drugs affected the ‘p53 signaling pathway’, ‘MAPK signaling pathway’, ‘FOXO signaling pathway’ and ‘estrogen signaling pathway’, while ‘Wnt signaling pathway’ was enriched in the sulforaphane group, and ‘ubiquitin mediated proteolysis’ and ‘estrogen signaling pathway’ in the sulforaphene group. Thus, sulforaphane and sulforaphene exhibited similar biological activities on colon cancer cells. Sulforaphane and sulforaphene may be associated with Wnt and estrogen signaling, respectively.
Collapse
Affiliation(s)
- Lei Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| | - Fengying Du
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuhua Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| | - Junhua Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| | - Da Cai
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| | - Xiao Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| | - Yutao Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| | - Shuqiu Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, P.R. China.,Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, P.R. China
| |
Collapse
|
14
|
Han JH, Jang KW, Myung CS. Garcinia cambogia attenuates adipogenesis by affecting CEBPB and SQSTM1/p62-mediated selective autophagic degradation of KLF3 through RPS6KA1 and STAT3 suppression. Autophagy 2021; 18:518-539. [PMID: 34101546 DOI: 10.1080/15548627.2021.1936356] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The overexpansion of adipose tissues leads to obesity and eventually results in metabolic disorders. Garcinia cambogia (G. cambogia) has been used as an antiobesity supplement. However, the molecular mechanisms underlying the effects of G. cambogia on cellular processes have yet to be fully understood. Here, we discovered that G. cambogia attenuated the expression of CEBPB (CCAAT/enhancer binding protein (C/EBP), beta), an important adipogenic factor, suppressing its transcription in differentiated cells. In addition, G. cambogia inhibited macroautophagic/autophagic flux by decreasing autophagy-related gene expression and autophagosome formation. Notably, G. cambogia markedly elevated the expression of KLF3 (Kruppel-like factor 3 (basic)), a negative regulator of adipogenesis, by reducing SQSTM1/p62-mediated selective autophagic degradation. Furthermore, increased KLF3 induced by G. cambogia interacted with CTBP2 (C-terminal binding protein 2) to form a transcriptional repressor complex and inhibited Cebpa and Pparg transcription. Importantly, we found that RPS6KA1 and STAT3 were involved in the G. cambogia-mediated regulation of CEBPB and autophagic flux. In an obese animal model, G. cambogia reduced high-fat diet (HFD)-induced obesity by suppressing epididymal and inguinal subcutaneous white adipose tissue mass and adipocyte size, which were attributed to the regulation of targets that had been consistently identified in vitro. These findings provide new insight into the mechanism of G. cambogia-mediated regulation of adipogenesis and suggest molecular links to therapeutic targets for the treatment of obesity.
Collapse
Affiliation(s)
- Joo-Hui Han
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Keun-Woo Jang
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Chang-Seon Myung
- Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
15
|
Esteve M. Mechanisms Underlying Biological Effects of Cruciferous Glucosinolate-Derived Isothiocyanates/Indoles: A Focus on Metabolic Syndrome. Front Nutr 2020; 7:111. [PMID: 32984393 PMCID: PMC7492599 DOI: 10.3389/fnut.2020.00111] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
An inverse correlation between vegetable consumption and the incidence of cancer has long been described. This protective effect is stronger when cruciferous vegetables are specifically consumed. The beneficial properties of vegetables are attributed to their bioactive components like fiber, antioxidants vitamins, antioxidants, minerals, and phenolic compounds. Cruciferous vegetables contain all these molecules; however, what makes them different are their sulfurous components, called glucosinolates, responsible for their special smell and taste. Glucosinolates are inactive biologically in the organism but are hydrolyzed by the enzyme myrosinase released as a result of chewing, leading to the formation of active derivatives such as isothiocyanates and indoles. A considerable number of in vitro and in vivo studies have reported that isothiocyanates and indoles elicit chemopreventive potency through multiple mechanisms that include modulation of phases I and II detoxification pathway enzymes, regulation of cell cycle arrest, and control of cell growth, induction of apoptosis, antioxidant activity, anti-angiogenic effects, and epigenetic regulation. Nuclear erythroid 2-related factor 2 (Nrf2) and Nuclear factor-κB (NF-κB) are key and central regulators in all these processes with a main role in oxidative stress and inflammation control. It has been described that isothiocyanates and indoles regulate their activity directly and indirectly. Today, the metabolic syndrome (central obesity, insulin resistance, hyperlipidemia, and hypertension) is responsible for a majority of deaths worldwide. All components of metabolic syndrome are characterized by chronic inflammation with deregulation of the PI3K/AKT/mTOR, MAPK/EKR/JNK, Nrf2, and NF-κB signaling pathways. The effects of GLSs derivatives controlling these pathways have been widely described in relation to cancer. Changes in food consumption patterns observed in the last decades to higher consumption of ultra-processed foods, with elevation in simple sugar and saturated fat contents and lower consumption of vegetables and fruits have been directly correlated with metabolic syndrome prevalence. In this review, it is summarized the knowledge regarding the mechanisms by which cruciferous glucosinolate derivatives (isothiocyanates and indoles) directly and indirectly regulate these pathways. However, the review places a special focus on the knowledge of the effects of glucosinolates derivatives in metabolic syndrome, since this has not been reviewed before.
Collapse
Affiliation(s)
- Montserrat Esteve
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
- Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|