1
|
Louro T, Carreira L, Caeiro I, Simões C, Ricardo-Rodrigues S, Rato AE, Capela E Silva F, Luís H, Moreira P, Lamy E. The Influence of (Poly)phenol Intake in Saliva Proteome: Short- and Medium-Term Effects of Apple. Foods 2023; 12:2540. [PMID: 37444277 DOI: 10.3390/foods12132540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The relationship between salivary proteome and dietary habits was studied in previous works, where a relationship between salivary proteins like cystatins and polyphenol/tannin levels in diet was observed. However, it remains to be elucidated if this association results from an effect of polyphenol-rich food ingestion on saliva composition. The aim of this work was to test the effects of apple intake on the saliva proteome, both in the short and medium term (after 4 days of continuous intake). By incubating saliva samples with apple phenolic-rich extract, protein bands containing α-amylase, S-type cystatins, and proline-rich proteins (PRPs) appeared in the fraction that precipitated, showing the potential of these (poly)phenols to precipitate salivary proteins. Among these, it was salivary cystatins that presented changes in their levels both in the saliva samples collected immediately after apple intake and in the ones collected after 4 days of intake of an extra amount of apple. These results support the thought that intake is reflected in the salivary proteome. The effect of a polyphenol-rich food, like the apple, on salivary cystatin levels is in line with results observed in animal models and, due to the involvement of these proteins in oral food perception, it would be interesting to explore in future studies the effect of these changes on sensory perception and acceptance of polyphenol-rich food.
Collapse
Affiliation(s)
- Teresa Louro
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Pólo da Mitra, University of Évora, Apartado 94, 7006-554 Évora, Portugal
| | - Laura Carreira
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Pólo da Mitra, University of Évora, Apartado 94, 7006-554 Évora, Portugal
| | - Inês Caeiro
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Pólo da Mitra, University of Évora, Apartado 94, 7006-554 Évora, Portugal
| | - Carla Simões
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Pólo da Mitra, University of Évora, Apartado 94, 7006-554 Évora, Portugal
| | - Sara Ricardo-Rodrigues
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Pólo da Mitra, University of Évora, Apartado 94, 7006-554 Évora, Portugal
| | - Ana Elisa Rato
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Pólo da Mitra, University of Évora, Apartado 94, 7006-554 Évora, Portugal
- Department of Plant Science, School of Science and Technology, University of Évora, Pólo da Mitra, Apartado 94, 7002-554 Évora, Portugal
| | - Fernando Capela E Silva
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Pólo da Mitra, University of Évora, Apartado 94, 7006-554 Évora, Portugal
- Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, 7000-671 Évora, Portugal
| | - Henrique Luís
- Research Unit in Oral and Biomedical Sciences (UICOB), School of Dental Medicine and Rede de Higienistas Orais para o Desenvolvimento da Ciência (RHODes), University of Lisbon, 1649-003 Lisboa, Portugal
- Center for Innovative Care and Health Technology (ciTechcare), Polytechnic of Leiria, 2411-901 Leiria, Portugal
- Health School, Polytechnic Institute of Portalegre, 7300-555 Portalegre, Portugal
| | - Pedro Moreira
- Faculty of Nutrition and Food Sciences, Porto University (FCNAUP), 4150-180 Porto, Portugal
| | - Elsa Lamy
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Pólo da Mitra, University of Évora, Apartado 94, 7006-554 Évora, Portugal
| |
Collapse
|
3
|
Davis LA, Running CA. Repeated exposure to epigallocatechin gallate solution or water alters bitterness intensity and salivary protein profile. Physiol Behav 2021; 242:113624. [PMID: 34655570 PMCID: PMC8579467 DOI: 10.1016/j.physbeh.2021.113624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/16/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022]
Abstract
Polyphenols, bitter and astringent compounds present in many healthy foods, induce varied sensory responses across individuals. These differences in liking and flavor intensity may be attributable, in part, to differences in saliva. In the current study, we tested the effect of repeated consumption of a bitter polyphenol (epigallocatechin gallate, EGCG) solution on perceived bitterness intensity and salivary protein composition. We hypothesized exposure to EGCG would cause an increase in concentrations of salivary proteins that inhibit bitterness of polyphenols. We also hypothesized that participants with higher habitual polyphenol, specifically the flavanols, intake would experience less bitterness from EGCG solutions than those with low habitual intake, and that the high flavanol consumers would be more resistant to salivary alterations. We also tested whether bovine milk casein, a food analog for salivary proteins that may suppress bitterness, would decrease bitterness intensity of the EGCG solution and mitigate effects of the intervention. Participants (N = 37) in our crossover intervention adhered to two-week periods of daily bitter (EGCG) or control (water) solution consumption. Bitterness intensity ratings and citric acid-stimulated saliva were collected at baseline and after each exposure period. Results indicate that bitterness intensity of the EGCG solution decreased after polyphenol (bitter EGCG) exposure compared to control (water) exposure. Casein addition also decreased bitterness intensity of the EGCG solution. While there was not a significant overall main effect of baseline flavanol intake on solution bitterness, there was an interaction between intervention week and baseline flavanol intake. Surprisingly, the higher flavanol intake group rated EGCG solutions as more bitter than the low and medium intake groups. Of proteins relevant to taste perception, several cystatins changed in saliva in response to the intervention. Interestingly, most of these protein alterations occurred more robustly after the control (water) exposure rather than the bitter (EGCG) exposure, suggesting that additional factors not quantified in this work may influence salivary proteins. Thus, we confirm in this study that exposure to bitterness suppresses ratings of bitterness over time, but more work needs to establish the causal factors of how diet influences salivary proteins.
Collapse
Affiliation(s)
- Lissa A Davis
- Department of Nutrition Science, Purdue University, Stone Hall, 700 W State St., West Lafayette, IN 47907, USA
| | - Cordelia A Running
- Department of Nutrition Science, Purdue University, Stone Hall, 700 W State St., West Lafayette, IN 47907, USA.
| |
Collapse
|