1
|
Kane MA. Retinoic acid homeostasis and disease. Curr Top Dev Biol 2024; 161:201-233. [PMID: 39870434 DOI: 10.1016/bs.ctdb.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Retinoids, particularly all-trans-retinoic acid (ATRA), play crucial roles in various physiological processes, including development, immune response, and reproduction, by regulating gene transcription through nuclear receptors. This review explores the biosynthetic pathways, homeostatic mechanisms, and the significance of retinoid-binding proteins in maintaining ATRA levels. It highlights the intricate balance required for ATRA homeostasis, emphasizing that both excess and deficiency can lead to severe developmental and health consequences. Furthermore, the associations are discussed between ATRA dysregulation and several diseases, including various genetic disorders, cancer, endometriosis, and heart failure, underscoring the role of retinoid-binding proteins like RBP1 in these conditions. The potential for gene-environment interactions in retinoid metabolism is also examined, suggesting that dietary factors may exacerbate genetic predispositions to ATRA-related pathologies. Methodological advancements in quantifying ATRA and its metabolites are reviewed, alongside the challenges inherent in studying retinoid dynamics. Future research directions are proposed to further elucidate the role of ATRA in health and disease, with the aim of identifying therapeutic targets for conditions linked to retinoid signaling dysregulation.
Collapse
Affiliation(s)
- Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.
| |
Collapse
|
2
|
Bohn T, Despotovic M, Vahid F, Rühl R. Estimated Dietary Intakes of Vitamin A5. Nutrients 2024; 16:4004. [PMID: 39683398 DOI: 10.3390/nu16234004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND A new vitamin concept, termed vitamin A5, an umbrella term for vitamin A derivatives being direct nutritional precursors for 9-cis-13,14-dihydroretinoic acid and further induction of RXR-signaling, was recently identified with global importance for mental health and healthy brain and nerve functions. Dietary recommendations in the range of 1.1 (0.5-1.8) mg vitamin A5 / day were suggested by an international expert consortium. The ensuing question arises as to the current daily dietary intake amounts in Western civilization. METHODS Addressing this answer included calculating the intake based on known amounts of vitamin A5 in frequently consumed food items of the human diet that are high in this vitamin, as well as the known daily dietary intake amounts of those selected food components in Westernized countries. RESULTS Regarding food items, amounts of vitamin A5 in the form of provitamin A5 (i.e., 9-cis-beta-carotene (9CBC)), the predominant form in the diet, were found to range from 0.1 to 39 µg 9CBC / g for individual fruits and vegetables, with the highest concentrations being in leafy vegetables. The average intake amounts of vitamin A5 in adults of the general population following a Western lifestyle in Europe averaged 0.9, with a range from 0.5 (for Austria) to 1.3 (for Italy) mg 9CBC/day. Furthermore, based on our calculations, large parts, i.e., approximately two-thirds, of the population are low, even too low (<1.1 mg/day), in daily vitamin A5 intake. CONCLUSION In addition to the importance of nudging the population toward a regrettably non-well-accepted higher intake of fruits and vegetables, an additional fortification and supplementation of vitamin A5 could be considered, similar to other micronutrients that are low in a Westernized diet.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, L-1445 Luxembourg, Luxembourg
| | - Marta Despotovic
- Department of Nutrition and Metabolism, Institute for Medical Research, 11000 Belgrade, Serbia
| | - Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, L-1445 Luxembourg, Luxembourg
| | - Ralph Rühl
- CISCAREX UG, Transvaalstr. 27c, D-13351 Berlin, Germany
| |
Collapse
|
3
|
Coulleray J, Kindler A, Rima M, Cahuzac H, Rochel N, Chaubet G, Krezel W, Wagner A. Retinoids Molecular Probes by Late-stage Azide Insertion - Functional Tools to Decrypt Retinoid Metabolism. Chembiochem 2024; 25:e202300689. [PMID: 39092796 DOI: 10.1002/cbic.202300689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/23/2024] [Indexed: 08/04/2024]
Abstract
Studying the complex and intricate retinoids metabolic pathways by chemical biology approaches requires design and synthesis of biologically functional molecular probes. Only few of such molecular retinoid probes could be found in literature, most of them bearing a molecular structure quite different from natural retinoids. To provide close-to-native retinoid probes, we have developed a versatile late-stage method for the insertion of azide function at the C4 position of several retinoids. This one-step process opens straightforward access to different retinoid and carotenoid probes from commercially available precursors. We have further demonstrated that the different molecular probes retain ability of the original compound to activate genes' transcription, despite azide insertion, highlighting biological activities that were further validated in zebrafish in vivo model. The present work paves the way to future studies on vitamin A's metabolism.
Collapse
Affiliation(s)
- Jessica Coulleray
- Bio-Functional Chemistry, Institut du Médicament de Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden
| | - Alexia Kindler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut national de la santé et de la recherche médicale U 1258, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden
| | - Mohamad Rima
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut national de la santé et de la recherche médicale U 1258, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden
- Department of Natural Sciences, Lebanese American University, Byblos, P.O. Box 36, Lebanon
| | - Héloïse Cahuzac
- Bio-Functional Chemistry, Institut du Médicament de Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden
| | - Natacha Rochel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut national de la santé et de la recherche médicale U 1258, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden
| | - Guilhem Chaubet
- Bio-Functional Chemistry, Institut du Médicament de Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut national de la santé et de la recherche médicale U 1258, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden
| | - Alain Wagner
- Bio-Functional Chemistry, Institut du Médicament de Strasbourg, 74 Route du Rhin, 67400, Illkirch-Graffenstaden
| |
Collapse
|
4
|
Rühl R, Bánáti D. Analysis of the current vitamin A terminology and dietary regulations from vitamin A 1 to vitamin A 5. INT J VITAM NUTR RES 2024; 94:326-333. [PMID: 38506673 DOI: 10.1024/0300-9831/a000807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Dietary recommendations on vitamin intake for human food fortification concerning vitamin A in various countries, larger economic zones and international organizations are mainly based on the Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO) "Codex Alimentarius standards". The general vitamin A terminology is based on regulations of the International Union of Pure and Applied Chemistry (IUPAC) that are used to describe the involved derivatives. These regulations and terminology were set up in the middle of the last century. Starting with the decade of the 80ies in the 20th century a large improvement of molecular biological methodologies, background physiological mechanisms as well as analytical techniques contributed to a large diversification of this simply claimed vitamin A terminology. Unfortunately, the following terminology and governmental regulations for food fortification are imprecise and non-harmonized. In this article we tried to unravel this terminology for updating terminology, nutritional suggestions and governmental regulations for vitamin A, which are currently based on various uncertainties. According to the current regulations, the newly found vitamin A5/X can be included in the current vitamin A terminology as "vitamin A5" or alternatively or even in parallel as a new vitamin A-independent terminology as "vitamin X". Based on the detailed knowledge of research from the early beginning of general vitamin A pathway identification towards detailed research of the last decades the commonly used and simplified term vitamin A with relevance for governmental recommendations on vitamin intake and food fortification advice was now more correctly sub-categorized to further vitamin A1, and A5 sub-categories with vitamin A1-alcohol as retinol, vitamin A2-alcohol as 3,4-didehydroretinol and vitamin A5-alcohol as 9-cis-13,14-dihydroretinol as their mainly relevant vitamin forms present in the human organism. Here we suggest and advise how the vitamin A terminology and further governmental regulations should be organized depending on a successful unraveling of the organization of the current vitamin A terminology.
Collapse
Affiliation(s)
| | - Diána Bánáti
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
| |
Collapse
|
5
|
Bánáti D, Hellman-Regen J, Mack I, Young HA, Benton D, Eggersdorfer M, Rohn S, Dulińska-Litewka J, Krężel W, Rühl R. Defining a vitamin A5/X specific deficiency - vitamin A5/X as a critical dietary factor for mental health. INT J VITAM NUTR RES 2024; 94:443-475. [PMID: 38904956 DOI: 10.1024/0300-9831/a000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A healthy and balanced diet is an important factor to assure a good functioning of the central and peripheral nervous system. Retinoid X receptor (RXR)-mediated signaling was identified as an important mechanism of transmitting major diet-dependent physiological and nutritional signaling such as the control of myelination and dopamine signalling. Recently, vitamin A5/X, mainly present in vegetables as provitamin A5/X, was identified as a new concept of a vitamin which functions as the nutritional precursor for enabling RXR-mediated signaling. The active form of vitamin A5/X, 9-cis-13,14-dehydroretinoic acid (9CDHRA), induces RXR-activation, thereby acting as the central switch for enabling various heterodimer-RXR-signaling cascades involving various partner heterodimers like the fatty acid and eicosanoid receptors/peroxisome proliferator-activated receptors (PPARs), the cholesterol receptors/liver X receptors (LXRs), the vitamin D receptor (VDR), and the vitamin A(1) receptors/retinoic acid receptors (RARs). Thus, nutritional supply of vitamin A5/X might be a general nutritional-dependent switch for enabling this large cascade of hormonal signaling pathways and thus appears important to guarantee an overall organism homeostasis. RXR-mediated signaling was shown to be dependent on vitamin A5/X with direct effects for beneficial physiological and neuro-protective functions mediated systemically or directly in the brain. In summary, through control of dopamine signaling, amyloid β-clearance, neuro-protection and neuro-inflammation, the vitamin A5/X - RXR - RAR - vitamin A(1)-signaling might be "one of" or even "the" critical factor(s) necessary for good mental health, healthy brain aging, as well as for preventing drug addiction and prevention of a large array of nervous system diseases. Likewise, vitamin A5/X - RXR - non-RAR-dependent signaling relevant for myelination/re-myelination and phagocytosis/brain cleanup will contribute to such regulations too. In this review we discuss the basic scientific background, logical connections and nutritional/pharmacological expert recommendations for the nervous system especially considering the ageing brain.
Collapse
Affiliation(s)
- Diána Bánáti
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany
| | - Hayley A Young
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - David Benton
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - Manfred Eggersdorfer
- Department of Healthy Ageing, University Medical Center Groningen (UMCG), The Netherlands
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Germany
| | | | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
6
|
Belyaeva OV, Klyuyeva AV, Vyas A, Berger WK, Halasz L, Yu J, Atigadda VR, Slay A, Goggans KR, Renfrow MB, Kane MA, Nagy L, Kedishvili NY. The retinoid X receptor has a critical role in synthetic rexinoid-induced increase in cellular all-trans-retinoic acid. PLoS One 2024; 19:e0301447. [PMID: 38557762 PMCID: PMC10984533 DOI: 10.1371/journal.pone.0301447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Rexinoids are agonists of nuclear rexinoid X receptors (RXR) that heterodimerize with other nuclear receptors to regulate gene transcription. A number of selective RXR agonists have been developed for clinical use but their application has been hampered by the unwanted side effects associated with the use of rexinoids and a limited understanding of their mechanisms of action across different cell types. Our previous studies showed that treatment of organotypic human epidermis with the low toxicity UAB30 and UAB110 rexinoids resulted in increased steady-state levels of all-trans-retinoic acid (ATRA), the obligatory ligand of the RXR-RAR heterodimers. Here, we investigated the molecular mechanism underlying the increase in ATRA levels using a dominant negative RXRα that lacks the activation function 2 (AF-2) domain. The results demonstrated that overexpression of dnRXRα in human organotypic epidermis markedly reduced signaling by resident ATRA, suggesting the existence of endogenous RXR ligand, diminished the biological effects of UAB30 and UAB110 on epidermis morphology and gene expression, and nearly abolished the rexinoid-induced increase in ATRA levels. Global transcriptome analysis of dnRXRα-rafts in comparison to empty vector-transduced rafts showed that over 95% of the differentially expressed genes in rexinoid-treated rafts constitute direct or indirect ATRA-regulated genes. Thus, the biological effects of UAB30 and UAB110 are mediated through the AF-2 domain of RXRα with minimal side effects in human epidermis. As ATRA levels are known to be reduced in certain epithelial pathologies, treatment with UAB30 and UAB110 may represent a promising therapy for normalizing the endogenous ATRA concentration and signaling in epithelial tissues.
Collapse
Affiliation(s)
- Olga V. Belyaeva
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Alla V. Klyuyeva
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Ansh Vyas
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Wilhelm K. Berger
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States of America
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States of America
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, United States of America
| | - Venkatram R. Atigadda
- Department of Dermatology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Aja Slay
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Kelli R. Goggans
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, United States of America
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States of America
| | - Natalia Y. Kedishvili
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
7
|
Bohn T, de Lera AR, Landrier JF, Rühl R. Carotenoid metabolites, their tissue and blood concentrations in humans and further bioactivity via retinoid receptor-mediated signalling. Nutr Res Rev 2023; 36:498-511. [PMID: 36380523 DOI: 10.1017/s095442242200021x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many epidemiological studies have emphasised the relation between carotenoid dietary intake and their circulating concentrations and beneficial health effects, such as lower risk of cardiometabolic diseases and cancer. However, there is dispute as to whether the attributed health benefits are due to native carotenoids or whether they are instead induced by their metabolites. Several categories of metabolites have been reported, most notably involving (a) modifications at the cyclohexenyl ring or the polyene chain, such as epoxides and geometric isomers, (b) excentric cleavage metabolites with alcohol-, aldehyde- or carboxylic acid-functional groups or (c) centric cleaved metabolites with additional hydroxyl, aldehyde or carboxyl functionalities, not counting their potential phase-II glucuronidated / sulphated derivatives. Of special interest are the apo-carotenoids, which originate in the intestine and other tissues from carotenoid cleavage by β-carotene oxygenases 1/2 in a symmetrical / non-symmetrical fashion. These are more water soluble and more electrophilic and, therefore, putative candidates for interactions with transcription factors such as NF-kB and Nrf2, as well as ligands for RAR-RXR nuclear receptor interactions. In this review, we discuss in vivo detected apo-carotenoids, their reported tissue concentrations, and potential associated health effects, focusing exclusively on the human situation and based on quantified / semi-quantified carotenoid metabolites proven to be present in humans.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition and Health Research Group, Precision Health Department, Luxembourg Institute of Health, 1 A-B, rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Angel R de Lera
- Departmento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, 36310 Vigo, Spain
| | | | - Ralph Rühl
- CISCAREX UG, Berlin, Germany
- Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
8
|
Bohn T, Hellman-Regen J, de Lera AR, Böhm V, Rühl R. Human nutritional relevance and suggested nutritional guidelines for vitamin A5/X and provitamin A5/X. Nutr Metab (Lond) 2023; 20:34. [PMID: 37582723 PMCID: PMC10426203 DOI: 10.1186/s12986-023-00750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/27/2023] [Indexed: 08/17/2023] Open
Abstract
In the last century, vitamin A was identified that included the nutritional relevant vitamin A1 / provitamin A1, as well as the vitamin A2 pathway concept. Globally, nutritional guidelines have focused on vitamin A1 with simplified recommendations and calculations based solely on vitamin A. The vitamin A / provitamin A terminology described vitamin A with respect to acting as a precursor of 11-cis-retinal, the chromophore of the visual pigment, as well as retinoic acid(s), being ligand(s) of the nuclear hormone receptors retinoic acid receptors (RARs) α, β and γ. All-trans-retinoic acid was conclusively shown to be the endogenous RAR ligand, while the concept of its isomer 9-cis-retinoic acid, being "the" endogenous ligand of the retinoid-X receptors (RXRs), remained inconclusive. Recently, 9-cis-13,14-dihydroretinoic acid was conclusively reported as an endogenous RXR ligand, and a direct nutritional precursor was postulated in 2018 and further confirmed by Rühl, Krezel and de Lera in 2021. This was further termed vitamin A5/X / provitamin A5/X. In this review, a new vitamin A5/X / provitamin A5/X concept is conceptualized in parallel to the vitamin A(1) / provitamin A(1) concept for daily dietary intake and towards dietary guidelines, with a focus on the existing national and international regulations for the physiological and nutritional relevance of vitamin A5/X. The aim of this review is to summarize available evidence and to emphasize gaps of knowledge regarding vitamin A5/X, based on new and older studies and proposed future directions as well as to stimulate and propose adapted nutritional regulations.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition Research Group, Department of Precision Health, Luxembourg Institute and Health, 1 A-B, Rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Berlin, Germany
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultad de Química, CINBIO and IBIV, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain
| | - Volker Böhm
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Ralph Rühl
- CISCAREX UG, Transvaalstr. 27c, 13351, Berlin, Germany.
| |
Collapse
|
9
|
Bohn T, de Lera AR, Landrier JF, Carlsen H, Merk D, Todt T, Renaut J, Rühl R. State-of-the-art methodological investigation of carotenoid activity and metabolism - from organic synthesis via metabolism to biological activity - exemplified by a novel retinoid signalling pathway. Food Funct 2023; 14:621-638. [PMID: 36562448 DOI: 10.1039/d2fo02816f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carotenoids are the most abundant lipophilic secondary plant metabolites and their dietary intake has been related to a large number of potential health benefits relevant for humans, including even reduced total mortality. An important feature is their potential to impact oxidative stress and inflammatory pathways, by interacting with transcription factors. For example, they may act as precursors of bioactive derivatives activating nuclear hormone receptor mediated signalling. These bioactive derivatives, originating e.g. from β-carotene, i.e. retinoids / vitamin A, can activate the nuclear hormone receptors RARs (retinoic acid receptors). Due to new analytical insights, various novel metabolic pathways were recently outlined to be mediated via distinct nuclear hormone receptor activating pathways that were predicted and further confirmed. In this article, we describe old and novel metabolic pathways from various carotenoids towards novel ligands of alternative nuclear hormone receptors. However, to fully elucidate these pathways, a larger array of techniques and tools, starting from organic synthesis, lipidomics, reporter models, classical in vitro and in vivo models and further omics-approaches and their statistical evaluation are needed to comprehensively and conclusively study this topic. Thus, we further describe state-of-the-art techniques from A to Ω elucidating carotenoid biological mediated activities and describe in detail required materials and methods needed - in practical protocol form - for the various steps of carotenoid investigations.
Collapse
Affiliation(s)
- Torsten Bohn
- Luxembourg Institute of Health, Nutrition and Health Research Group, Department of Precision Health, 1 A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, 36310 Vigo, Spain
| | | | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Daniel Merk
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Tilman Todt
- HAN University of Applied Sciences, School of Applied Biosciences and Chemistry, Nijmegen, The Netherlands
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Ralph Rühl
- CISCAREX UG, Berlin, Germany. .,Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
10
|
Håkansson H. Role of retinoids in biology and toxicology. Reprod Toxicol 2021; 107:40-42. [PMID: 34774707 DOI: 10.1016/j.reprotox.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Helen Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Vitamin A5/X controls stress-adaptation and prevents depressive-like behaviors in a mouse model of chronic stress. Neurobiol Stress 2021; 15:100375. [PMID: 34401411 PMCID: PMC8355947 DOI: 10.1016/j.ynstr.2021.100375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/21/2022] Open
Abstract
9-cis-13,14-dihydroretinoic acid (9CDHRA), acts as an endogenous ligand of the retinoid X receptors (RXRs), and is an active form of a suggested new vitamin, vitamin A5/X. Nutritional-relevance of this pathway as well as its detailed role in vertebrate physiology, remain largely unknown. Since recent GWAS data and experimental studies associated RXR-mediated signaling with depression, we explored here the relevance of RXR and vitamin A5/X-mediated signaling in the control of stress adaptation and depressive-like behaviors in mice. We found that compromised availability of 9CDHRA in Rbp1−/− mice was associated with increased despair in the forced swim and anhedonia in the sucrose preference test. 9CDHRA similarly to synthetic RXR agonist, BMS649, normalized despair behaviors in Rbp1−/− but not Rxrγ−/− mice, supporting involvement of RXR signaling in anti-despair activity of these ligands. Importantly, similarly to BMS649, the 9CDHRA and its nutritional-precursor, 9-cis-13,14-dihydroretinol (vitamin A5/X alcohol), prevented development of depressive-like behaviors in mice exposed to chronic social defeat stress, revealing the beneficial role of RXRs and its endogenous ligand in stress adaptation process. These data point to the need for relevant nutritional, biochemical and pharmacological studies of this signaling pathway in human, both in physiological conditions and in pathologies of stress-related disorders.
Collapse
|