1
|
Wen W, Fan H, Zhang S, Hu S, Chen C, Tang J, You Y, Wang C, Li J, Luo L, Cheng Y, Zhou M, Zhao X, Tan T, Xu F, Fu X, Chen J, Dong P, Zhang X, Wang M, Feng Y. Associations between metabolic dysfunction-associated fatty liver disease and atherosclerotic cardiovascular disease. Am J Med Sci 2024; 368:557-568. [PMID: 38944203 DOI: 10.1016/j.amjms.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely related to metabolic syndrome and remains a major global health burden. The increased prevalence of obesity and type 2 diabetes mellitus (T2DM) worldwide has contributed to the rising incidence of NAFLD. It is widely believed that atherosclerotic cardiovascular disease (ASCVD) is associated with NAFLD. In the past decade, the clinical implications of NAFLD have gone beyond liver-related morbidity and mortality, with a majority of patient deaths attributed to malignancy, coronary heart disease (CHD), and other cardiovascular (CVD) complications. To better define fatty liver disease associated with metabolic disorders, experts proposed a new term in 2020 - metabolic dysfunction associated with fatty liver disease (MAFLD). Along with this new designation, updated diagnostic criteria were introduced, resulting in some differentiation between NAFLD and MAFLD patient populations, although there is overlap. The aim of this review is to explore the relationship between MAFLD and ASCVD based on the new definitions and diagnostic criteria, while briefly discussing potential mechanisms underlying cardiovascular disease in patients with MAFLD.
Collapse
Affiliation(s)
- Wen Wen
- Department of Cardiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, 313000, Zhejiang, China
| | - Hua Fan
- School of Clinical Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang 471003, Henan, China
| | - Shenghui Zhang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Siqi Hu
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Chen Chen
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Jiake Tang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Yao You
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Chunyi Wang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Jie Li
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Lin Luo
- Hangzhou Ruolin Hospital Management Co. Ltd, Hangzhou, 310007, China
| | - Yongran Cheng
- School of Public Health, Hangzhou Medical College, Hangzhou, 311300, China
| | - Mengyun Zhou
- Department of Molecular & Cellular Physiology, Shinshu University School of Medicine, 3900803, Japan
| | - Xuezhi Zhao
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Tao Tan
- Faculty of Applied Science, Macao Polytechnic University, Macao SAR, 999078, China
| | - Fangfang Xu
- Strategy Research and Knowledge Information Center, SAIC Motor Group, 200030, Shanghai, China
| | - Xinyan Fu
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Juan Chen
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Peng Dong
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Xingwei Zhang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China
| | - Mingwei Wang
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China.
| | - Yan Feng
- Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Institute of Cardiovascular Diseases, Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, 310015, Hangzhou Lin'an Fourth People's Hospital, Hangzhou 311321, China.
| |
Collapse
|
2
|
Yu X, Li M, Wang C, Guan X. Glycoprotein non-metastatic melanoma protein B (GPNMB): An attractive target in atherosclerosis. Biochem Biophys Res Commun 2024; 732:150386. [PMID: 39024681 DOI: 10.1016/j.bbrc.2024.150386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Atherosclerosis (AS), the leading cause of cardiovascular diseases, is heavily influenced by inflammation, lipid accumulation, autophagy, and aging. The expression of glycoprotein non-metastatic melanoma B (GPNMB) has been observed to correlate with lipid content, inflammation, and aging, progressively increasing as atherosclerosis advances through its various stages, from baseline to early and advanced phases. However, the interaction between GPNMB and AS is controversial. Knockout of GPNMB has been shown to increase atherosclerotic plaque burden in mice. Conversely, targeted elimination of GPNMB-positive cells reduced atherosclerotic burden. These seemingly contradictory findings underscore the complexity of the issue and highlight the need for further research to reconcile these discrepancies and to elucidate the precise role of GPNMB in the pathogenesis of AS.
Collapse
Affiliation(s)
- Xiaochen Yu
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Min Li
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Chao Wang
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Xiuru Guan
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China.
| |
Collapse
|
3
|
Jia D, Zhao M, Zhang X, Cheng X, Wei Q, Lou L, Zhao Y, Jin Q, Chen M, Zhang D. Transcriptomic analysis reveals the critical role of chemokine signaling in the anti-atherosclerosis effect of Xuefu Zhuyu decoction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118245. [PMID: 38679399 DOI: 10.1016/j.jep.2024.118245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The process of atherosclerosis (AS) is complicated. Transcriptomics technology can assist in discovering the underlying mechanisms and exploring the key targets of Traditional Chinese Medicine (TCM) against atherosclerosis. AIM This study aimed to investigate targets and signaling pathways significantly related to AS and the potential intervention targets of Xuefu Zhuyu decoction by transcriptomics. MATERIALS AND METHODS AS models were established by subjecting ApoE-/-mice to an 8-week high-fat diet. Structural changes and plaque formation in the aortic root were observed using hematoxylin-eosin staining (HE staining), while Oil Red O staining was employed to visualize lipid deposition within the aortic root plaque. Movat staining and immunohistochemical staining were conducted to examine the components present in the aortic root plaque. Macrophage content within the plaque was observed through immunofluorescence. Additionally, mRNA sequencing was performed on aortic tissues to identify differentially expressed genes. Enrichment analysis was performed using GO and KEGG analysis. Visualization of the protein-protein interaction (PPI) network was achieved using Cytoscape 3.7.1 and STRING. Western blotting (WB) was employed to assess the protein expression of major differentially expressed genes in the aortic tissue. The drug freeze-dried powder of Xuefu Zhuyu decoction was prepared and the RAW264.7 cells were induced by lipopolysaccharide (LPS) to build an in vitro model. Real-time quantitative PCR was employed to measure the mRNA expression of major differential genes. RESULTS After ApoE-/- mice were fed with an 8-week high-fat diet, observable changes included the thinning of the aortic root wall, the accumulation of foam cells within the plaque, and the formation of cholesterol crystals in the model group. Treatment with Xuefu Zhuyu (XFZY) decoction for 12 weeks significantly reduced the lipid deposition and the number of macrophages (P < 0.05) and significantly increased the collagen content within the plaque (P < 0.01). Enrichment analysis revealed a high enrichment of the Cytokine-cytokine receptor interaction pathway and Chemokine signaling pathway. Noteworthy genes involved in this response included Ccl12, Ccl22, Cx3cr1, Ccr7, Ccr2, Tnfrsf25, and Gdf5. Xuefu Zhuyu decoction significantly downregulated the expression of CX3CL1 and CX3CR1 (P < 0.05) and upregulated the expression of GDF5 (P < 0.01). Compared with control group, in cell models, the mRNA expressions of Ccl12, Ccl22, and Ccr2 were significantly upregulated (P < 0.05 or P < 0.01). Xuefu Zhuyu decoction significantly downregulated the expression of Ccl12, Ccl22, Cx3cr1, Ccr7 and Ccr2 (P < 0.05 or P < 0.01). CONCLUSION Xuefu Zhuyu decoction demonstrates effective regulation of plaque components, retarding plaque progression and preserving plaque stability by modulating lipid metabolism and inflammatory responses. Subsequent transcriptome analysis identified the Cytokine-cytokine receptor interaction and Chemokine signaling pathway as potential key pathways for the therapeutic effects of Xuefu Zhuyu decoction. This insight not only provides crucial avenues for further exploration into the mechanisms underlying Xuefu Zhuyu decoction but also offers valuable perspectives and hypotheses for enhancing disease prevention and treatment strategies.
Collapse
Affiliation(s)
- Dongdong Jia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Mengzhu Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Xinyue Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Department of Research and Teaching, Beijing Hepingli Hospital, Beijing, 100010, China.
| | - Xu Cheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Qiong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Lixia Lou
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yizhou Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Qiushuo Jin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dongmei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
4
|
Flesher K, Mathew A, Borovskiy Y, Laudanski K. Examination of Postoperative Changes in Lipid Profile and Glycemic Markers After Coronary Artery Bypass Graft, Percutaneous Intervention Vs Aortic Valve Replacement Demonstrated a Shift in Risk Factors for Coronary Artery Disease. J Multidiscip Healthc 2024; 17:4559-4569. [PMID: 39371402 PMCID: PMC11453132 DOI: 10.2147/jmdh.s470819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/24/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Surgery-related stress may affect the metabolome, leading to abnormal lipid profiles and ineffective glycemic control. Here, we gauge these changes as they may accelerate atherosclerosis, limiting the benefits of interventions aimed at improving coronary artery disease (CAD) progression. Patients and Methods Electronic medical records were queried to identify patients undergoing coronary artery bypass grafting (CABG), percutaneous coronary intervention (PCI), or aortic valve replacement (AVR). 7573 records denoted lipid profile (cholesterol, LDL, HDL, VLDL, triglycerides) and glucose metabolism impairment (HbA1c). Pre-procedure lipid and glucose laboratory values were compared with periods representing acute periprocedural inflammation (1-3 months), resolution of acute inflammation (3-6 months), convalescence (6-12 months), and medium- (1-2 years), and long-term periods (2-5 years). Results Baseline values differed between groups (AVR: Cholesterol↑↓, LDL↓↑, HDL↓, Triglycerides↑, HbA1c↓; CABG: Cholesterol↓, LDL↓, HDL↓, Triglycerides↓, HbA1c↓; PCI: Cholesterol↑↓, LDL↑↓, HDL↑↓, Triglycerides↓, HbA1c↓). Interestingly, total cholesterol and LDL had opposite trajectories after CABG vs AVR even five years after surgical procedure and the effects were moderate as denoted by d-Cohen statistics. HDL declined acutely after CABG and AVR but not after PCI. Triglycerides were elevated for 2 years after AVR but depressed after CABG and PCI. HbA1c remained depressed for up to 5 years after any studied procedure. Conclusion Our data suggest surgical procedures result in prolonged lipid profile and glycemic metabolism disturbances, particularly after aortic valve replacement, indicating more aggressive post-surgical treatment of these metabolic abnormalities may be warranted.
Collapse
Affiliation(s)
- Kelley Flesher
- Department of Neurology, Division of Neurocritical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Amal Mathew
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Yuliya Borovskiy
- Corporate Informational Service, Penn Medicine, Philadelphia, PA, USA
- Data Analytics Core, Penn Medicine, Philadelphia, PA, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Chiribao ML, Díaz-Viraqué F, Libisch MG, Batthyány C, Cunha N, De Souza W, Parodi-Talice A, Robello C. Paracrine Signaling Mediated by the Cytosolic Tryparedoxin Peroxidase of Trypanosoma cruzi. Pathogens 2024; 13:67. [PMID: 38251374 PMCID: PMC10818299 DOI: 10.3390/pathogens13010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Peroxiredoxins are abundant and ubiquitous proteins that participate in different cellular functions, such as oxidant detoxification, protein folding, and intracellular signaling. Under different cellular conditions, peroxiredoxins can be secreted by different parasites, promoting the induction of immune responses in hosts. In this work, we demonstrated that the cytosolic tryparedoxin peroxidase of Trypanosoma cruzi (cTXNPx) is secreted by epimastigotes and trypomastigotes associated with extracellular vesicles and also as a vesicle-free protein. By confocal microscopy, we show that cTXNPx can enter host cells by an active mechanism both through vesicles and as a recombinant protein. Transcriptomic analysis revealed that cTXNPx induces endoplasmic reticulum stress and interleukin-8 expression in epithelial cells. This analysis also suggested alterations in cholesterol metabolism in cTXNPx-treated cells, which was confirmed by immunofluorescence showing the accumulation of LDL and the induction of LDL receptors in both epithelial cells and macrophages. BrdU incorporation assays and qPCR showed that cTXNPx has a mitogenic, proliferative, and proinflammatory effect on these cells in a dose-dependent manner. Importantly, we also demonstrated that cTXNPx acts as a paracrine virulence factor, increasing the susceptibility to infection in cTXNPx-pretreated epithelial cells by approximately 40%. Although the results presented in this work are from in vitro studies and likely underestimate the complexity of parasite-host interactions, our work suggests a relevant role for this protein in establishing infection.
Collapse
Affiliation(s)
- María Laura Chiribao
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11000, Uruguay;
- Laboratorio de Interacciones Hospedero–Patógeno—UBM, Institut Pasteur Montevideo, Montevideo 11000, Uruguay; (F.D.-V.); (M.G.L.)
| | - Florencia Díaz-Viraqué
- Laboratorio de Interacciones Hospedero–Patógeno—UBM, Institut Pasteur Montevideo, Montevideo 11000, Uruguay; (F.D.-V.); (M.G.L.)
| | - María Gabriela Libisch
- Laboratorio de Interacciones Hospedero–Patógeno—UBM, Institut Pasteur Montevideo, Montevideo 11000, Uruguay; (F.D.-V.); (M.G.L.)
| | - Carlos Batthyány
- Laboratory of Vascular Biology and Drug Development, Institut Pasteur Montevideo, Montevideo 11000, Uruguay;
| | - Narcisa Cunha
- Instituto de Biofísica Carlos Chagas Filho, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (N.C.); (W.D.S.)
| | - Wanderley De Souza
- Instituto de Biofísica Carlos Chagas Filho, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (N.C.); (W.D.S.)
| | - Adriana Parodi-Talice
- Laboratorio de Interacciones Hospedero–Patógeno—UBM, Institut Pasteur Montevideo, Montevideo 11000, Uruguay; (F.D.-V.); (M.G.L.)
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Montevideo 11000, Uruguay
| | - Carlos Robello
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo 11000, Uruguay;
- Laboratorio de Interacciones Hospedero–Patógeno—UBM, Institut Pasteur Montevideo, Montevideo 11000, Uruguay; (F.D.-V.); (M.G.L.)
| |
Collapse
|
6
|
Fu J, Liang Y, Shi Y, Yu D, Wang Y, Chen P, Liu S, Lu F. HuangQi ChiFeng decoction maintains gut microbiota and bile acid homeostasis through FXR signaling to improve atherosclerosis. Heliyon 2023; 9:e21935. [PMID: 38034657 PMCID: PMC10685252 DOI: 10.1016/j.heliyon.2023.e21935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Huangqi Chifeng Decoction (HQCFT), a traditional Chinese medicine preparation, has long been used to treat cardiovascular and cerebrovascular diseases. However, the mechanism of the beneficial effect of HQCFT on atherosclerosis remains to be explored. In this work, to investigate the effects of HQCFT on bile acid (BA) metabolism and the gut microbiome in atherosclerosis, ApoE-/- mice were fed a with high-fat diet for 16 weeks to establish the AS model. HQCFT(1.95 g kg-1 and 3.9 g kg-1 per day) was administered intragastrically for 8 weeks to investigate the regulatory effects of HQCFT on gut microbiota and bile acid metabolism and to inhibit the occurrence and development of AS induced by a high-fat diet. Histopathology, liver function and blood lipids were used to assess whether HQCFT can reduce plaque area, regulate lipid levels and alleviate liver steatosis in AS mice. In addition, 16S rDNA sequencing was used to screen the gut microbiota structure, and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC‒MS/MS) was used to determine the bile acid profile. The mRNA and protein expression levels of bile acid metabolism were detected by RT‒PCR and WB to find the potential correlation. Results: HQCFT can regulate gut microbiota disorders, which was achieved by increasing gut microbiota diversity and altering Proteobacteria, Desulfobacterota, Deferribacteres, Rodentibacter, Parasutterella, and Mucispirillum interference abundance to improve AS-induced gut microbiota. HQCFT can also adjust the content of bile acids (TCA, LCA, DCA, TDCA, TLCA, UDCA, etc.), regulate bile acid metabolism, relieve liver fat accumulation, and inhibit the process of AS. In addition, HQCFT can restore the abnormal metabolism of bile acid caused by AS by regulating the expression of farnesoid X receptor (FXR), liver X receptor α (LXRα), ABCA1, ABCG1 and CYP7A1. Conclusion: HQCFT may play a part in the prevention of atherosclerosis by inhibiting the FXR/LXRα axis, increasing the expression of CYP7A1 in the liver, and regulating the interaction between the gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Jiaqi Fu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yuqin Liang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yunhe Shi
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Donghua Yu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Pingping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Zhang H, Wang J, Sun J, Wang Q, Guo L, Ju X. Regulatory mechanism underlying liver X receptor effects on the tumor microenvironment, inflammation and tumorigenesis. Expert Opin Ther Targets 2023; 27:989-998. [PMID: 37753584 DOI: 10.1080/14728222.2023.2264513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Liver X receptors (LXRs) have emerged as novel targets for tumor treatment. LXRs within the tumor microenvironment show the capacity to impact tumorigenesis and tumor development by regulating the infiltration of immune cells and release of cytokines to moderate inflammation. AREAS COVERED In this review, we present a systematic description of recent progress in understanding the impact of LXRs on the tumor microenvironment and tumorigenesis. We also summarize the antitumor effects mediated by LXRs via their regulation of cytokine expression. Additionally, we discuss the limitations of LXR research in tumor studies to date. EXPERT OPINION Previous studies have demonstrated abnormal LXR expression in tumor tissues, and activation of LXRs has been shown to inhibit tumorigenesis and promote apoptosis in tumor cells. However, LXRs can also affect tumorigenesis by regulating immune cell functions within the tumor immune microenvironment. By summarizing the impact of LXRs on immune cells, we provide new insights into the multifaceted nature of LXRs as antitumor targets.
Collapse
Affiliation(s)
- Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Jing Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiang Sun
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lanfang Guo
- Department of Clinical Laboratory Medicine, The Fourth People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Gou T, Hu M, Xu M, Chen Y, Chen R, Zhou T, Liu J, Guo L, Ao H, Ye Q. Novel wine in an old bottle: Preventive and therapeutic potentials of andrographolide in atherosclerotic cardiovascular diseases. J Pharm Anal 2023; 13:563-589. [PMID: 37440909 PMCID: PMC10334359 DOI: 10.1016/j.jpha.2023.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) frequently results in sudden death and poses a serious threat to public health worldwide. The drugs approved for the prevention and treatment of ASCVD are usually used in combination but are inefficient owing to their side effects and single therapeutic targets. Therefore, the use of natural products in developing drugs for the prevention and treatment of ASCVD has received great scholarly attention. Andrographolide (AG) is a diterpenoid lactone compound extracted from Andrographis paniculata. In addition to its use in conditions such as sore throat, AG can be used to prevent and treat ASCVD. It is different from drugs that are commonly used in the prevention and treatment of ASCVD and can not only treat obesity, diabetes, hyperlipidaemia and ASCVD but also inhibit the pathological process of atherosclerosis (AS) including lipid accumulation, inflammation, oxidative stress and cellular abnormalities by regulating various targets and pathways. However, the pharmacological mechanisms of AG underlying the prevention and treatment of ASCVD have not been corroborated, which may hinder its clinical development and application. Therefore, this review summarizes the physiological and pathological mechanisms underlying the development of ASCVD and the in vivo and in vitro pharmacological effects of AG on the relative risk factors of AS and ASCVD. The findings support the use of the old pharmacological compound ('old bottle') as a novel drug ('novel wine') for the prevention and treatment of ASCVD. Additionally, this review summarizes studies on the availability as well as pharmaceutical and pharmacokinetic properties of AG, aiming to provide more information regarding the clinical application and further research and development of AG.
Collapse
Affiliation(s)
- Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Minghao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Min Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuchen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junjing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
9
|
Changing trends of obesity and lipid profiles among Bangkok school children after comprehensive management of the bright and healthy Thai kid project. BMC Public Health 2022; 22:1323. [PMID: 35810278 PMCID: PMC9271254 DOI: 10.1186/s12889-022-13712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Background Cardiovascular diseases are the world’s leading cause of death. Children in Thailand are currently facing obesity, hyperlipidemia, and high atherogenic indices. This study aimed to assess the success of the Bright and Healthy Thai Kid project in reducing obesity and high lipid profiles among Bangkok school children. Methods A community-based, intervention (participatory action) with pre-post comparison of anthropometric and lipid profile data was conducted in five randomly selected Bangkok primary schools. The participatory action involved teachers, students, and parents. Data collection on anthropometric measurements, dietary intake, physical activity, and fasting blood samples of three generations of students was carried out during July–August (midterm months in Thailand) in the years 2004, 2017, and 2019. SPSS for Windows, version 16 was used for data analysis. Results Comparing the data from 2004, 2017, and 2019, obesity rates of 19.3 in 2004 gradually declined to 16.9 and 15.6 in 2017 and 2019 (P < 0.001). High serum total cholesterol, triglyceride, LDL-C, and atherogenic indices decreased significantly (p < 0.001). Conclusions We believe that the great time and effort expended for a campaign to reduce rates of obesity and hyperlipidemia in school children does work to prevent future cardiovascular diseases. Long-term investment in national programs is required to achieve whole societal involvement in improving knowledge and skills related to health, nutrition, and healthy food choices. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-13712-w.
Collapse
|
10
|
Kytikova OY, Novgorodtseva TP, Denisenko YK, Antonyuk MV, Gvozdenko TA, Atamas OV. Brain-Derived Neurotrophic Factor And Coronary Artery Disease. RUSSIAN OPEN MEDICAL JOURNAL 2022. [DOI: 10.15275/rusomj.2022.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Coronary artery disease (CAD) is defined as myocardial damage developing as a result of its organic and functional changes, and leading to impaired blood flow through the coronary arteries. An important pathogenetic component of CAD is atherosclerosis. Currently, key aspects of the molecular relationship between inflammation and atherosclerosis are being actively studied, the immunometabolic theory of atherosclerosis is being discussed, along with an involvement of perivascular adipose tissue in the pathogenesis of this pathology, due to its ability to respond to atherogenic stimuli via developing inflammatory reactions. Evidence has been accumulated that in patients with CAD, both in their blood and perivascular adipose tissue, the level of neurotrophic factors (in particular, brain-derived neurotrophic factor, BDNF) changes, which may be a promising area of research from the standpoint of studying this factor as a therapeutic target for atherosclerosis in CAD. Neurotrophic growth factors control the functioning of both immune and nervous systems, and the balance of energy metabolism and innervation of adipose tissue. They affect vascular homeostasis, and are also involved in causing and stopping inflammation. Currently, there are data on the role of BDNF in the pathogenesis of cardiovascular, neurodegenerative and metabolic diseases, and on the effect of polyunsaturated fatty acids and eicosanoids on the level of BDNF and, accordingly, the development and progression of coronary artery atherosclerosis. Our review summarizes published data (2019-2021) on the pathophysiological and pathogenetic mechanisms of the relationship between BDNF and CAD (atherosclerosis).
Collapse
Affiliation(s)
- Oksana Yu. Kytikova
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Tatyana P. Novgorodtseva
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Yulia K. Denisenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Marina V. Antonyuk
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Tatyana A. Gvozdenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Olga V. Atamas
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| |
Collapse
|
11
|
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther 2022; 7:131. [PMID: 35459215 PMCID: PMC9033871 DOI: 10.1038/s41392-022-00955-7] [Citation(s) in RCA: 372] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease driven by traditional and nontraditional risk factors. Genome-wide association combined with clonal lineage tracing and clinical trials have demonstrated that innate and adaptive immune responses can promote or quell atherosclerosis. Several signaling pathways, that are associated with the inflammatory response, have been implicated within atherosclerosis such as NLRP3 inflammasome, toll-like receptors, proprotein convertase subtilisin/kexin type 9, Notch and Wnt signaling pathways, which are of importance for atherosclerosis development and regression. Targeting inflammatory pathways, especially the NLRP3 inflammasome pathway and its regulated inflammatory cytokine interleukin-1β, could represent an attractive new route for the treatment of atherosclerotic diseases. Herein, we summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways for atherosclerosis, the clinical trials that are going to target some of these processes, and the effects of quelling inflammation and atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zi-Yang Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
12
|
Urbanowicz T, Michalak M, Olasińska-Wiśniewska A, Rodzki M, Witkowska A, Gąsecka A, Buczkowski P, Perek B, Jemielity M. Neutrophil Counts, Neutrophil-to-Lymphocyte Ratio, and Systemic Inflammatory Response Index (SIRI) Predict Mortality after Off-Pump Coronary Artery Bypass Surgery. Cells 2022; 11:cells11071124. [PMID: 35406687 PMCID: PMC8997598 DOI: 10.3390/cells11071124] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Several perioperative inflammatory markers are postulated to be significant factors for long-term survival after off-pump coronary artery bypass surgery (OPCAB). Hematological parameters, whether single or combined as indices, provide higher predictive values. Methods: The study group comprised 538 consecutive patients (125 (23%) females and 413 (77%) males) with a mean age of 65 ± 9 years, who underwent OPCAB with a mean follow-up time of 4.7 ± 1.7 years. This single-center retrospective analysis included perioperative inflammatory markers such as the neutrophil-to-lymphocyte ratio (NLR), systemic inflammatory response index (SIRI), aggregate index of systemic inflammation (AISI), and systemic inflammatory index (SII). Results: Multivariable analysis identified levels of neutrophils above 4.3 × 109/L (HR 13.44, 95% CI 1.05−3.68, p = 0.037), values of SIRI above 5.4 (HR 0.29, 95% CI 0.09−0.92, p = 0.036) and values of NLR above 3.5 (HR 2.21, 95% CI 1.48−3.32, p < 0.001) as being significant predictors of long-term mortality. The multifactorial models revealed the possibility of strong prediction by combining preoperative factors (COPD, stroke, PAD, and preoperative PLR) and postoperative neutrophil counts (p = 0.0136) or NLR (p = 0.0136) or SIRI (p = 0.0136). Conclusions: Among the postoperative inflammatory indices, the levels of neutrophils, NLR, and SIRI are the most prominent markers for long-term survival after off-pump coronary artery bypass surgery, when combined with preoperative characteristics.
Collapse
Affiliation(s)
- Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
- Correspondence: ; Tel.: +48-61-854-9210
| | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-806 Poznan, Poland;
| | - Anna Olasińska-Wiśniewska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Michał Rodzki
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Anna Witkowska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Piotr Buczkowski
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Bartłomiej Perek
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Marek Jemielity
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| |
Collapse
|
13
|
Periodontopathic Microbiota and Atherosclerosis: Roles of TLR-Mediated Inflammation Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9611362. [PMID: 35295717 PMCID: PMC8920700 DOI: 10.1155/2022/9611362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease with a high prevalence worldwide, contributing to a series of adverse cardiovascular and cerebrovascular diseases. Periodontal disease induced by pathogenic periodontal microbiota has been well established as an independent factor of atherosclerosis. Periodontal microorganisms have been detected in atherosclerotic plaques. The high-risk microbiota dwelling in the subgingival pocket can stimulate local and systematic host immune responses and inflammatory cascade reactions through various signaling pathways, resulting in the development and progression of atherosclerosis. One often-discussed pathway is the Toll-like receptor-nuclear factor-κB (TLR-NF-κB) signaling pathway that plays a central role in the transduction of inflammatory mediators and the release of proinflammatory cytokines. This narrative review is aimed at summarizing and updating the latest literature on the association between periodontopathic microbiota and atherosclerosis and providing possible therapeutic ideas for clinicians regarding atherosclerosis prevention and treatment.
Collapse
|
14
|
Laudanski K. Persistence of Lipoproteins and Cholesterol Alterations after Sepsis: Implication for Atherosclerosis Progression. Int J Mol Sci 2021; 22:ijms221910517. [PMID: 34638860 PMCID: PMC8508791 DOI: 10.3390/ijms221910517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Sepsis is one of the most common critical care illnesses with increasing survivorship. The quality of life in sepsis survivors is adversely affected by several co-morbidities, including increased incidence of dementia, stroke, cardiac disease and at least temporary deterioration in cognitive dysfunction. One of the potential explanations for their progression is the persistence of lipid profile abnormalities induced during acute sepsis into recovery, resulting in acceleration of atherosclerosis. (2) Methods: This is a targeted review of the abnormalities in the long-term lipid profile abnormalities after sepsis; (3) Results: There is a well-established body of evidence demonstrating acute alteration in lipid profile (HDL-c ↓↓, LDL-C -c ↓↓). In contrast, a limited number of studies demonstrated depression of HDL-c levels with a concomitant increase in LDL-C -c in the wake of sepsis. VLDL-C -c and Lp(a) remained unaltered in few studies as well. Apolipoprotein A1 was altered in survivors suggesting abnormalities in lipoprotein metabolism concomitant to overall lipoprotein abnormalities. However, most of the studies were limited to a four-month follow-up and patient groups were relatively small. Only one study looked at the atherosclerosis progression in sepsis survivors using clinical correlates, demonstrating an acceleration of plaque formation in the aorta, and a large metanalysis suggested an increase in the risk of stroke or acute coronary event between 3% to 9% in sepsis survivors. (4) Conclusions: The limited evidence suggests an emergence and persistence of the proatherogenic lipid profile in sepsis survivors that potentially contributes, along with other factors, to the clinical sequel of atherosclerosis.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA; ; Tel.: +1-215-662-8200
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Leonard Davis Institute of Healthcare Economics, Philadelphia, PA 19104, USA
| |
Collapse
|