1
|
Ebrahimi A, Andishmand H, Huo C, Amjadi S, Khezri S, Hamishehkar H, Mahmoudzadeh M, Kim KH. Glycomacropeptide: A comprehensive understanding of its major biological characteristics and purification methodologies. Compr Rev Food Sci Food Saf 2024; 23:e13370. [PMID: 38783570 DOI: 10.1111/1541-4337.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Glycomacropeptide (GMP) is a bioactive peptide derived from whey protein, consisting of 64 amino acids. It is a phenylalanine-free peptide, making it a beneficial dietary option for individuals dealing with phenylketonuria (PKU). PKU is an inherited metabolic disorder characterized by high levels of phenylalanine in the bloodstream, resulting from a deficiency of phenylalanine dehydrogenase in affected individuals. Consequently, patients with PKU require lifelong adherence to a low-phenylalanine diet, wherein a significant portion of their protein intake is typically sourced from a phenylalanine-free amino acid formula. GMP has several nutritional values, numerous bioactivity properties, and therapeutic effects in various inflammatory disorders. Despite all these features, the purification of GMP is an imperative requirement; however, there are no unique methods for achieving this goal. Traditionally, several methods have been used for GMP purification, such as thermal or acid treatment, alcoholic precipitation, ultrafiltration (UF), gel filtration, and membrane separation techniques. However, these methods have poor specificity, and the presence of large amounts of impurities can interfere with the analysis of GMP. More efficient and highly specific GMP purification methods need to be developed. In this review, we have highlighted and summarized the current research progress on the major biological features and purification methodologies associated with GMP, as well as providing an extensive overview of the recent developments in using charged UF membranes for GMP purification and the influential factors.
Collapse
Affiliation(s)
- Alireza Ebrahimi
- Student research committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sajed Amjadi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Sima Khezri
- Student research committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Mahmoudzadeh
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
2
|
Wang Y, Gong Y, Farid MS, Zhao C. Milk: A Natural Guardian for the Gut Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8285-8303. [PMID: 38588092 DOI: 10.1021/acs.jafc.3c06861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The gut barrier plays an important role in health maintenance by preventing the invasion of dietary pathogens and toxins. Disruption of the gut barrier can cause severe intestinal inflammation. As a natural source, milk is enriched with many active constituents that contribute to numerous beneficial functions, including immune regulation. These components collectively serve as a shield for the gut barrier, protecting against various threats such as biological, chemical, mechanical, and immunological threats. This comprehensive review delves into the active ingredients in milk, encompassing casein, α-lactalbumin, β-lactoglobulin, lactoferrin, the milk fat globular membrane, lactose, transforming growth factor, and glycopeptides. The primary focus is to elucidate their impact on the integrity and function of the gut barrier. Furthermore, the implications of different processing methods of dairy products on the gut barrier protection are discussed. In conclusion, this study aimed to underscore the vital role of milk and dairy products in sustaining gut barrier health, potentially contributing to broader perspectives in nutritional sciences and public health.
Collapse
Affiliation(s)
- Yanli Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | | | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
3
|
Mu J, Lin Q, Liang Y. An update on the effects of food-derived active peptides on the intestinal microecology. Crit Rev Food Sci Nutr 2023; 63:11625-11639. [PMID: 35791779 DOI: 10.1080/10408398.2022.2094889] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The intestinal microecology is a research hotspot, and neologisms related to the gut such as gut-brain axis, gut-lung axis, gut-bone axis, gut-skin axis, gut-renal axis, and gut-liver axis have emerged from recent research. Meticulous investigation has discovered that food-derived active peptides (FDAPs) are bioactive substances that optimize the structure of the gut microbiota to improve human health. However, few reviews have summarized and emphasized the nutritional value of FDAPs and their mechanisms of action in regulating the composition of the gut microbiota. We aim to provide an update on the latest research on FDAPs by comparing, summarizing, and discussing the potential food sources of FDAPs, their physiological functions, and regulatory effects on the intestinal microecology. The key findings are that few studies have analyzed the potential mechanisms and molecular pathways through which FDAPs maintain intestinal microecological homeostasis. We found that an imbalance in the ratio of Bacteroidetes and Firmicutes in the gut microbiota and abnormal production of short-chain fatty acids are key to the occurrence and development of various diseases. This review provides theoretical support for future comprehensive research on the digestion, distribution, metabolism, and excretion of FDAPs and the mechanisms underlying the interactions between FDAPs and the intestinal microecology.
Collapse
Affiliation(s)
- Jianfei Mu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
4
|
Adler S, Olsen W, Rackerby B, Spencer R, Dallas DC. Effects of Whey Protein Supplementation on Inflammatory Marker Concentrations in Older Adults. Nutrients 2023; 15:4081. [PMID: 37764864 PMCID: PMC10534557 DOI: 10.3390/nu15184081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Although whey protein isolate (WPI) has been shown to be immunomodulatory, its ability to modulate production of a broad array of inflammatory markers has not previously been investigated in healthy adults. We investigated the effects of daily supplementation with 35 g of WPI for 3 weeks on inflammatory marker concentrations in the blood serum and feces of 14 older adult subjects (mean age: 59). Serum was analyzed using a multiplex assay to quantify the cytokines IFN-γ, IL-1β, IL-1RA, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL-17A and TNF-α. Fecal samples were analyzed using an ELISA for the inflammatory markers calprotectin and lactoferrin. Our results yielded high inter-subject variability and a significant proportion of cytokine concentrations that were below our method's limit of quantification. We observed decreases in serum IL-12p70 in the washout phase compared with baseline, as well as the washout stage for fecal lactoferrin relative to the intervention stage. Serum IL-13 was also significantly reduced during the intervention and washout stages. Our data suggest that whey protein supplementation did not significantly alter most inflammatory markers measured but can alter concentrations of some inflammatory markers in healthy older adults. However, our study power of 35% suggests the number of participants was too low to draw strong conclusions from our data.
Collapse
Affiliation(s)
- Samuel Adler
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA (W.O.); (B.R.)
| | - Wyatt Olsen
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA (W.O.); (B.R.)
| | - Bryna Rackerby
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA (W.O.); (B.R.)
| | - Rachel Spencer
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA;
| | - David C. Dallas
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA (W.O.); (B.R.)
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
5
|
Qu Y, Park SH, Dallas DC. The Role of Bovine Kappa-Casein Glycomacropeptide in Modulating the Microbiome and Inflammatory Responses of Irritable Bowel Syndrome. Nutrients 2023; 15:3991. [PMID: 37764775 PMCID: PMC10538225 DOI: 10.3390/nu15183991] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder marked by chronic abdominal pain, bloating, and irregular bowel habits. Effective treatments are still actively sought. Kappa-casein glycomacropeptide (GMP), a milk-derived peptide, holds promise because it can modulate the gut microbiome, immune responses, gut motility, and barrier functions, as well as binding toxins. These properties align with the recognized pathophysiological aspects of IBS, including gut microbiota imbalances, immune system dysregulation, and altered gut barrier functions. This review delves into GMP's role in regulating the gut microbiome, accentuating its influence on bacterial populations and its potential to promote beneficial bacteria while inhibiting pathogenic varieties. It further investigates the gut microbial shifts observed in IBS patients and contemplates GMP's potential for restoring microbial equilibrium and overall gut health. The anti-inflammatory attributes of GMP, especially its impact on vital inflammatory markers and capacity to temper the low-grade inflammation present in IBS are also discussed. In addition, this review delves into current research on GMP's effects on gut motility and barrier integrity and examines the changes in gut motility and barrier function observed in IBS sufferers. The overarching goal is to assess the potential clinical utility of GMP in IBS management.
Collapse
Affiliation(s)
- Yunyao Qu
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (Y.Q.); (S.H.P.)
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA
| | - Si Hong Park
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (Y.Q.); (S.H.P.)
| | - David C. Dallas
- Department of Food Science & Technology, Oregon State University, Corvallis, OR 97331, USA; (Y.Q.); (S.H.P.)
- Nutrition Program, College of Health, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
6
|
Córdova-Dávalos LE, Cervantes-García D, Ballona-Alba MF, Santos-López A, Esquivel-Basaldúa AS, Gallegos-Alcalá P, Jiménez M, Salinas E. Protective Effect of Glycomacropeptide on the Inflammatory Response of U937 Macrophages. Foods 2023; 12:foods12071528. [PMID: 37048349 PMCID: PMC10094090 DOI: 10.3390/foods12071528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Macrophages play crucial roles in inflammation and oxidative stress associated with noncommunicable diseases, such as cardiovascular diseases, diabetes, and cancer. Glycomacropeptide (GMP) is a bioactive peptide derived from milk κ-casein that contains abundant sialic acid and has shown anti-inflammatory, antioxidative, anti-obesity, and anti-diabetic properties when is orally administered. The aim of this study was to evaluate the effect of GMP on the regulation of the inflammatory response in human macrophages and the participation of sialic acid in this activity. GMP pretreatment decreased by 35%, 35%, and 49% the production of nitrites, interleukin (IL)-1β, and tumor necrosis factor (TNF)-α, respectively, in activated human macrophages U937. The same effect was obtained when cells were pretreated with asialo GMP, and no change on the gene expression of the lectins associated with the recognition of sialic acids, SIGLEC5, 7, and 9, was induced by GMP on macrophages, which suggests that sialic acid might not be involved in this immunoregulatory effect. Interestingly, GMP increased 8.9- and 3.5-fold the gene expression of the canonical anti-inflammatory protein SOCS3 and the antioxidant enzyme HMOX1, respectively, in U937 cells. Thus, GMP exerts anti-inflammatory and antioxidative activities on activated macrophages in a sialic acid-independent manner, which might be related to its in vivo reported bioactivity.
Collapse
Affiliation(s)
- Laura Elena Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Center of Basic Science, Universidad Autónoma de Aguascalientes, Av. Universidad # 940, Aguascalientes 20100, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Center of Basic Science, Universidad Autónoma de Aguascalientes, Av. Universidad # 940, Aguascalientes 20100, Mexico
- National Council of Science and Technology, Av. de los Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México 03940, Mexico
| | - Maria Fernanda Ballona-Alba
- Laboratory of Immunology, Department of Microbiology, Center of Basic Science, Universidad Autónoma de Aguascalientes, Av. Universidad # 940, Aguascalientes 20100, Mexico
| | - Alejandra Santos-López
- Laboratory of Immunology, Department of Microbiology, Center of Basic Science, Universidad Autónoma de Aguascalientes, Av. Universidad # 940, Aguascalientes 20100, Mexico
| | - Alma Saraí Esquivel-Basaldúa
- Laboratory of Immunology, Department of Microbiology, Center of Basic Science, Universidad Autónoma de Aguascalientes, Av. Universidad # 940, Aguascalientes 20100, Mexico
| | - Pamela Gallegos-Alcalá
- Laboratory of Immunology, Department of Microbiology, Center of Basic Science, Universidad Autónoma de Aguascalientes, Av. Universidad # 940, Aguascalientes 20100, Mexico
| | - Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Center of Basic Science, Universidad Autónoma de Aguascalientes, Av. Universidad # 940, Aguascalientes 20100, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Center of Basic Science, Universidad Autónoma de Aguascalientes, Av. Universidad # 940, Aguascalientes 20100, Mexico
| |
Collapse
|
7
|
Marhaeny HD, Pratama YA, Rohmah L, Kasatu SM, Miatmoko A, Khotib J. Development of gastro-food allergy model in shrimp allergen extract-induced sensitized mice promotes mast cell degranulation. J Public Health Afr 2023. [PMID: 37492545 PMCID: PMC10365647 DOI: 10.4081/jphia.2023.2512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Background: Food allergies have become more common in the last decade. Shrimp is one of the most dominant food allergy triggers in Asian countries, including Indonesia. After ingesting allergens, B cells will produce allergen-specific Immunoglobin E (IgE). In the sensitization period, repeated allergen exposure promotes Mast Cell (MC) degranulation in intestinal tissue and releases several inflammatory mediators, thereby causing hypersensitivity reactions. Shrimp Allergen Extract (SAE) is an immunotherapy and diagnostic agent currently being developed in Indonesia. In this study, we investigated the effect of SAE administration on eliciting an MC immunological response.
Methods: Mice were divided into a non-sensitized and sensitized group. The non-sensitized group only received 1 mg of alum (i.p), whereas the sensitized group received 1 mg of alum and 100 μg of SAE on days 0, 7, and 14. Then, both groups were challenged with 400 μg SAE (p.o) on days 21, 22, and 23 following systemic allergic symptom observation.
Results: We showed that SAE was able to increase systemic allergic symptoms significantly in the sensitized mice through repeated challenge (1.33±0.21; 1.83±0.17; and 2.00±0.00), compared to non-sensitized mice (0.17±0.17). Moreover, histopathological analysis showed that the SAE administration causes an increase of MC degranulation in the ileum tissue of the sensitized mice (44.43%±0.01), compared to non-sensitized mice (35.45%±0.01)
Conclusions: This study found that SAE could induce allergic reactions in mice by influencing critical effector cells, MCs.
Collapse
|
8
|
Liu P, Zhang M, Liu T, Mo R, Wang H, Zhang G, Wu Y. Avenanthramide Improves Colonic Damage Induced by Food Allergies in Mice through Altering Gut Microbiota and Regulating Hsp70-NF-κB Signaling. Nutrients 2023; 15:992. [PMID: 36839351 PMCID: PMC9962348 DOI: 10.3390/nu15040992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Food allergies can cause intestinal damage that can exacerbate allergic symptoms, and gut microbiota have been shown to influence allergic development. This study was intended to investigate the effects of Avenanthramide (AVA) on colonic damage induced by food allergy and its mechanism. In Exp. 1, AVA administrations alleviated colonic inflammation in mice challenged with ovalbumin, as shown by decreased concentrations of TNF-α, IL-25 and IL-33. Additionally, the AVA supplementations improved intestinal barrier damage by elevating occludin, ZO-1 and claudin-1 levels. Moreover, AVA inhibited NF-κB phosphorylation and enhanced heat shock protein 70 (Hsp70) expression in the colon. In Exp. 2, apoptozole as a Hsp70 inhibitor was used to explore the Hsp70-NF-κB signaling contribution to AVA function. The AVA additions increased the productions of acetate and butyrate, but decreased propionate. Notably, AVA reduced the colonic abundance of propionate-producing microbes such as Muribaculaceae, but elevated butyrate-producing microbes including Roseburia, Blautia, and Lachnospiraceae_NK4A136_group. Microbial alteration could be responsible for the increased butyrate, and thus the up-regulated Hsp70. However, apoptozole treatment eliminated the effects of AVA. Our study revealed that AVA improved colonic injury and inflammation induced by food allergies, and this mechanism may be mediated by the increased microbial-derived butyrate and involved in the Hsp70-NF-κB signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Liu P, Liu T, Zhang M, Mo R, Zhou W, Li D, Wu Y. Effects of Avenanthramide on the Small Intestinal Damage through Hsp70-NF-κB Signaling in an Ovalbumin-Induced Food Allergy Model. Int J Mol Sci 2022; 23:ijms232315229. [PMID: 36499554 PMCID: PMC9739943 DOI: 10.3390/ijms232315229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
A food allergy is caused by an abnormal immune reaction and can induce serious intestinal inflammation and tissue damage. Currently, the avoidance of food allergens is still the most effective way to prevent or reduce allergic symptoms, so the development of new strategies to treat allergies is important. Avenanthramide (AVA) is a bioactive polyphenol derived from oats with a wide range of biological activities; however, it is still not clear whether or how AVA alleviates intestinal damage under allergic situations. The aim of this study was to explore the effect of AVA on the small intestinal damage in an ovalbumin (OVA)-induced food allergy model and its mechanism. In experiment 1, 10 mg/kg bw and 20 mg/kg bw doses of AVA both decreased the serum levels of OVA-specific IgE, histamine, and prostaglandin D induced by OVA. The AVA administration relieved inflammation indicated by the lower serum concentrations of pro-inflammatory cytokines including interleukin-1β, IL-6, and tumor necrosis factor-α. The levels of tight junction proteins including Claudin-1, ZO-1, and Occludin in the jejunum were elevated after AVA administration, accompanied by the improved intestinal morphology. Furthermore, AVA elevated the protein expression of heat shock protein 70 (Hsp70) and inhibited the phosphorylation of nuclear factor kappa-B (NF-κB), thus the apoptozole, which a Hsp70 inhibitor, was applied in experiment 2 to assess the contribution of Hsp70-NF-κB signaling to the effects of AVA. In the experiment 2, the inhibition of Hsp70 signaling treatment abolished the beneficial effects of AVA on the small intestinal damage and other allergic symptoms in mice challenged with OVA. Taken together, our results indicated that AVA exerted an intestinal protection role in the OVA-induced allergy, the mechanism of which was partly mediated by the Hsp70-NF-κB signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Wu
- Correspondence: ; Tel.: +86-6273-3588
| |
Collapse
|
10
|
Yu T, Hu S, Min F, Li J, Shen Y, Yuan J, Gao J, Wu Y, Chen H. Wheat Amylase Trypsin Inhibitors Aggravate Intestinal Inflammation Associated with Celiac Disease Mediated by Gliadin in BALB/c Mice. Foods 2022; 11:1559. [PMID: 35681310 PMCID: PMC9180791 DOI: 10.3390/foods11111559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Celiac disease (CD) is an autoimmune intestinal disorder caused by the ingestion of gluten in people who carry the susceptible gene. In current celiac disease research, wheat gluten is often the main target of attention, neglecting the role played by non-gluten proteins. This study aimed to describe the effects of wheat amylase trypsin inhibitors (ATI, non-gluten proteins) and gliadin in BALB/c mice while exploring the further role of relevant adjuvants (cholera toxin, polyinosinic: polycytidylic acid and dextran sulfate sodium) intervention. An ex vivo splenocyte and intestinal tissue were collected for analysis of the inflammatory profile. The consumption of gliadin and ATI caused intestinal inflammation in mice. Moreover, the histopathology staining of four intestinal sections (duodenum, jejunum, terminal ileum, and middle colon) indicated that adjuvants, especially polyinosinic: polycytidylic acid, enhanced the villi damage and crypt hyperplasia in co-stimulation with ATI and gliadin murine model. Immunohistochemical results showed that tissue transglutaminase and IL-15 expression were significantly increased in the jejunal tissue of mice treated with ATI and gliadin. Similarly, the expression of inflammatory factors (TNF-α, IL-1β, IL-4, IL-13) and Th1/Th2 balance also showed that the inflammation response was significantly increased after co-stimulation with ATI and gliadin. This study provided new evidence for the role of wheat amylase trypsin inhibitors in the pathogenesis of celiac disease.
Collapse
Affiliation(s)
- Tian Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China;
| | - Shuai Hu
- Institute of Agricultural Products Processing, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China;
| | - Fangfang Min
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China;
| | - Jingjing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China;
| | - Yunpeng Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China;
| | - Juanli Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- School of Pharmaceutical Science, Nanchang University, Nanchang 330006, China
| | - Jinyan Gao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China;
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (T.Y.); (F.M.); (J.L.); (Y.S.); (J.Y.); (H.C.)
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
11
|
Bilotta S, Arbogast J, Schart N, Frei M, Lorentz A. Resveratrol Treatment Prevents Increase of Mast Cells in Both Murine OVA Enteritis and IL-10 -/- Colitis. Int J Mol Sci 2022; 23:ijms23031213. [PMID: 35163137 PMCID: PMC8836010 DOI: 10.3390/ijms23031213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Mast cells are involved in allergic and other inflammatory diseases. The polyphenol resveratrol is known for its anti-inflammatory properties and may be used as nutraceutical in mast cell associated diseases. We analyzed the effect of resveratrol on mast cells in vivo in ovalbumin-induced allergic enteritis as well as experimental colitis in IL-10−/− mice which received resveratrol via drinking water. Treatment with resveratrol prevented the increase in mast cells in both allergic enteritis and chronic colitis in duodenum as well as in colon. Further, it delayed the onset of diseases symptoms and ameliorated diseases associated parameters such as tissue damage as well as inflammatory cell infiltration in affected colon sections. In addition to the findings in vivo, resveratrol inhibited IgE-dependent degranulation and expression of pro-inflammatory cytokines such as TNF-α in IgE/DNP-activated as well as in LPS-activated bone marrow-derived mast cells. These results indicate that resveratrol may be considered as an anti-allergic and anti-inflammatory plant-derived component for the prevention or treatment of mast cell-associated disorders of the gastrointestinal tract.
Collapse
|
12
|
Sur LM, Armat I, Duca E, Sur G, Lupan I, Sur D, Samasca G, Lazea C, Lazar C. Food Allergy a Constant Concern to the Medical World and Healthcare Providers: Practical Aspects. Life (Basel) 2021; 11:life11111204. [PMID: 34833080 PMCID: PMC8620930 DOI: 10.3390/life11111204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 01/01/2023] Open
Abstract
Food allergy (FA) is a condition with a growing incidence and is a constant concern for the medical world and healthcare providers. With potential symptoms including anaphylaxis, in the event of an allergic reaction the patient’s life may well be endangered. The diagnosis of FA is a continuous challenge because mild cases tend to be ignored or diagnosed late and young children with allergies are cared for by parents, who are not always able to accurately interpret symptoms. It is very important to be able to differentiate FAs from food intolerance and toxic reactions to food. An accurate diagnosis is required to provide personalized management of an FA. More sophisticated and accurate diagnostic tests, including component diagnosis and epitope reactivity, allow the provision of a directed diagnosis, a more accurate therapeutic approach, and a useful prognostic evaluation. Tests used in current practice include the specific search for serum IgE, elimination diets, oral food challenges, single, blind, and double-blind (DBPCFC) tests, as well as skin tests. The risk of anaphylaxis can be assessed by molecular diagnostics/component-resolved diagnosis (CRD) and by conducting a basophilic activation test (BAT). These tests allow a planned, personalized treatment based on molecular and clinical profiles. CRD can determine the individual profile of allergic molecular reactivity and enable the formulation of a prognostic judgment. Our article highlights the importance of knowing the immune mechanisms, diagnostics, and immunotherapies in FAs. Starting from observing exposure to food allergens, to identifying allergic reactions, analysing the severity of clinical manifestations, noting the possibilities of diagnosis, and illustrating adequate management strategies.
Collapse
Affiliation(s)
- Lucia M. Sur
- Department of Pediatric I, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (L.M.S.); (C.L.); (C.L.)
- Children Emergency Clinical Hospital, 400370 Cluj-Napoca, Romania; (I.A.); (E.D.); (G.S.)
| | - Ionel Armat
- Children Emergency Clinical Hospital, 400370 Cluj-Napoca, Romania; (I.A.); (E.D.); (G.S.)
| | - Emanuela Duca
- Children Emergency Clinical Hospital, 400370 Cluj-Napoca, Romania; (I.A.); (E.D.); (G.S.)
| | - Genel Sur
- Children Emergency Clinical Hospital, 400370 Cluj-Napoca, Romania; (I.A.); (E.D.); (G.S.)
| | - Iulia Lupan
- Molecular Biology Department, Babes Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Daniel Sur
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
| | - Gabriel Samasca
- Children Emergency Clinical Hospital, 400370 Cluj-Napoca, Romania; (I.A.); (E.D.); (G.S.)
- Department of Allergology and Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Correspondence:
| | - Cecilia Lazea
- Department of Pediatric I, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (L.M.S.); (C.L.); (C.L.)
- Children Emergency Clinical Hospital, 400370 Cluj-Napoca, Romania; (I.A.); (E.D.); (G.S.)
| | - Calin Lazar
- Department of Pediatric I, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (L.M.S.); (C.L.); (C.L.)
- Children Emergency Clinical Hospital, 400370 Cluj-Napoca, Romania; (I.A.); (E.D.); (G.S.)
| |
Collapse
|