1
|
Johansen VBI, Josefsen K, Antvorskov JC. The Impact of Dietary Factors during Pregnancy on the Development of Islet Autoimmunity and Type 1 Diabetes: A Systematic Literature Review. Nutrients 2023; 15:4333. [PMID: 37892409 PMCID: PMC10609322 DOI: 10.3390/nu15204333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
AIMS AND HYPOTHESIS The incidence of type 1 diabetes mellitus in children is considerably increasing in western countries. Thus, identification of the environmental determinants involved could ultimately lead to disease prevention. Here, we aimed to systematically review (PROSPERO ID: CRD42022362522) the current evidence of the association between maternal dietary factors during gestation and the risk of developing type 1 diabetes and/or islet autoimmunity (IA) in murine and human offspring. METHODS In accordance with PRISMA guidelines, the present systematic review searched PubMed and Scopus (n = 343) for different combinations of MeSH terms, such as type 1 diabetes, diet, islet autoimmunity, prenatal, nutrient, gluten, gliadin, vitamin, milk, and fibers. RESULTS We found that the most investigated dietary factors in the present literature were gluten, dietary advanced glycosylated end products (dAGEs), vitamin D, fatty acids, and iron. The results concerning prenatal exposure to a gluten-free environment showed a consistently protective effect on the development of IA. Prenatal exposures to vitamin D and certain fatty acids appeared to protect against the development of IA, whereas in utero iron and fat exposures correlated with increased risks of IA. CONCLUSION We conclude that a definite association is not established for most factors investigated as the literature represents a heterogeneous pool of data, although fetal exposures to some maternal dietary components, such as gluten, show consistent associations with increased risks of IA. We suggest that human prospective dietary intervention studies in both cohort and clinical settings are crucial to better evaluate critical and protective prenatal exposures from the maternal diet during pregnancy.
Collapse
Affiliation(s)
- Valdemar Brimnes Ingemann Johansen
- Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Department of Biology, Faculty of Science, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; (K.J.); (J.C.A.)
| | - Knud Josefsen
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; (K.J.); (J.C.A.)
| | - Julie Christine Antvorskov
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark; (K.J.); (J.C.A.)
- Steno Diabetes Center, Borgmester Ib Juuls Vej 83, 2730 Herlev, Denmark
| |
Collapse
|
2
|
Elhassan S, Dong F, Buckner T, Johnson RK, Seifert JA, Carry PM, Vanderlinden L, Waugh K, Rewers M, Norris JM. Investigating iron intake in risk of progression from islet autoimmunity to type 1 diabetes: The diabetes autoimmunity study in the young. Front Immunol 2023; 14:1124370. [PMID: 37056761 PMCID: PMC10086157 DOI: 10.3389/fimmu.2023.1124370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Background Studies of the role of iron in the risk of type 1 diabetes (T1D) have been inconsistent. Given that iron generates reactive oxygen radicals, which can lead to oxidative damage and apoptosis in the beta cells of the pancreas, we examined whether iron intake was associated with the risk of progressing to T1D in individuals with islet autoimmunity (IA), the pre-clinical phase of T1D. Methods DAISY is a prospective cohort following 2,547 children at increased risk for IA and progression to T1D. IA is defined as at least two consecutive serum samples positive for at least one autoantibody (insulin, GAD, IA-2, or ZnT8). We measured dietary intake at the time of IA seroconversion in 175 children with IA, and of these, 64 progressed to T1D. We used Cox regression to examine the association between energy-adjusted iron intake and progression to T1D, adjusting for HLA-DR3/4 genotype, race/ethnicity, age at seroconversion, presence of multiple autoantibodies at seroconversion, and multiple vitamin use. In addition, we tested whether this association was modified by vitamin C or calcium intake. Results In children with IA, high iron intake (as defined as above the 75th percentile, > 20.3 mg/day) was associated with decreased risk of progression to T1D compared to moderate iron intake (as defined by the middle 25-75th percentiles, 12.7-20.3 mg/day) (adjusted hazard ratio (HR): 0.35; 95% confidence interval (CI): 0.15, 0.79). The association between iron intake and T1D was not modified by vitamin C nor calcium intake. In a sensitivity analysis, the removal of six children who had been diagnosed with celiac disease prior to IA seroconversion did not affect this association. Conclusion Higher iron intake at the time of IA seroconversion is associated with a lower risk of progression to T1D, independent of multivitamin supplement use. Further research that includes plasma biomarkers of iron status is needed to investigate the relationship between iron and the risk of T1D.
Collapse
Affiliation(s)
- Sulafa Elhassan
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Fran Dong
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Teresa Buckner
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Kinesiology, Nutrition, and Dietetics, University of Northern Colorado, Greeley, CO, United States
| | - Randi K. Johnson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biomedical Informatics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jennifer A. Seifert
- Department of Medicine, Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Patrick M. Carry
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lauren Vanderlinden
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kathleen Waugh
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Marian Rewers
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
3
|
Buckner T, Johnson RK, Vanderlinden LA, Carry PM, Romero A, Onengut-Gumuscu S, Chen WM, Fiehn O, Frohnert BI, Crume T, Perng W, Kechris K, Rewers M, Norris JM. An Oxylipin-Related Nutrient Pattern and Risk of Type 1 Diabetes in the Diabetes Autoimmunity Study in the Young (DAISY). Nutrients 2023; 15:945. [PMID: 36839302 PMCID: PMC9962656 DOI: 10.3390/nu15040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Oxylipins, pro-inflammatory and pro-resolving lipid mediators, are associated with the risk of type 1 diabetes (T1D) and may be influenced by diet. This study aimed to develop a nutrient pattern related to oxylipin profiles and test their associations with the risk of T1D among youth. The nutrient patterns were developed with a reduced rank regression in a nested case-control study (n = 335) within the Diabetes Autoimmunity Study in the Young (DAISY), a longitudinal cohort of children at risk of T1D. The oxylipin profiles (adjusted for genetic predictors) were the response variables. The nutrient patterns were tested in the case-control study (n = 69 T1D cases, 69 controls), then validated in the DAISY cohort using a joint Cox proportional hazards model (n = 1933, including 81 T1D cases). The first nutrient pattern (NP1) was characterized by low beta cryptoxanthin, flavanone, vitamin C, total sugars and iron, and high lycopene, anthocyanidins, linoleic acid and sodium. After adjusting for T1D family history, the HLA genotype, sex and race/ethnicity, NP1 was associated with a lower risk of T1D in the nested case-control study (OR: 0.44, p = 0.0126). NP1 was not associated with the risk of T1D (HR: 0.54, p-value = 0.1829) in the full DAISY cohort. Future studies are needed to confirm the nested case-control findings and investigate the modifiable factors for oxylipins.
Collapse
Affiliation(s)
- Teresa Buckner
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Kinesiology, Nutrition, and Dietetics, University of Northern Colorado, Greeley, CO 80639, USA
| | - Randi K. Johnson
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Biomedical Informatics, CU School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lauren A. Vanderlinden
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patrick M. Carry
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, CU School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alex Romero
- Department of Biomedical Informatics, CU School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Suna Onengut-Gumuscu
- Health Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Wei-Min Chen
- Health Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22903, USA
| | - Oliver Fiehn
- NIH-West Coast Metabolomics Center, University of California-Davis, Davis, CA 95616, USA
| | - Brigitte I. Frohnert
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tessa Crume
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Wei Perng
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Katerina Kechris
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Marian Rewers
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, CU Anschutz, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Mason SA, Parker L, van der Pligt P, Wadley GD. Vitamin C supplementation for diabetes management: A comprehensive narrative review. Free Radic Biol Med 2023; 194:255-283. [PMID: 36526243 DOI: 10.1016/j.freeradbiomed.2022.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Growing evidence suggests that vitamin C supplementation may be an effective adjunct therapy in the management of people with diabetes. This paper critically reviews the current evidence on effects of vitamin C supplementation and its potential mechanisms in diabetes management. Evidence from meta-analyses of randomized controlled trials (RCTs) show favourable effects of vitamin C on glycaemic control and blood pressure that may be clinically meaningful, and mixed effects on blood lipids and endothelial function. However, evidence is mostly of low evidence certainty. Emerging evidence is promising for effects of vitamin C supplementation on some diabetes complications, particularly diabetic foot ulcers. However, there is a notable lack of robust and well-designed studies exploring effects of vitamin C as a single compound supplement on diabetes prevention and patient-important outcomes (i.e. prevention and amelioration of diabetes complications). RCTs are also required to investigate potential preventative or ameliorative effects of vitamin C on gestational diabetes outcomes. Oral vitamin C doses of 500-1000 mg per day are potentially effective, safe, and affordable for many individuals with diabetes. However, personalisation of supplementation regimens that consider factors such as vitamin C status, disease status, current glycaemic control, vitamin C intake, redox status, and genotype is important to optimize vitamin C's therapeutic effects safely. Finally, given a high prevalence of vitamin C deficiency in patients with complications, it is recommended that plasma vitamin C concentration be measured and monitored in the clinic setting.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paige van der Pligt
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Nutrition and Dietetics, Western Health, Footscray, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
5
|
Neshat A, Oghazyan A, Kariminejad F, Mahmudiono T, Fakhri Y, Asadi AMS, Atamaleki A, Khaneghah AM. The concentration of potentially toxic elements (PTEs) in human milk: a systematic review, meta-analysis, and health risk assessment. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|