1
|
DI Pierro F. Can we predict the natural evolution of probiotics? Minerva Med 2024; 115:614-616. [PMID: 39264320 DOI: 10.23736/s0026-4806.24.09568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Affiliation(s)
- Francesco DI Pierro
- Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy -
- Microbiota International Clinical Society, Turin, Italy -
- Scientific and Research Department, Velleja Research, Milan, Italy -
| |
Collapse
|
2
|
Romaní-Pérez M, Líebana-García R, Flor-Duro A, Bonillo-Jiménez D, Bullich-Vilarrubias C, Olivares M, Sanz Y. Obesity and the gut microbiota: implications of neuroendocrine and immune signaling. FEBS J 2024. [PMID: 39159270 DOI: 10.1111/febs.17249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/29/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Obesity is a major health challenge due to its high prevalence and associated comorbidities. The excessive intake of a diet rich in fat and sugars leads to a persistent imbalance between energy intake and energy expenditure, which increases adiposity. Here, we provide an update on relevant diet-microbe-host interactions contributing to or protecting from obesity. In particular, we focus on how unhealthy diets shape the gut microbiota and thus impact crucial intestinal neuroendocrine and immune system functions. We describe how these interactions promote dysfunction in gut-to-brain neuroendocrine pathways involved in food intake control and postprandial metabolism and elevate the intestinal proinflammatory tone, promoting obesity and metabolic complications. In addition, we provide examples of how this knowledge may inspire microbiome-based interventions, such as fecal microbiota transplants, probiotics, and biotherapeutics, to effectively combat obesity-related disorders. We also discuss the current limitations and gaps in knowledge of gut microbiota research in obesity.
Collapse
Affiliation(s)
- Marina Romaní-Pérez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Rebeca Líebana-García
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Alejandra Flor-Duro
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Daniel Bonillo-Jiménez
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Clara Bullich-Vilarrubias
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Marta Olivares
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
3
|
Balanche J, Lahaye E, Bremard L, Thomas B, Fetissov SO. Comparison of Glucose Metabolizing Properties of Enterobacterial Probiotic Strains In Vitro. Nutrients 2024; 16:2677. [PMID: 39203813 PMCID: PMC11357327 DOI: 10.3390/nu16162677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Before the absorption in the intestine, glucose encounters gut bacteria, which may serve as a barrier against hyperglycemia by metabolizing glucose. In the present study, we compared the capacity of enterobacterial strains to lower glucose levels in an in vitro model of nutrient-induced bacterial growth. Two probiotic strains, Hafnia alvei HA4597 (H. alvei) and Escherichia coli (E. coli) Nissle 1917, as well as E. coli K12, were studied. To mimic bacterial growth in the gut, a planktonic culture was supplemented twice daily by the Luria Bertani milieu with or without 0.5% glucose. Repeated nutrient provision resulted in the incremental growth of bacteria. However, in the presence of glucose, the maximal growth of both strains of E. coli but not of H. alvei was inhibited. When glucose was added to the culture medium, a continuous decrease in its concentration was observed during each feeding phase. At its highest density, H. alvei displayed more efficient glucose consumption accompanied by a more pronounced downregulation of glucose transporters' expression than E. coli K12. Thus, the study reveals that the probiotic strain H. alvei HA4597 is more resilient to maintain its growth than E. coli in the presence of 0.5% glucose accompanied by more efficient glucose consumption. This experimental approach offers a new strategy for the identification of probiotics with increased glucose metabolizing capacities potentially useful for the prevention and co-treatment of type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Sergueï O. Fetissov
- Regulatory Peptides-Energy Metabolism and Motivated Behavior Team, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, 76000 Rouen, France; (J.B.); (E.L.); (L.B.); (B.T.)
| |
Collapse
|
4
|
Talebi S, Shab-Bidar S, Mohammadi H, Moini A, Djafarian K. The effects of intermittent fasting diet alone or in combination with probiotic supplementation in comparison with calorie-restricted diet on metabolic and hormonal profile in patients with polycystic ovary syndrome: study protocol for a randomized clinical trial. Trials 2023; 24:690. [PMID: 37880791 PMCID: PMC10601288 DOI: 10.1186/s13063-023-07691-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in females characterized by ovulatory dysfunction, hyperandrogenism, and other metabolic disorders. Both intermittent fasting and specific probiotics have been suggested to help improve patients with PCOS through changes in gut microbial composition, circadian clock, and metabolic regulation. Therefore, the present study aims to investigate the effects of intermittent fasting alone or in combination with probiotic supplementation compared to the calorie-restricted (CR) diet on anthropometric measures, metabolic status, inflammation, and oxidative stress in women with PCOS. METHODS We will carry out a randomized clinical trial for 8 weeks. Participants will be randomly assigned (1:1:1) to one of the three groups: (1) a 14:10 early time-restricted feeding (TRF) diet with probiotic supplementation (n = 30); (2) a 14:10 early TRF diet with placebo supplementation (n = 30); (3) a CR diet (energy-restricted 25% of required calories) with placebo supplementation as a control group (n = 30). The primary outcomes will be changes in body weight and insulin resistance. However, glycemic control, lipid profile, metabolic parameters, sex hormone-binding globulin, dehydroepiandrosterone, anti-Mullerian hormone, free androgen index, hirsutism, acne, antioxidant and oxidant status, inflammation, anthropometric measures, mental health, sleep quality, appetite, eating behavior, food craving, and blood pressure are secondary outcomes. All outcomes of this study will be evaluated in pre- and post-intervention. DISCUSSION We hypothesized that 10-h TRE administered alone or in combination with probiotic supplementation to overweight and obese PCOS subjects would lead to weight loss and improved metabolic, hormonal, inflammatory, and antioxidant markers compared to control subjects following a standard 3-meal-per-day CR diet. ETHICAL ASPECTS The current trial received approval from the Medical Ethics Committee of Tehran University of Medical Sciences, Tehran, Iran (IR.TUMS.MEDICNE.REC.1401.425). TRIAL REGISTRATION Iranian Registry of Clinical Trials IRCT20121110011421N5. Registered on 3 October 2022.
Collapse
Affiliation(s)
- Sepide Talebi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Moini
- Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Obstetrics and Gynecology, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Cuesta-Marti C, Uhlig F, Muguerza B, Hyland N, Clarke G, Schellekens H. Microbes, oxytocin and stress: Converging players regulating eating behavior. J Neuroendocrinol 2023; 35:e13243. [PMID: 36872624 DOI: 10.1111/jne.13243] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Oxytocin is a peptide-hormone extensively studied for its multifaceted biological functions and has recently gained attention for its role in eating behavior, through its action as an anorexigenic neuropeptide. Moreover, the gut microbiota is involved in oxytocinergic signaling through the brain-gut axis, specifically in the regulation of social behavior. The gut microbiota is also implicated in appetite regulation and is postulated to play a role in central regulation of hedonic eating. In this review, we provide an overview on oxytocin and its individual links with the microbiome, the homeostatic and non-homeostatic regulation of eating behavior as well as social behavior and stress.
Collapse
Affiliation(s)
- Cristina Cuesta-Marti
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Ireland
| | - Begoña Muguerza
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
- Universitat Rovira i Virgili, Department of Biochemistry & Biotechnology, Nutrigenomics Research Group, Tarragona, Spain
| | - Niall Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
6
|
Wang K, Zhang Z, Hang J, Liu J, Guo F, Ding Y, Li M, Nie Q, Lin J, Zhuo Y, Sun L, Luo X, Zhong Q, Ye C, Yun C, Zhang Y, Wang J, Bao R, Pang Y, Wang G, Gonzalez FJ, Lei X, Qiao J, Jiang C. Microbial-host-isozyme analyses reveal microbial DPP4 as a potential antidiabetic target. Science 2023; 381:eadd5787. [PMID: 37535747 DOI: 10.1126/science.add5787] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 06/14/2023] [Indexed: 08/05/2023]
Abstract
A mechanistic understanding of how microbial proteins affect the host could yield deeper insights into gut microbiota-host cross-talk. We developed an enzyme activity-screening platform to investigate how gut microbiota-derived enzymes might influence host physiology. We discovered that dipeptidyl peptidase 4 (DPP4) is expressed by specific bacterial taxa of the microbiota. Microbial DPP4 was able to decrease the active glucagon like peptide-1 (GLP-1) and disrupt glucose metabolism in mice with a leaky gut. Furthermore, the current drugs targeting human DPP4, including sitagliptin, had little effect on microbial DPP4. Using high-throughput screening, we identified daurisoline-d4 (Dau-d4) as a selective microbial DPP4 inhibitor that improves glucose tolerance in diabetic mice.
Collapse
Affiliation(s)
- Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Zhiwei Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Jing Hang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yong Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Meng Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yingying Zhuo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xi Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Qihang Zhong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
| | - Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Chuyu Yun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Jue Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanli Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jie Qiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Beijing Advanced Innovation Center for Genomics, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
| |
Collapse
|
7
|
Hamamah S, Amin A, Al-Kassir AL, Chuang J, Covasa M. Dietary Fat Modulation of Gut Microbiota and Impact on Regulatory Pathways Controlling Food Intake. Nutrients 2023; 15:3365. [PMID: 37571301 PMCID: PMC10421457 DOI: 10.3390/nu15153365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Obesity is a multifactorial disease that continues to increase in prevalence worldwide. Emerging evidence has shown that the development of obesity may be influenced by taxonomic shifts in gut microbiota in response to the consumption of dietary fats. Further, these alterations in gut microbiota have been shown to promote important changes in satiation signals including gut hormones (leptin, ghrelin, GLP-1, peptide YY and CCK) and orexigenic and anorexigenic neuropeptides (AgRP, NPY, POMC, CART) that influence hyperphagia and therefore obesity. In this review, we highlight mechanisms by which gut microbiota can influence these satiation signals both locally in the gastrointestinal tract and via microbiota-gut-brain communication. Then, we describe the effects of dietary interventions and associated changes in gut microbiota on satiety signals through microbiota-dependent mechanisms. Lastly, we present microbiota optimizing therapies including prebiotics, probiotics, synbiotics and weight loss surgery that can help restore beneficial gut microbiota by enhancing satiety signals to reduce hyperphagia and subsequent obesity. Overall, a better understanding of the mechanisms by which dietary fats induce taxonomical shifts in gut microbiota and their impact on satiation signaling pathways will help develop more targeted therapeutic interventions in delaying the onset of obesity and in furthering its treatment.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
| | - Arman Amin
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
| | - Abdul Latif Al-Kassir
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
| | - Judith Chuang
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
| | - Mihai Covasa
- Department of Basic Medical Sciences, Western University of Health Sciences, College of Osteopathic Medicine, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.L.A.-K.); (J.C.)
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
8
|
Laue C, Papazova E, Pannenbeckers A, Schrezenmeir J. Effect of a Probiotic and a Synbiotic on Body Fat Mass, Body Weight and Traits of Metabolic Syndrome in Individuals with Abdominal Overweight: A Human, Double-Blind, Randomised, Controlled Clinical Study. Nutrients 2023; 15:3039. [PMID: 37447365 DOI: 10.3390/nu15133039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
L. fermentum strains K7-Lb1, K8-Lb1 and K11-Lb3 were found to suppress Th1 and Th2 response and to enhance defensin release by enterocytes, respectively. Based on these anti-inflammatory actions, we investigated the effect of these strains on traits of metabolic syndrome, which is driven by low-grade inflammation. In a double-blind, randomised, placebo-controlled clinical trial with three parallel arms, 180 individuals with abdominal overweight were administered for 3 months with (1) placebo; (2) probiotic, comprising L. fermentum strains; or (3) synbiotic, comprising the strains + acacia gum (10 g daily). The effects were evaluated using Kruskal-Wallis one-way analysis of variance on ranks and post hoc tests (Holm-Sidak and Dunn's tests). The alteration (∆) in body fat mass (kg) (primary parameter) during intervention was significantly (p = 0.039) more pronounced in the Probiotic group (-0.61 ± 1.94; mean ± SD) compared with the Placebo group (+0.13 ± 1.64). Accordingly, differences were found in ∆ body weight (p = 0.012), BMI (p = 0.011), waist circumference (p = 0.03), waist-to-height ratio (p = 0.033), visceral adipose tissue (SAD) (p < 0.001) and liver steatosis grade (LSG) (p < 0.001), as assessed using sonography. In the Synbiotic group, ∆SAD (p = 0.002), ∆LSG (p < 0.001) and ∆constipation score (p = 0.009) were improved compared with Placebo. The probiotic mixture and the synbiotic improved the parameters associated with overweight.
Collapse
Affiliation(s)
- Christiane Laue
- Clinical Research Center Kiel, Kiel Center of Innovation and Technology, Schauenburgstraße 116, D-24118 Kiel, Germany
| | - Ekaterina Papazova
- Clinical Research Center Kiel, Kiel Center of Innovation and Technology, Schauenburgstraße 116, D-24118 Kiel, Germany
| | - Angelika Pannenbeckers
- Clinical Research Center Kiel, Kiel Center of Innovation and Technology, Schauenburgstraße 116, D-24118 Kiel, Germany
| | - Jürgen Schrezenmeir
- Clinical Research Center Kiel, Kiel Center of Innovation and Technology, Schauenburgstraße 116, D-24118 Kiel, Germany
- University Medicine, Johannes-Gutenberg University, D-55131 Mainz, Germany
| |
Collapse
|
9
|
Zolotarev VA, Murovets VO, Sepp AL, Sozontov EA, Lukina EA, Khropycheva RP, Pestereva NS, Ivleva IS, El Mehdi M, Lahaye E, Chartrel N, Fetissov SO. Protein Extract of a Probiotic Strain of Hafnia alvei and Bacterial ClpB Protein Improve Glucose Tolerance in Mice. Int J Mol Sci 2023; 24:10590. [PMID: 37445766 DOI: 10.3390/ijms241310590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
A commercial strain of Hafnia alvei (H. alvei) 4597 bacteria was shown to reduce food intake and promote weight loss, effects possibly induced by the bacterial protein ClpB, an antigen-mimetic of the anorexigenic α-melanocyte-stimulating hormone. A decrease in the basal plasma glucose levels was also observed in overweight fasted humans and mice receiving H. alvei. However, it is not known whether H. alvei influences sweet taste preference and whether its protein extract or ClpB are sufficient to increase glucose tolerance; these are the objectives tested in the present study. C57BL/6J male mice were kept under standard diet and were gavaged daily for 17 days with a suspension of H. alvei (4.5 × 107 CFU/animal) or with H. alvei total protein extract (5 μg/animal) or saline as a control. Sweet taste preference was analyzed via a brief-access licking test with sucrose solution. Glucose tolerance tests (GTT) were performed after the intraperitoneal (IP) or intragastric (IG) glucose administration at the 9th and 15th days of gavage, respectively. The expression of regulatory peptides' mRNA levels was assayed in the hypothalamus. In another experiment performed in non-treated C57BL/6J male mice, effects of acute IP administration of recombinant ClpB protein on glucose tolerance were studied by both IP- and IG-GTT. Mice treated with the H. alvei protein extract showed an improved glucose tolerance in IP-GTT but not in IG-GTT. Both groups treated with H. alvei bacteria or protein extract showed a reduction of pancreatic tissue weight but without significant changes to basal plasma insulin. No significant effects of H. alvei bacteria or its total protein extract administration were observed on the sweet taste preference, insulin tolerance and expression of regulatory peptides' mRNA in the hypothalamus. Acute administration of ClpB in non-treated mice increased glucose tolerance during the IP-GTT but not the IG-GTT, and reduced basal plasma glucose levels. We conclude that both the H. alvei protein extract introduced orally and the ClpB protein administered via IP improve glucose tolerance probably by acting at the glucose postabsorptive level. Moreover, H. alvei probiotic does not seem to influence the sweet taste preference. These results justify future testing of both the H. alvei protein extract and ClpB protein in animal models of diabetes.
Collapse
Affiliation(s)
- Vasiliy A Zolotarev
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Vladimir O Murovets
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Anastasiya L Sepp
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Egor A Sozontov
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Ekaterina A Lukina
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Raisa P Khropycheva
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Nina S Pestereva
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - Irina S Ivleva
- Institute of Experimental Medicine, 197376 Saint-Petersburg, Russia
| | - Mouna El Mehdi
- Inserm UMR1239 Laboratory, Team: Regulatory Peptides-Energy Metabolism and Motivated Behavior, University of Rouen Normandie, 76130 Mont-Saint-Aignan, France
| | - Emilie Lahaye
- Inserm UMR1239 Laboratory, Team: Regulatory Peptides-Energy Metabolism and Motivated Behavior, University of Rouen Normandie, 76130 Mont-Saint-Aignan, France
| | - Nicolas Chartrel
- Inserm UMR1239 Laboratory, Team: Regulatory Peptides-Energy Metabolism and Motivated Behavior, University of Rouen Normandie, 76130 Mont-Saint-Aignan, France
| | - Sergueï O Fetissov
- Inserm UMR1239 Laboratory, Team: Regulatory Peptides-Energy Metabolism and Motivated Behavior, University of Rouen Normandie, 76130 Mont-Saint-Aignan, France
| |
Collapse
|
10
|
Cuffaro B, Boutillier D, Desramaut J, Jablaoui A, Werkmeister E, Trottein F, Waligora-Dupriet AJ, Rhimi M, Maguin E, Grangette C. Characterization of Two Parabacteroides distasonis Candidate Strains as New Live Biotherapeutics against Obesity. Cells 2023; 12:cells12091260. [PMID: 37174660 PMCID: PMC10177344 DOI: 10.3390/cells12091260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/03/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023] Open
Abstract
The gut microbiota is now considered as a key player in the development of metabolic dysfunction. Therefore, targeting gut microbiota dysbiosis has emerged as a new therapeutic strategy, notably through the use of live gut microbiota-derived biotherapeutics. We previously highlighted the anti-inflammatory abilities of two Parabacteroides distasonis strains. We herein evaluate their potential anti-obesity abilities and show that the two strains induced the secretion of the incretin glucagon-like peptide 1 in vitro and limited weight gain and adiposity in obese mice. These beneficial effects are associated with reduced inflammation in adipose tissue and the improvement of lipid and bile acid metabolism markers. P. distasonis supplementation also modified the Actinomycetota, Bacillota and Bacteroidota taxa of the mice gut microbiota. These results provide better insight into the capacity of P. distasonis to positively influence host metabolism and to be used as novel source of live biotherapeutics in the treatment and prevention of metabolic-related diseases.
Collapse
Affiliation(s)
- Bernardo Cuffaro
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, MIHA Team, 78350 Jouy-en-Josas, France
| | - Denise Boutillier
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Jérémy Desramaut
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Amin Jablaoui
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, MIHA Team, 78350 Jouy-en-Josas, France
| | - Elisabeth Werkmeister
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
- UMR2014-US41-PLBS-Plateformes Lilloises de Biologie and Santé, 59000 Lille, France
| | - François Trottein
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | | | - Moez Rhimi
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, MIHA Team, 78350 Jouy-en-Josas, France
| | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, MIHA Team, 78350 Jouy-en-Josas, France
| | - Corinne Grangette
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| |
Collapse
|
11
|
Vallianou NG, Kounatidis D, Tsilingiris D, Panagopoulos F, Christodoulatos GS, Evangelopoulos A, Karampela I, Dalamaga M. The Role of Next-Generation Probiotics in Obesity and Obesity-Associated Disorders: Current Knowledge and Future Perspectives. Int J Mol Sci 2023; 24:ijms24076755. [PMID: 37047729 PMCID: PMC10095285 DOI: 10.3390/ijms24076755] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Obesity and obesity-associated disorders pose a major public health issue worldwide. Apart from conventional weight loss drugs, next-generation probiotics (NGPs) seem to be very promising as potential preventive and therapeutic agents against obesity. Candidate NGPs such as Akkermansia muciniphila, Faecalibacterium prausnitzii, Anaerobutyricum hallii, Bacteroides uniformis, Bacteroides coprocola, Parabacteroides distasonis, Parabacteroides goldsteinii, Hafnia alvei, Odoribacter laneus and Christensenella minuta have shown promise in preclinical models of obesity and obesity-associated disorders. Proposed mechanisms include the modulation of gut flora and amelioration of intestinal dysbiosis, improvement of intestinal barrier function, reduction in chronic low-grade inflammation and modulation of gut peptide secretion. Akkermansia muciniphila and Hafnia alvei have already been administered in overweight/obese patients with encouraging results. However, safety issues and strict regulations should be constantly implemented and updated. In this review, we aim to explore (1) current knowledge regarding NGPs; (2) their utility in obesity and obesity-associated disorders; (3) their safety profile; and (4) their therapeutic potential in individuals with overweight/obesity. More large-scale, multicentric and longitudinal studies are mandatory to explore their preventive and therapeutic potential against obesity and its related disorders.
Collapse
Affiliation(s)
- Natalia G. Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
- Department of Microbiology, Sismanogleio General Hospital, 1 Sismanogleiou Street, 15126 Athens, Greece
| | - Angelos Evangelopoulos
- Roche Hellas Diagnostics S.A., 18-20 Amarousiou-Chalandriou Street, 15125 Athens, Greece
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Street, 12462 Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| |
Collapse
|
12
|
Potential health benefits of fermented blueberry: A review of current scientific evidence. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Les approches thérapeutiques non invasives de l’obésité : hier, aujourd’hui et demain. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Gut Microbiota, the Potential Biological Medicine for Prevention, Intervention and Drug Sensitization to Fight Diseases. Nutrients 2022; 14:nu14204220. [PMID: 36296908 PMCID: PMC9610464 DOI: 10.3390/nu14204220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
As the largest “immune organ” of human beings, the gut microbiota is symbiotic and mutually beneficial with the human host, playing multiple physiological functions. Studies have long shown that dysbiosis of gut microbiota is associated with almost all human diseases, mainly including type II diabetes, cancers, neurodegenerative diseases, autism spectrum disorder, and kidney diseases. As a novel and potential biological medicine for disease prevention, intervention and drug sensitization, the gut microbiota has attracted more and more attention recently. Although the gut microbiota is a comprehensive microbial community, several star bacteria have emerged as possible tools to fight against various diseases. This review aims to elucidate the relevance of gut microbiota dysbiosis with disease occurrence and progression, and mainly summarizes four well-known genera with therapeutic and sensitizing potential, Akkermansia, Bifidobacterium, Lactobacillus and Parabacteroides, thoroughly elucidate their potential value as biological drugs to treat diverse disease.
Collapse
|
15
|
Hitch TCA, Hall LJ, Walsh SK, Leventhal GE, Slack E, de Wouters T, Walter J, Clavel T. Microbiome-based interventions to modulate gut ecology and the immune system. Mucosal Immunol 2022; 15:1095-1113. [PMID: 36180583 PMCID: PMC9705255 DOI: 10.1038/s41385-022-00564-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 02/04/2023]
Abstract
The gut microbiome lies at the intersection between the environment and the host, with the ability to modify host responses to disease-relevant exposures and stimuli. This is evident in how enteric microbes interact with the immune system, e.g., supporting immune maturation in early life, affecting drug efficacy via modulation of immune responses, or influencing development of immune cell populations and their mediators. Many factors modulate gut ecosystem dynamics during daily life and we are just beginning to realise the therapeutic and prophylactic potential of microbiome-based interventions. These approaches vary in application, goal, and mechanisms of action. Some modify the entire community, such as nutritional approaches or faecal microbiota transplantation, while others, such as phage therapy, probiotics, and prebiotics, target specific taxa or strains. In this review, we assessed the experimental evidence for microbiome-based interventions, with a particular focus on their clinical relevance, ecological effects, and modulation of the immune system.
Collapse
Affiliation(s)
- Thomas C A Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Biosciences, Norwich, UK
- Intestinal Microbiome, School of Life Sciences, ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Sarah Kate Walsh
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- APC Microbiome Ireland, School of Microbiology and Department of Medicine, University College Cork, Cork, Ireland
| | | | - Emma Slack
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | | | - Jens Walter
- APC Microbiome Ireland, School of Microbiology and Department of Medicine, University College Cork, Cork, Ireland
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany.
| |
Collapse
|
16
|
Ahmad W, Khaliq S, Akhtar N, El Arab J, Akhtar K, Prakash S, Anwar MA, Munawar N. Whole Genome Sequence Analysis of a Novel Apilactobacillus Species from Giant Honeybee (Apis dorsata) Gut Reveals Occurrence of Genetic Elements Coding Prebiotic and Probiotic Traits. Microorganisms 2022; 10:microorganisms10050904. [PMID: 35630349 PMCID: PMC9147854 DOI: 10.3390/microorganisms10050904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Apilactobacillus spp. are classified as obligate fructophilic lactic acid bacteria (FLAB) that inhabit fructose-rich niches such as honeybee gut. Lactic acid bacteria are an important component of the gut microbiome and play a crucial role in maintaining gut health. In this study, a new FLAB strain HBW1, capable of producing glucan-type exopolysaccharide, was isolated from giant honeybee (Apis dorsata) gut and subjected to whole genome sequencing (WHS) to determine its health-beneficial traits. The genome size of the isolate was 1.49 Mb with a GC content of 37.2%. For species level identity, 16S rDNA sequence similarity, genome to genome distance calculator (dDDH), and average nucleotide identity (ANI) values were calculated. Phylogenetic analysis showed that the isolate HBW1 belongs to the Apilactobacillus genus. The dDDH and ANI values in comparison with closely clustered Apilactobacillus kunkeei species were 52% and 93.10%, respectively. Based on these values, we concluded that HBW1 is a novel species of Apilactobacillus, and we propose the name Apilactobacillus waqarii HBW1 for it. Further, WHS data mining of HBW1 revealed that it harbors two glucosyltransferase genes for prebiotic glucan-type exopolysaccharide synthesis. Moreover, chaperon (clp) and methionine sulfoxide reductase (msrA, msrB, and msrC) genes as well as nutritional marker genes for folic acid (folD) and riboflavin biosynthesis (rib operon), important for conferring probiotic properties, were also detected. Occurrence of these genetic traits make HBW1 an excellent candidate for application to improve gut function.
Collapse
Affiliation(s)
- Waqar Ahmad
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (S.K.); (N.A.); (K.A.)
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
| | - Shazia Khaliq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (S.K.); (N.A.); (K.A.)
| | - Nasrin Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (S.K.); (N.A.); (K.A.)
| | - Jamilah El Arab
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
| | - Kalsoom Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (S.K.); (N.A.); (K.A.)
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
| | - Munir A. Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (S.K.); (N.A.); (K.A.)
- Correspondence: (M.A.A.); (N.M.)
| | - Nayla Munawar
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
- Correspondence: (M.A.A.); (N.M.)
| |
Collapse
|
17
|
Ahmad W, Khaliq S, Akhtar N, El Arab J, Akhtar K, Prakash S, Anwar MA, Munawar N. Whole Genome Sequence Analysis of a Novel Apilactobacillus Species from Giant Honeybee (Apis dorsata) Gut Reveals Occurrence of Genetic Elements Coding Prebiotic and Probiotic Traits. Microorganisms 2022. [DOI: https://doi.org/10.3390/microorganisms10050904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Apilactobacillus spp. are classified as obligate fructophilic lactic acid bacteria (FLAB) that inhabit fructose-rich niches such as honeybee gut. Lactic acid bacteria are an important component of the gut microbiome and play a crucial role in maintaining gut health. In this study, a new FLAB strain HBW1, capable of producing glucan-type exopolysaccharide, was isolated from giant honeybee (Apis dorsata) gut and subjected to whole genome sequencing (WHS) to determine its health-beneficial traits. The genome size of the isolate was 1.49 Mb with a GC content of 37.2%. For species level identity, 16S rDNA sequence similarity, genome to genome distance calculator (dDDH), and average nucleotide identity (ANI) values were calculated. Phylogenetic analysis showed that the isolate HBW1 belongs to the Apilactobacillus genus. The dDDH and ANI values in comparison with closely clustered Apilactobacillus kunkeei species were 52% and 93.10%, respectively. Based on these values, we concluded that HBW1 is a novel species of Apilactobacillus, and we propose the name Apilactobacillus waqarii HBW1 for it. Further, WHS data mining of HBW1 revealed that it harbors two glucosyltransferase genes for prebiotic glucan-type exopolysaccharide synthesis. Moreover, chaperon (clp) and methionine sulfoxide reductase (msrA, msrB, and msrC) genes as well as nutritional marker genes for folic acid (folD) and riboflavin biosynthesis (rib operon), important for conferring probiotic properties, were also detected. Occurrence of these genetic traits make HBW1 an excellent candidate for application to improve gut function.
Collapse
|
18
|
Dysbiotic Gut Bacteria in Obesity: An Overview of the Metabolic Mechanisms and Therapeutic Perspectives of Next-Generation Probiotics. Microorganisms 2022; 10:microorganisms10020452. [PMID: 35208906 PMCID: PMC8877435 DOI: 10.3390/microorganisms10020452] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity, a worldwide health concern with a constantly rising prevalence, is a multifactorial chronic disease associated with a wide range of physiological disruptions, including energy imbalance, central appetite and food reward dysregulation, and hormonal alterations and gut dysbiosis. The gut microbiome is a well-recognized factor in the pathophysiology of obesity, and its influence on host physiology has been extensively investigated over the last decade. This review highlights the mechanisms by which gut dysbiosis can contribute to the pathophysiology of obesity. In particular, we discuss gut microbiota’s contribution to host energy homeostatic changes, low-grade inflammation, and regulation of fat deposition and bile acid metabolism via bacterial metabolites, such as short-chain fatty acids, and bacterial components, such as lipopolysaccharides, among others. Finally, therapeutic strategies based on next-generation probiotics aiming to re-shape the intestinal microbiota and reverse metabolic alterations associated with obesity are described.
Collapse
|
19
|
Dietert RR. Microbiome First Medicine in Health and Safety. Biomedicines 2021; 9:biomedicines9091099. [PMID: 34572284 PMCID: PMC8468398 DOI: 10.3390/biomedicines9091099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Microbiome First Medicine is a suggested 21st century healthcare paradigm that prioritizes the entire human, the human superorganism, beginning with the microbiome. To date, much of medicine has protected and treated patients as if they were a single species. This has resulted in unintended damage to the microbiome and an epidemic of chronic disorders [e.g., noncommunicable diseases and conditions (NCDs)]. Along with NCDs came loss of colonization resistance, increased susceptibility to infectious diseases, and increasing multimorbidity and polypharmacy over the life course. To move toward sustainable healthcare, the human microbiome needs to be front and center. This paper presents microbiome-human physiology from the view of systems biology regulation. It also details the ongoing NCD epidemic including the role of existing drugs and other factors that damage the human microbiome. Examples are provided for two entryway NCDs, asthma and obesity, regarding their extensive network of comorbid NCDs. Finally, the challenges of ensuring safety for the microbiome are detailed. Under Microbiome-First Medicine and considering the importance of keystone bacteria and critical windows of development, changes in even a few microbiota-prioritized medical decisions could make a significant difference in health across the life course.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
20
|
Mechanisms of Glucose Absorption in the Small Intestine in Health and Metabolic Diseases and Their Role in Appetite Regulation. Nutrients 2021; 13:nu13072474. [PMID: 34371983 PMCID: PMC8308647 DOI: 10.3390/nu13072474] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
The worldwide prevalence of metabolic diseases such as obesity, metabolic syndrome and type 2 diabetes shows an upward trend in recent decades. A characteristic feature of these diseases is hyperglycemia which can be associated with hyperphagia. Absorption of glucose in the small intestine physiologically contributes to the regulation of blood glucose levels, and hence, appears as a putative target for treatment of hyperglycemia. In fact, recent progress in understanding the molecular and cellular mechanisms of glucose absorption in the gut and its reabsorption in the kidney helped to develop a new strategy of diabetes treatment. Changes in blood glucose levels are also involved in regulation of appetite, suggesting that glucose absorption may be relevant to hyperphagia in metabolic diseases. In this review we discuss the mechanisms of glucose absorption in the small intestine in physiological conditions and their alterations in metabolic diseases as well as their relevance to the regulation of appetite. The key role of SGLT1 transporter in intestinal glucose absorption in both physiological conditions and in diabetes was clearly established. We conclude that although inhibition of small intestinal glucose absorption represents a valuable target for the treatment of hyperglycemia, it is not always suitable for the treatment of hyperphagia. In fact, independent regulation of glucose absorption and appetite requires a more complex approach for the treatment of metabolic diseases.
Collapse
|