1
|
Park SY, Son SY, Lee I, Nam H, Ryu B, Park S, Yun C. Highly Sensitive Biosensors Based on All-PEDOT:PSS Organic Electrochemical Transistors with Laser-Induced Micropatterning. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46664-46676. [PMID: 39180554 DOI: 10.1021/acsami.4c05791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Recent advances in numerous biological applications have increased the accuracy of monitoring the level of biologically significant analytes in the human body to manage personal nutrition and physiological conditions. However, despite promising reports about costly wearable devices with high sensing performance, there has been a growing demand for inexpensive sensors that can quickly detect biological molecules. Herein, we present highly sensitive biosensors based on organic electrochemical transistors (OECTs), which are types of organic semiconductor-based sensors that operate consistently at low operating voltages in aqueous solutions. Instead of the gold or platinum electrode used in current electrochemical devices, poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) was used as both the channel and gate electrodes in the OECT. Additionally, to overcome the patterning resolution limitations of conventional solution processing, we confirmed that the irradiation of a high-power IR laser (λ = 1064 nm) onto the coated PEDOT:PSS film was able to produce spatially resolvable micropatterns in a digital-printing manner. The proposed patterning technique exhibits high suitability for the fabrication of all-PEDOT:PSS OECT devices. The device geometry was optimized by fine-tuning the gate area and the channel-to-gate distance. Consequently, the sensor for detecting ascorbic acid (vitamin C) concentrations in an electrolyte exhibited the best sensitivity of 125 μA dec-1 with a limit of detection of 1.3 μM, which is nearly 2 orders of magnitude higher than previous findings. Subsequently, an all-plastic flexible epidermal biosensor was established by transferring the patterned all-PEDOT:PSS OECT from a glass substrate to a PET substrate, taking full advantage of the flexibility of PEDOT:PSS. The prepared all-plastic sensor device is highly cost-effective and suitable for single-use applications because of its acceptable sensing performance and reliable signal for detecting vitamin C. Additionally, the epidermal sensor successfully obtained the temporal profile of vitamin C in the sweat of a human volunteer after the consumption of vitamin C drinks. We believe that the highly sensitive all-PEDOT:PSS OECT device fabricated using the accurate patterning process exhibits versatile potential as a low-cost and single-use biosensor for emerging bioelectronic applications.
Collapse
Affiliation(s)
- Seong Yeon Park
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seo Yeong Son
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Inwoo Lee
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyuckjin Nam
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Boeun Ryu
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sejung Park
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Changhun Yun
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
2
|
Athanasiou A, Charalambous M, Anastasiou T, Aggeli K, Soteriades ES. Preoperative and postoperative administration of vitamin C in cardiac surgery patients - settings, dosages, duration, and clinical outcomes: a narrative review. Ann Med Surg (Lond) 2024; 86:3591-3607. [PMID: 38846824 PMCID: PMC11152825 DOI: 10.1097/ms9.0000000000002112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 06/09/2024] Open
Abstract
Vitamin C or ascorbic acid is a water-soluble vitamin capable of directly donating electrons to reactive oxygen species, attenuating electrical remodeling, and cardiac dysfunction in patients undergoing cardiac surgery (CS), considered one of the most effective defenses against free radicals in the blood, thus being one of the first antioxidants consumed during oxidative stress. The aim of this review is to assess the effects of perioperative administration of vitamin C in CS patients. A comprehensive literature search was conducted in order to identify prospective cohort studies and/or randomized controlled trials reporting on the perioperative effects of vitamin C among adult patients undergoing CS. Studies published between January 1980 to December 2022 were included in our search, resulting in a total of 31 articles that met all our inclusion criteria. There seems to be a beneficial effect of vitamin C supplementation in arrhythmias such as in postoperative atrial fibrillation, reduction of ICU length of stay, and hospital length of stay, reduction in postoperative ventilation time, in inotropic demand, and in postoperative fatigue. Vitamin C can act as a scavenger of free radicals to decrease the peroxidation of the lipids present in the cell membrane, and to protect the myocardium postoperatively from ischemia/reperfusion injury, thus attenuating oxidative stress and inflammation. It represents a readily available and cost-effective strategy that could improve the outcome of patients undergoing CS, by reducing the risk of serious cardiovascular adverse events, both perioperatively and postoperatively.
Collapse
Affiliation(s)
| | | | | | - Konstantina Aggeli
- Department of Cardiology, ‘Hippocrates’ General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elpidoforos S. Soteriades
- Healthcare Management Program, School of Economics and Management, Open University of Cyprus, Nicosia, Cyprus
- Department of Environmental Health, Environmental and Occupational Medicine and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Ding B, Lou J, Qin T, Xie W, Li D, Li P, Wang X, Lin Z, Guo X, Zhu J. L-ascorbyl-2-phosphate alleviates white matter injury caused by chronic hypoxia through the PRMT5/P53/NF-κB pathway. J Neurochem 2024; 168:142-160. [PMID: 38169121 DOI: 10.1111/jnc.16038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
White matter injury (WMI) is one of the most serious complications associated with preterm births. Damage to oligodendrocytes, which are the key cells involved in WMI pathogenesis, can directly lead to myelin abnormalities. L-ascorbyl-2-phosphate (AS-2P) is a stable form of vitamin C. This study aimed to explore the protective effects of AS-2P against chronic hypoxia-induced WMI, and elucidate the underlying mechanisms. An in vivo chronic hypoxia model and in vitro oxygen-glucose deprivation (OGD) model were established to explore the effects of AS-2P on WMI using immunofluorescence, immunohistochemistry, western blotting, real-time quantitative polymerase chain reaction, Morris water maze test, novel object recognition test, beaming-walking test, electron microscopy, and flow cytometry. The results showed that AS-2P resulted in the increased expression of MBP, Olig2, PDGFRα and CC1, improved thickness and density of the myelin sheath, and reduced TNF-α expression and microglial cell infiltration to alleviate inflammation in the brain after chronic hypoxia. Moreover, AS-2P improved the memory, learning and motor abilities of the mice with WMI. These protective effects of AS-2P may involve the upregulation of protein arginine methyltransferase 5 (PRMT5) and downregulation of P53 and NF-κB. In conclusion, our study demonstrated that AS-2P attenuated chronic hypoxia-induced WMI in vivo and OGD-induced oligodendrocyte injury in vitro possibly by regulating the PRMT5/P53/NF-κB pathway, suggesting that AS-2P may be a potential therapeutic option for WMI.
Collapse
Affiliation(s)
- Bingqing Ding
- Department of Pediatrics, the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jia Lou
- Department of Pediatrics, the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tianqi Qin
- Department of Pediatrics, the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiwei Xie
- Department of Pediatrics, the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Di Li
- Department of Pediatrics, the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peijun Li
- Department of Pediatrics, the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenlang Lin
- Department of Pediatrics, the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China
| | - Xiaoling Guo
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Pediatrics, the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Sakhawat A, Khan MU, Rehman R, Khan S, Shan MA, Batool A, Javed MA, Ali Q. Natural compound targeting BDNF V66M variant: insights from in silico docking and molecular analysis. AMB Express 2023; 13:134. [PMID: 38015338 PMCID: PMC10684480 DOI: 10.1186/s13568-023-01640-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) is a neurotrophin gene family gene that encodes proteins vital for the growth, maintenance, and survival of neurons in the nervous system. The study aimed to screen natural compounds against BDNF variant (V66M), which affects memory, cognition, and mood regulation. BDNF variant (V66M) as a target structure was selected, and Vitamin D, Curcumin, Vitamin C, and Quercetin as ligands structures were taken from PubChem database. Multiple tools like AUTODOCK VINA, BIOVIA discovery studio, PyMOL, CB-dock, IMOD server, Swiss ADEMT, and Swiss predict ligands target were used to analyze binding energy, interaction, stability, toxicity, and visualize BDNF-ligand complexes. Compounds Vitamin D3, Curcumin, Vitamin C, and Quercetin with binding energies values of - 5.5, - 6.1, - 4.5, and - 6.7 kj/mol, respectively, were selected. The ligands bind to the active sites of the BDNF variant (V66M) via hydrophobic bonds, hydrogen bonds, and electrostatic interactions. Furthermore, ADMET analysis of the ligands revealed they exhibited sound pharmacokinetic and toxicity profiles. In addition, an MD simulation study showed that the most active ligand bound favorably and dynamically to the target protein, and protein-ligand complex stability was determined. The finding of this research could provide an excellent platform for discovering and rationalizing novel drugs against stress related to BDNF (V66M). Docking, preclinical drug testing and MD simulation results suggest Quercetin as a more potent BDNF variant (V66M) inhibitor and forming a more structurally stable complex.
Collapse
Affiliation(s)
- Azra Sakhawat
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Raima Rehman
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Samiullah Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Adnan Shan
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Alia Batool
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
6
|
Lucas-Torres C, Caradeuc C, Prieur L, Djemai H, Youssef L, Noirez P, Coumoul X, Audouze K, Giraud N, Bertho G. NMR metabolomics study of chronic low-dose exposure to a cocktail of persistent organic pollutants. NMR IN BIOMEDICINE 2023; 36:e5006. [PMID: 37524504 DOI: 10.1002/nbm.5006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 08/02/2023]
Abstract
Nowadays, exposure to endocrine-disrupting chemicals (EDCs), including persistent organic pollutants (POPs), is one of the most critical threats to public health. EDCs are chemicals that mimic, block, or interfere with hormones in the body's endocrine system and have been associated with a wide range of health issues. This innovative, untargeted metabolomics study investigates chronic low-dose internal exposure to a cocktail of POPs on multiple tissues that are known to accumulate these lipophilic compounds. Interestingly, the metabolic response differs among selected tissues/organs in mice. In the liver, we observed a dynamic effect according to the exposure time and the doses of POPs. In the brain tissue, the situation is the opposite, leading to the conclusion that the presence of POPs immediately gives a saturated effect that is independent of the dose and the duration of exposure studied. By contrast, for the adipose tissues, nearly no effect is observed. This metabolic profiling leads to a holistic and dynamic overview of the main metabolic pathways impacted in lipophilic tissues by a cocktail of POPs.
Collapse
Affiliation(s)
- Covadonga Lucas-Torres
- CNRS UMR 8601, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, Paris, France
| | - Cédric Caradeuc
- CNRS UMR 8601, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, Paris, France
| | - Laura Prieur
- CNRS UMR 8601, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, Paris, France
| | - Haidar Djemai
- INSERM UMR-S 1124, Environmental Toxicity, Therapeutic Targets, Cellular Signaling & Biomarkers (T3S), Université Paris Cité, Paris, France
| | - Layale Youssef
- INSERM UMR-S 1124, Environmental Toxicity, Therapeutic Targets, Cellular Signaling & Biomarkers (T3S), Université Paris Cité, Paris, France
| | - Philippe Noirez
- INSERM UMR-S 1124, Environmental Toxicity, Therapeutic Targets, Cellular Signaling & Biomarkers (T3S), Université Paris Cité, Paris, France
- Performance, Santé, Métrologie, Société (PSMS), UFR STAPS, Campus Moulin de la Housse, Université de Reims Champagne-Ardenne, Reims, France
- Département des Sciences de l'Activité Physique, Université du Québec À Montréal (UQAM), Montreal, Quebec, Canada
| | - Xavier Coumoul
- INSERM UMR-S 1124, Environmental Toxicity, Therapeutic Targets, Cellular Signaling & Biomarkers (T3S), Université Paris Cité, Paris, France
| | - Karine Audouze
- INSERM UMR-S 1124, Environmental Toxicity, Therapeutic Targets, Cellular Signaling & Biomarkers (T3S), Université Paris Cité, Paris, France
| | - Nicolas Giraud
- CNRS UMR 8601, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, Paris, France
| | - Gildas Bertho
- CNRS UMR 8601, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, Paris, France
| |
Collapse
|
7
|
Toyoda Y, Miyata H, Shigesawa R, Matsuo H, Suzuki H, Takada T. SVCT2/SLC23A2 is a sodium-dependent urate transporter: functional properties and practical application. J Biol Chem 2023; 299:104976. [PMID: 37390985 PMCID: PMC10374969 DOI: 10.1016/j.jbc.2023.104976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
Urate transporters play a pivotal role in urate handling in the human body, but the urate transporters identified to date do not account for all known molecular processes of urate handling, suggesting the presence of latent machineries. We recently showed that a urate transporter SLC2A12 is also a physiologically important exporter of ascorbate (the main form of vitamin C in the body) that would cooperate with an ascorbate importer, sodium-dependent vitamin C transporter 2 (SVCT2). Based on the dual functions of SLC2A12 and cooperativity between SLC2A12 and SVCT2, we hypothesized that SVCT2 might be able to transport urate. To test this proposal, we conducted cell-based analyses using SVCT2-expressing mammalian cells. The results demonstrated that SVCT2 is a novel urate transporter. Vitamin C inhibited SVCT2-mediated urate transport with a half-maximal inhibitory concentration of 36.59 μM, suggesting that the urate transport activity may be sensitive to physiological ascorbate levels in blood. Similar results were obtained for mouse Svct2. Further, using SVCT2 as a sodium-dependent urate importer, we established a cell-based urate efflux assay that will be useful for identification of other novel urate exporters as well as functional characterization of nonsynonymous variants of already-identified urate exporters including ATP-binding cassette transporter G2. While more studies will be needed to elucidate the physiological impact of SVCT2-mediated urate transport, our findings deepen understanding of urate transport machineries.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Miyata
- Department of Pharmacy, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Ryuichiro Shigesawa
- Department of Pharmacy, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
8
|
Li S, Jakobs TC. Vitamin C protects retinal ganglion cells via SPP1 in glaucoma and after optic nerve damage. Life Sci Alliance 2023; 6:e202301976. [PMID: 37160307 PMCID: PMC10172762 DOI: 10.26508/lsa.202301976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023] Open
Abstract
Glaucoma is a common neurodegenerative disorder characterized by retinal ganglion cell death, astrocyte reactivity in the optic nerve, and vision loss. Currently, lowering the intraocular pressure (IOP) is the first-line treatment, but adjuvant neuroprotective approaches would be welcome. Vitamin C possesses neuroprotective activities that are thought to be related to its properties as a co-factor of enzymes and its antioxidant effects. Here, we show that vitamin C promotes a neuroprotective phenotype and increases gene expression related to neurotropic factors, phagocytosis, and mitochondrial ATP production. This effect is dependent on the up-regulation of secreted phosphoprotein 1 (SPP1) in reactive astrocytes via the transcription factor E2F1. SPP1+ astrocytes in turn promote retinal ganglion cell survival in a mouse model of glaucoma. In addition, oral administration of vitamin C lowers the IOP in mice. This study identifies an additional neuroprotective pathway for vitamin C and suggests a potential therapeutic role of vitamin C in neurodegenerative diseases such as glaucoma.
Collapse
Affiliation(s)
- Song Li
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA
| | - Tatjana C Jakobs
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA
| |
Collapse
|
9
|
Vitamin C transporter SVCT1 serves a physiological role as a urate importer: functional analyses and in vivo investigations. Pflugers Arch 2023; 475:489-504. [PMID: 36749388 PMCID: PMC10011331 DOI: 10.1007/s00424-023-02792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
Uric acid, the end product of purine metabolism in humans, is crucial because of its anti-oxidant activity and a causal relationship with hyperuricemia and gout. Several physiologically important urate transporters regulate this water-soluble metabolite in the human body; however, the existence of latent transporters has been suggested in the literature. We focused on the Escherichia coli urate transporter YgfU, a nucleobase-ascorbate transporter (NAT) family member, to address this issue. Only SLC23A proteins are members of the NAT family in humans. Based on the amino acid sequence similarity to YgfU, we hypothesized that SLC23A1, also known as sodium-dependent vitamin C transporter 1 (SVCT1), might be a urate transporter. First, we identified human SVCT1 and mouse Svct1 as sodium-dependent low-affinity/high-capacity urate transporters using mammalian cell-based transport assays. Next, using the CRISPR-Cas9 system followed by the crossing of mice, we generated Svct1 knockout mice lacking both urate transporter 1 and uricase. In the hyperuricemic mice model, serum urate levels were lower than controls, suggesting that Svct1 disruption could reduce serum urate. Given that Svct1 physiologically functions as a renal vitamin C re-absorber, it could also be involved in urate re-uptake from urine, though additional studies are required to obtain deeper insights into the underlying mechanisms. Our findings regarding the dual-substrate specificity of SVCT1 expand the understanding of urate handling systems and functional evolutionary changes in NAT family proteins.
Collapse
|
10
|
Coker SJ, Smith-Díaz CC, Dyson RM, Vissers MCM, Berry MJ. The Epigenetic Role of Vitamin C in Neurodevelopment. Int J Mol Sci 2022; 23:ijms23031208. [PMID: 35163133 PMCID: PMC8836017 DOI: 10.3390/ijms23031208] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
The maternal diet during pregnancy is a key determinant of offspring health. Early studies have linked poor maternal nutrition during gestation with a propensity for the development of chronic conditions in offspring. These conditions include cardiovascular disease, type 2 diabetes and even compromised mental health. While multiple factors may contribute to these outcomes, disturbed epigenetic programming during early development is one potential biological mechanism. The epigenome is programmed primarily in utero, and during this time, the developing fetus is highly susceptible to environmental factors such as nutritional insults. During neurodevelopment, epigenetic programming coordinates the formation of primitive central nervous system structures, neurogenesis, and neuroplasticity. Dysregulated epigenetic programming has been implicated in the aetiology of several neurodevelopmental disorders such as Tatton-Brown-Rahman syndrome. Accordingly, there is great interest in determining how maternal nutrient availability in pregnancy might affect the epigenetic status of offspring, and how such influences may present phenotypically. In recent years, a number of epigenetic enzymes that are active during embryonic development have been found to require vitamin C as a cofactor. These enzymes include the ten-eleven translocation methylcytosine dioxygenases (TETs) and the Jumonji C domain-containing histone lysine demethylases that catalyse the oxidative removal of methyl groups on cytosines and histone lysine residues, respectively. These enzymes are integral to epigenetic regulation and have fundamental roles in cellular differentiation, the maintenance of pluripotency and development. The dependence of these enzymes on vitamin C for optimal catalytic activity illustrates a potentially critical contribution of the nutrient during mammalian development. These insights also highlight a potential risk associated with vitamin C insufficiency during pregnancy. The link between vitamin C insufficiency and development is particularly apparent in the context of neurodevelopment and high vitamin C concentrations in the brain are indicative of important functional requirements in this organ. Accordingly, this review considers the evidence for the potential impact of maternal vitamin C status on neurodevelopmental epigenetics.
Collapse
Affiliation(s)
- Sharna J. Coker
- Perinatal & Developmental Physiology Group, Department of Paediatrics & Child Health, University of Otago, Wellington 6242, New Zealand; (S.J.C.); (R.M.D.)
| | - Carlos C. Smith-Díaz
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand;
| | - Rebecca M. Dyson
- Perinatal & Developmental Physiology Group, Department of Paediatrics & Child Health, University of Otago, Wellington 6242, New Zealand; (S.J.C.); (R.M.D.)
| | - Margreet C. M. Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand;
- Correspondence: (M.C.M.V.); (M.J.B.)
| | - Mary J. Berry
- Perinatal & Developmental Physiology Group, Department of Paediatrics & Child Health, University of Otago, Wellington 6242, New Zealand; (S.J.C.); (R.M.D.)
- Correspondence: (M.C.M.V.); (M.J.B.)
| |
Collapse
|