1
|
Khan IM, Nassar N, Chang H, Khan S, Cheng M, Wang Z, Xiang X. The microbiota: a key regulator of health, productivity, and reproductive success in mammals. Front Microbiol 2024; 15:1480811. [PMID: 39633815 PMCID: PMC11616035 DOI: 10.3389/fmicb.2024.1480811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
The microbiota, intensely intertwined with mammalian physiology, significantly impacts health, productivity, and reproductive functions. The normal microbiota interacts with the host through the following key mechanisms: acting as a protective barrier against pathogens, maintain mucosal barrier integrity, assisting in nutrient metabolism, and modulating of the immune response. Therefore, supporting growth and development of host, and providing protection against pathogens and toxic substances. The microbiota significantly influences brain development and behavior, as demonstrated by comprehensive findings from controlled laboratory experiments and human clinical studies. The prospects suggested that gut microbiome influence neurodevelopmental processes, modulate stress responses, and affect cognitive function through the gut-brain axis. Microbiota in the gastrointestinal tract of farm animals break down and ferment the ingested feed into nutrients, utilize to produce meat and milk. Among the beneficial by-products of gut microbiota, short-chain fatty acids (SCFAs) are particularly noteworthy for their substantial role in disease prevention and the promotion of various productive aspects in mammals. The microbiota plays a pivotal role in the reproductive hormonal systems of mammals, boosting reproductive performance in both sexes and fostering the maternal-infant connection, thereby becoming a crucial factor in sustaining mammalian existence. The microbiota is a critical factor influencing reproductive success and production traits in mammals. A well-balanced microbiome improves nutrient absorption and metabolic efficiency, leading to better growth rates, increased milk production, and enhanced overall health. Additionally, it regulates key reproductive hormones like estrogen and progesterone, which are essential for successful conception and pregnancy. Understanding the role of gut microbiota offers valuable insights for optimizing breeding and improving production outcomes, contributing to advancements in agriculture and veterinary medicine. This study emphasizes the critical ecological roles of mammalian microbiota, highlighting their essential contributions to health, productivity, and reproductive success. By integrating human and veterinary perspectives, it demonstrates how microbial communities enhance immune function, metabolic processes, and hormonal regulation across species, offering insights that benefit both clinical and agricultural advancements.
Collapse
Affiliation(s)
| | - Nourhan Nassar
- College of Life Science, Anhui Agricultural University, Hefei, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Hua Chang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Samiullah Khan
- The Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang, China
| | - Maoji Cheng
- Fisugarpeptide Biology Engineering Co. Ltd., Lu’an, China
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Xun Xiang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Kumar N, Al-Nahar M, Harris N, Sampath V. Early and Higher Volumes of Formula Supplementation after Birth Impact Breastfeeding Rates at Discharge in Well-Baby Nursery: A Retrospective Cohort Study. Am J Perinatol 2024; 41:e3293-e3304. [PMID: 38011861 DOI: 10.1055/a-2217-9174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
OBJECTIVE Physiologic breast milk production in the first 24 hours is estimated to be between 2 and 10 mL per feed. Many mothers intending to breastfeed use formula supplementation (FS) early on, which can affect successful breastfeeding. Whether the volume and timing of FS introduced in the first 24 hours of life (24 HOL) impacts the rate of "breastfeeding at discharge" (BFAD) is not well-studied and was investigated herein. STUDY DESIGN Single-center, retrospective, chart review of breastfeeding infants born at ≥35 weeks who received supplementation in the first 24 HOL. Comprehensive demographic data pertaining to maternal and infant characteristics, along with infant feeding data, were collected. Four supplementation characteristics, (timing, rate, volume [mL/kg per feed], and type [expressed breast milk (EBM) or formula]) were correlated with BFAD. RESULTS Among 3,102 supplemented infants in whom mothers intended to breastfeed, 1,031 (33.2%) infants were BFAD. At baseline, African American, Medicaid-insured, and single mothers had lower odds of BFAD. The overall maximum volume of FS per feed was 11.0 mL/kg (interquartile range 8.0-14.4). With each hour of delay in first supplementation, the odds of BFAD increased by 2.8% (95% confidence interval [CI] 0.022, 0.035). With every 1 mL/kg increase in the first formula volume, subsequent supplementation frequency increased by 4.5%. A positive association was observed between BFAD and a lower rate of supplementation (cutoff value ≤35.1%). However, among infants with these lower rates of supplementation, each unit increase in maximum FS, from 2 to 15 mL/kg, decreased the probability of BFAD by 4.2% (3.6-4.7%). Additionally, we observed that infants who were given at least one EBM supplementation (n = 223; 7.2%) had substantially increased rates of BFAD (odds ratio [OR] = 9.8, 95% CI 7.2-13.3). CONCLUSION Early and higher volumes of FS negatively impacted BFAD. Birthweight-based FS of feeding with physiological volumes may increase breastfeeding rates at discharge. KEY POINTS · Higher volumes of first supplementation increases subsequent supplementation frequency.. · For each unit increase in maximum supplementation, BFAD probability decreases by 4.2%.. · Even one EBM supplementation increases rates of BFAD..
Collapse
Affiliation(s)
- Navin Kumar
- Department of Pediatrics/Neonatology, Hurley Children's Hospital, Flint, Michigan
| | - Mohammed Al-Nahar
- Department of Pediatrics/Neonatology, Hurley Children's Hospital, Flint, Michigan
| | - Nathalee Harris
- Department of Pediatrics/Neonatology, Hurley Children's Hospital, Flint, Michigan
| | - Venkatesh Sampath
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri
| |
Collapse
|
3
|
Gartley T, Bass J, Kleinman R. Perspective: Supporting Maternal Efforts to Provide Optimal Infant Nutrition in the Post-Partum Setting. Adv Nutr 2024; 15:100183. [PMID: 38309530 PMCID: PMC10907527 DOI: 10.1016/j.advnut.2024.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024] Open
Abstract
Supporting optimal newborn nutrition and the positive maternal-infant relationship while encouraging safe sleep practices are essential components of maternal and newborn care in the hospital setting following birth. Breastfeeding is widely recognized as the best practice to support the nutritional needs and well-being of the infant, and recommendations have been developed by the WHO, the American Academy of Pediatrics (AAP), and the United States Centers for Disease Control to encourage and successfully support breastfeeding efforts before hospital discharge. The 10 Steps to Successful Breastfeeding, developed and promoted by the WHO, form the basis of the Baby-Friendly Hospital Initiative (BFHI) and have become the international framework for public health initiatives to promote breastfeeding. An evaluation of hospital performance implementing the 10 steps through the process of "Baby-Friendly Designation" (BFD) has been suggested by many breastfeeding advocates as the optimal pathway to attain the goals of the BFHI. However, the WHO has recognized that BFD may not be an appropriate goal in all settings, and indicated, as part of their updated 2018 guidance, that "facilities may make changes in their policies and procedures to obtain the designation, but these changes are not always sustainable, especially when there are no regular monitoring systems in place." In addition, unintended associated issues regarding newborn safety and maternal dissatisfaction with some of the 10 steps have emerged. This perspective discusses the challenges faced by hospitals attempting to implement the BFHI 10 steps and suggests potential solutions to make progress in those efforts with or without BFD and also the efforts needed to support formula feedings when appropriate.
Collapse
Affiliation(s)
- Tina Gartley
- Department of Pediatrics, Newton-Wellesley Hospital, Newton, MA, United States.
| | - Joel Bass
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
| | - Ronald Kleinman
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
4
|
Kumar N, Oredein I, Al-Nahar M, Harris N, Sampath V. Impact of feeding volumes in the first 24 h of life on neonatal feeding intolerance. Front Pediatr 2023; 11:1245947. [PMID: 37705598 PMCID: PMC10495575 DOI: 10.3389/fped.2023.1245947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023] Open
Abstract
Objective This study investigates whether volumes of intake in the first 24 h of life (24 HOL), in relation to birth weight (BW) and gestational age (GA), impact neonatal feeding intolerance (FI). Methods This study employed a retrospective chart review of 6,650 infants born at ≥35 weeks. The volumes of each formula feed per kg BW in the first 24 HOL were assessed. FI was defined as evidenced by chart documentation of emesis, abdominal distension, abdominal x-ray, and/or switching to a sensitive formula. Results Overall, the maximum volume of formula intake per feed was inversely correlated with GA and was higher in infants with FI (β = -1.39, p < 0.001) compared with infants without FI (β = -1.28, p < 0.001). The odds of emesis in late preterm infants with first feeding of >8 ml/kg [adjusted odds ratio (AOR) = 2.5, 95% confidence interval (CI): 1.4-4.6] and formula switching in the exclusively formula-fed group with volumes >10.5 ml/kg [AOR = 2.2, 95% CI (1.8-2.6)] were high. In the breastfeeding group, the odds of FI increased by 2.8-, 4.6-, and 5.2-fold with 5-10, 10-15, and >15 ml/kg of supplementations, respectively. Conclusion A higher volume of intake in relation to BW often exceeds the physiological stomach capacity of newborns and is associated with early FI. Optimizing early feeding volumes based on infant BW and GA may decrease FI, which may be an issue of volume intolerance.
Collapse
Affiliation(s)
- Navin Kumar
- Division of Neonatology, Hurley Children’s Hospital, Flint, MI, United States
| | | | - Mohammed Al-Nahar
- Division of Neonatology, Hurley Children’s Hospital, Flint, MI, United States
| | - Nathalee Harris
- Division of Neonatology, Hurley Children’s Hospital, Flint, MI, United States
| | - Venkatesh Sampath
- Division of Neonatology, Children’s Mercy Hospital, Kansas City, MO, United States
| |
Collapse
|
5
|
Cannet C, Frauendienst-Egger G, Freisinger P, Götz H, Götz M, Himmelreich N, Kock V, Spraul M, Bus C, Biskup S, Trefz F. Ex vivo proton spectroscopy ( 1 H-NMR) analysis of inborn errors of metabolism: Automatic and computer-assisted analyses. NMR IN BIOMEDICINE 2023; 36:e4853. [PMID: 36264537 DOI: 10.1002/nbm.4853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
There are about 1500 genetic metabolic diseases. A small number of treatable diseases are diagnosed by newborn screening programs, which are continually being developed. However, most diseases can only be diagnosed based on clinical symptoms or metabolic findings. The main biological fluids used are urine, plasma and, in special situations, cerebrospinal fluid. In contrast to commonly used methods such as gas chromatography and high performance liquid chromatography mass spectrometry, ex vivo proton spectroscopy (1 H-NMR) is not yet used in routine clinical practice, although it has been recommended for more than 30 years. Automatic analysis and improved NMR technology have also expanded the applications used for the diagnosis of inborn errors of metabolism. We provide a mini-overview of typical applications, especially in urine but also in plasma, used to diagnose common but also rare genetic metabolic diseases with 1 H-NMR. The use of computer-assisted diagnostic suggestions can facilitate interpretation of the profiles. In a proof of principle, to date, 182 reports of 59 different diseases and 500 reports of healthy children are stored. The percentage of correct automatic diagnoses was 74%. Using the same 1 H-NMR profile-targeted analysis, it is possible to apply an untargeted approach that distinguishes profile differences from healthy individuals. Thus, additional conditions such as lysosomal storage diseases or drug interferences are detectable. Furthermore, because 1 H-NMR is highly reproducible and can detect a variety of different substance categories, the metabolomic approach is suitable for monitoring patient treatment and revealing additional factors such as nutrition and microbiome metabolism. Besides the progress in analytical techniques, a multiomics approach is most effective to combine metabolomics with, for example, whole exome sequencing, to also diagnose patients with nondetectable metabolic abnormalities in biological fluids. In this mini review we also provide our own data to demonstrate the role of NMR in a multiomics platform in the field of inborn errors of metabolism.
Collapse
Affiliation(s)
| | - Georg Frauendienst-Egger
- Department of Pediatrics, Reutlingen, Klinikum Reutlingen, School of Medicine, University of Tuebingen, Reutlingen, Germany
| | - Peter Freisinger
- Department of Pediatrics, Reutlingen, Klinikum Reutlingen, School of Medicine, University of Tuebingen, Reutlingen, Germany
| | | | | | | | - Vanessa Kock
- Department of Pediatrics, Reutlingen, Klinikum Reutlingen, School of Medicine, University of Tuebingen, Reutlingen, Germany
| | | | - Christine Bus
- CEGAT, Tübingen, Germany and Human Genetics Institute, Tübingen, Germany
| | - Saskia Biskup
- CEGAT, Tübingen, Germany and Human Genetics Institute, Tübingen, Germany
| | | |
Collapse
|
6
|
Campbell C, Kandalgaonkar MR, Golonka RM, Yeoh BS, Vijay-Kumar M, Saha P. Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines 2023; 11:294. [PMID: 36830830 PMCID: PMC9953403 DOI: 10.3390/biomedicines11020294] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbes and their metabolites are actively involved in the development and regulation of host immunity, which can influence disease susceptibility. Herein, we review the most recent research advancements in the gut microbiota-immune axis. We discuss in detail how the gut microbiota is a tipping point for neonatal immune development as indicated by newly uncovered phenomenon, such as maternal imprinting, in utero intestinal metabolome, and weaning reaction. We describe how the gut microbiota shapes both innate and adaptive immunity with emphasis on the metabolites short-chain fatty acids and secondary bile acids. We also comprehensively delineate how disruption in the microbiota-immune axis results in immune-mediated diseases, such as gastrointestinal infections, inflammatory bowel diseases, cardiometabolic disorders (e.g., cardiovascular diseases, diabetes, and hypertension), autoimmunity (e.g., rheumatoid arthritis), hypersensitivity (e.g., asthma and allergies), psychological disorders (e.g., anxiety), and cancer (e.g., colorectal and hepatic). We further encompass the role of fecal microbiota transplantation, probiotics, prebiotics, and dietary polyphenols in reshaping the gut microbiota and their therapeutic potential. Continuing, we examine how the gut microbiota modulates immune therapies, including immune checkpoint inhibitors, JAK inhibitors, and anti-TNF therapies. We lastly mention the current challenges in metagenomics, germ-free models, and microbiota recapitulation to a achieve fundamental understanding for how gut microbiota regulates immunity. Altogether, this review proposes improving immunotherapy efficacy from the perspective of microbiome-targeted interventions.
Collapse
Affiliation(s)
- Connor Campbell
- Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Mrunmayee R. Kandalgaonkar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
7
|
Pivrncova E, Kotaskova I, Thon V. Neonatal Diet and Gut Microbiome Development After C-Section During the First Three Months After Birth: A Systematic Review. Front Nutr 2022; 9:941549. [PMID: 35967823 PMCID: PMC9364824 DOI: 10.3389/fnut.2022.941549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
Background Cesarean section (C-section) delivery imprints fundamentally on the gut microbiota composition with potential health consequences. With the increasing incidence of C-sections worldwide, there is a need for precise characterization of neonatal gut microbiota to understand how to restore microbial imbalance after C-section. After birth, gut microbiota development is shaped by various factors, especially the infant’s diet and antibiotic exposure. Concerning diet, current research has proposed that breastfeeding can restore the characteristic gut microbiome after C-section. Objectives In this systematic review, we provide a comprehensive summary of the current literature on the effect of breastfeeding on gut microbiota development after C-section delivery in the first 3 months of life. Methods The retrieved data from PubMed, Scopus, and Web of Science were evaluated according to the PICO/PECO strategy. Quality assessment was conducted by the Newcastle–Ottawa Scale. Results After critical selection, we identified 14 out of 4,628 studies for the evaluation of the impact of the diet after C-section delivery. The results demonstrate consistent evidence that C-section and affiliated intrapartum antibiotic exposure affect Bacteroidetes abundance and the incapacity of breastfeeding to reverse their reduction. Furthermore, exclusive breastfeeding shows a positive effect on Actinobacteria and Bifidobacteria restoration over the 3 months after birth. None of the included studies detected any significant changes in Lactobacillus abundance in breastfed infants after C-section. Conclusion C-section and intrapartum antibiotic exposure influence an infant’s gut microbiota by depletion of Bacteroides, regardless of the infant’s diet in the first 3 months of life. Even though breastfeeding increases the presence of Bifidobacteria, further research with proper feeding classification is needed to prove the restoration effect on some taxa in infants after C-section. Systematic Review Registration: [www.crd.york.ac.uk/prospero/], identifier [CRD42021287672].
Collapse
Affiliation(s)
- Eliska Pivrncova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Iva Kotaskova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vojtech Thon
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
8
|
Boudar Z, Sehli S, El Janahi S, Al Idrissi N, Hamdi S, Dini N, Brim H, Amzazi S, Nejjari C, Lloyd-Puryear M, Ghazal H. Metagenomics Approaches to Investigate the Neonatal Gut Microbiome. Front Pediatr 2022; 10:886627. [PMID: 35799697 PMCID: PMC9253679 DOI: 10.3389/fped.2022.886627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
Early infancy is critical for the development of an infant's gut flora. Many factors can influence microbiota development during the pre- and postnatal periods, including maternal factors, antibiotic exposure, mode of delivery, dietary patterns, and feeding type. Therefore, investigating the connection between these variables and host and microbiome interactions in neonatal development would be of great interest. As the "unculturable" era of microbiome research gives way to an intrinsically multidisciplinary field, microbiome research has reaped the advantages of technological advancements in next-generation sequencing, particularly 16S rRNA gene amplicon and shotgun sequencing, which have considerably expanded our knowledge about gut microbiota development during early life. Using omics approaches to explore the neonatal microbiome may help to better understand the link between the microbiome and newborn diseases. Herein, we summarized the metagenomics methods and tools used to advance knowledge on the neonatal microbiome origin and evolution and how the microbiome shapes early and late individuals' lives for health and disease. The way to overcome limitations in neonatal microbiome studies will be discussed.
Collapse
Affiliation(s)
- Zakia Boudar
- Department of Fundamental Sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Sofia Sehli
- Department of Fundamental Sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Sara El Janahi
- Department of Fundamental Sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Najib Al Idrissi
- Department of Surgery, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Salsabil Hamdi
- Laboratory of Genomics and Bioinformatics, School of Pharmacy, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Nouzha Dini
- Mother and Child Department, Cheikh Khalifa International University Hospital, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Hassan Brim
- Department of Pathology, Howard University, Washington, DC, United States
| | - Saaïd Amzazi
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Chakib Nejjari
- Department of Epidemiology and Biostatistics, International School of Public Health, Mohammed VI University of Health Sciences, Casablanca, Morocco
- Department of Epidemiology and Public Health, Faculty of Medicine, University Sidi Mohammed Ben Abdellah, Fez, Morocco
| | | | - Hassan Ghazal
- Department of Fundamental Sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
- National Center for Scientific and Technical Research, Rabat, Morocco
| |
Collapse
|
9
|
Abstract
The neonatal body provides a range of potential habitats, such as the gut, for microbes. These sites eventually harbor microbial communities (microbiotas). A "complete" (adult) gut microbiota is not acquired by the neonate immediately after birth. Rather, the exclusive, milk-based nutrition of the infant encourages the assemblage of a gut microbiota of low diversity, usually dominated by bifidobacterial species. The maternal fecal microbiota is an important source of bacterial species that colonize the gut of infants, at least in the short-term. However, development of the microbiota is influenced by the use of human milk (breast feeding), infant formula, preterm delivery of infants, caesarean delivery, antibiotic administration, family details and other environmental factors. Following the introduction of weaning (complementary) foods, the gut microbiota develops in complexity due to the availability of a diversity of plant glycans in fruits and vegetables. These glycans provide growth substrates for the bacterial families (such as members of the Ruminococcaceae and Lachnospiraceae) that, in due course, will dominate the gut microbiota of the adult. Although current data are often fragmentary and observational, it can be concluded that the nutrition that a child receives in early life is likely to impinge not only on the development of the microbiota at that time but also on the subsequent lifelong, functional relationships between the microbiota and the human host. The purpose of this review, therefore, is to discuss the importance of promoting the assemblage of functionally robust gut microbiotas at appropriate times in early life.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|