1
|
Guo Y, Li X, Yang D, Yedron N, Chen T, Li J, Lei Y, Li P, Ji J, Shi L, Yang X, Cho T. Plasma metabolomics signatures of developmental dysplasia of the hip in Tibet plateau. Orphanet J Rare Dis 2024; 19:228. [PMID: 38851765 PMCID: PMC11161931 DOI: 10.1186/s13023-024-03230-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/27/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Developmental dysplasia of the hip (DDH) is a common childhood health complaint, whose etiology is multifactorial. The incidence of DDH is variable and higher in Tibet plateau. Here, we collected plasma samples and studied the metabolomics signatures of DDH. METHODS Fifty babies were enrolled: 25 with DDH and 25 age-matched non-DDH healthy controls (HC group). We collected plasma samples, laboratory parameters and conducted untargeted metabolomics profiling. RESULTS There are many differential metabolites among patients with DDH, including 4-β-hydroxymethyl-4-α-methyl-5-α-cholest-7-en-3-beta-ol, β-cryptoxanthin, α-tocopherol, taurocholic acid, glycocholic acid, 2-(3,4-dihydroxybenzoyloxy)-4,6-dihydroxybenzoate, arabinosylhypoxanthine, leucyl-hydroxyproline, hypoxanthine. The main differential metabolic pathways focused on primary bile acid biosynthesis, arginine and proline metabolism, phenylalanine metabolism, histidine metabolism, purine metabolism. CONCLUSIONS To our knowledge, this is the first report of metabolomics profile in babies with DHH. By combining the α-tocopherol and taurocholic acid, we could achieve the differential diagnosis of DDH.
Collapse
Affiliation(s)
- Ye Guo
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaogang Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Medical Science Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - De Yang
- Department of Ultrasound, People's Hospital of Tibet Autonomous Region, No. 16, North Linkuo Road, Lhasa, Tibet, 850000, China
| | - Nyima Yedron
- Department of Ultrasound, People's Hospital of Tibet Autonomous Region, No. 16, North Linkuo Road, Lhasa, Tibet, 850000, China
| | - Tao Chen
- Department of Ultrasound, Beijing Jishuitan Hospital, The 4th Clinical College, Peking University, Xinjiekou Dongjie, Xicheng District, Beijing, 100035, China
| | - Jianchu Li
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan, Dong Cheng District, Beijing, 100730, China
| | - Yanming Lei
- Department of Radiology, People's Hospital of Tibet Autonomous Region, No. 16, North Linkuo Road, Lhasa, Tibet, 850000, China
| | - Ping Li
- Department of Infectious Diseases, People's Hospital of Tibet Autonomous Region, No.16, North Linkuo Road, Lhasa, Tibet, 850000, China
| | - Jiamei Ji
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan, Dong Cheng District, Beijing, 100730, China
| | - Li Shi
- Department of Laboratory Medicine, People's Hospital of Tibet Autonomous Region, No.16, North Linkuo Road, Lhasa, Tibet, 850000, China
| | - Xiao Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan, Dong Cheng District, Beijing, 100730, China.
| | - Ten Cho
- Department of Orthopedics, People's Hospital of Tibet Autonomous Region, No. 16, North Linkuo Road, Lhasa, Tibet, 850000, China.
| |
Collapse
|
2
|
Lang H, Li H, Zhang A, Li N. Joint effects between cadmium exposure and dietary antioxidant quality score on osteoporosis and bone mineral density. Br J Nutr 2024; 131:956-963. [PMID: 37905696 DOI: 10.1017/s0007114523002477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
To explore the relationship between dietary antioxidant quality score (DAQS) and Cd exposure both alone and in combination with osteoporosis and bone mineral density (BMD) among postmenopausal women. In total, 4920 postmenopausal women from the National Health and Nutrition Examination Survey were included in this cross-sectional study. Weighted univariate and multivariate logistic regression analyses to assess the association between DAQS and Cd exposure with femur neck BMD, total femur BMD, osteoporosis among postmenopausal women, respectively, and the coexistence effect of DAQS and Cd exposure. Four hundred and ninety-nine had osteoporosis. DAQS (OR = 0·86, 95 % CI 0·77, 0·97) and high DAQS (OR = 0·60, 95 % CI 0·36, 0·99) were found to be associated with decreased odds of osteoporosis, while Cd exposure (OR = 1·34, 95 % CI 1·04, 1·72) and high Cd exposure (OR = 1·45, 95 % CI 1·02, 2·06) were related to increased odds of osteoporosis. A positive correlation was observed between high DAQS and both total femur BMD and femur neck BMD. Conversely, Cd exposure was found to be negatively correlated with total femur BMD and femur neck BMD. Additionally, taking low-Cd and high-quality DAQS group as reference, the joint effect of Cd exposure and DAQS showed greater increased odds of osteoporosis and decreased total femur BMD and femur neck BMD as Cd level and DAQS combinations worsened. There may be an interaction between Cd exposure and DAQS for femur neck BMD, total femur BMD, and osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Huifang Lang
- Department of Endocrine, The First Hospital of Tsinghua University, Beijing, People's Republic of China
| | - Hongmei Li
- Department of Endocrine, The First Hospital of Tsinghua University, Beijing, People's Republic of China
| | - Aixian Zhang
- Department of General Practice Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Na Li
- Department of Endocrine, The First Hospital of Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
3
|
Skalny AV, Aschner M, Tsatsakis A, Rocha JB, Santamaria A, Spandidos DA, Martins AC, Lu R, Korobeinikova TV, Chen W, Chang JS, Chao JC, Li C, Tinkov AA. Role of vitamins beyond vitamin D 3 in bone health and osteoporosis (Review). Int J Mol Med 2024; 53:9. [PMID: 38063255 PMCID: PMC10712697 DOI: 10.3892/ijmm.2023.5333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of the present review was to summarize the molecular mechanisms associated with the effects of the vitamins A, C, E and K, and group B vitamins on bone and their potential roles in the development of osteoporosis. Epidemiological findings have demonstrated an association between vitamin deficiency and a higher risk of developing osteoporosis; vitamins are positively related to bone health upon their intake at the physiological range. Excessive vitamin intake can also adversely affect bone formation, as clearly demonstrated for vitamin A. Vitamins E (tocopherols and tocotrienols), K2 (menaquinones 4 and 7) and C have also been shown to promote osteoblast development through bone morphogenetic protein (BMP)/Smad and Wnt/β‑catenin signaling, as well as the TGFβ/Smad pathway (α‑tocopherol). Vitamin A metabolite (all‑trans retinoic acid) exerts both inhibitory and stimulatory effects on BMP‑ and Wnt/β‑catenin‑mediated osteogenesis at the nanomolar and micromolar range, respectively. Certain vitamins significantly reduce receptor activator of nuclear factor kappa‑B ligand (RANKL) production and RANKL/RANK signaling, while increasing the level of osteoprotegerin (OPG), thus reducing the RANKL/OPG ratio and exerting anti‑osteoclastogenic effects. Ascorbic acid can both promote and inhibit RANKL signaling, being essential for osteoclastogenesis. Vitamin K2 has also been shown to prevent vascular calcification by activating matrix Gla protein through its carboxylation. Therefore, the maintenance of a physiological intake of vitamins should be considered as a nutritional strategy for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Anatoly V. Skalny
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Division of Morphology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Joao B.T. Rocha
- Department of Biochemistry and Molecular Biology, CCNE, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Abel Santamaria
- Faculty of Science, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Tatiana V. Korobeinikova
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jung-Su Chang
- College of Nutrition, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Jane C.J. Chao
- College of Nutrition, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Chong Li
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Alexey A. Tinkov
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| |
Collapse
|
4
|
Wang J, Xing F, Sheng N, Xiang Z. Associations of dietary oxidative balance score with femur osteoporosis in postmenopausal women: data from the National Health and Nutrition Examination Survey. Osteoporos Int 2023; 34:2087-2100. [PMID: 37648795 DOI: 10.1007/s00198-023-06896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
We used data from the NHANES to explore associations of DOBS with femur BMD and osteoporosis in postmenopausal women. We found that DOBS was positively associated with femur BMD and negatively associated with the risk of osteoporosis in postmenopausal women. PURPOSE The study aimed to investigate the relationship between dietary oxidative balance score (DOBS) and the risk of osteoporosis in American postmenopausal women. METHODS A total of 3043 participants were included in this study. The linear relationship between DOBS and femur BMD was evaluated using a weighted multivariate linear regression model. The association between DOBS and the risk of osteoporosis was assessed using a weighted logistic regression model, with odds ratios (ORs) and 95% confidence intervals (CIs) calculated. Moreover, the relationship was further characterized through smooth curve fitting (SCF) and weighted generalized additive model (GAM) analysis. RESULTS After adjusting for all covariates, the weighted multivariable linear regression models showed a positive correlation between DOBS and femur BMD. Moreover, the weighted logistic regression model demonstrated that compared to the first tertile of DOBS, the highest tertile of DOBS was significantly associated with a lower risk of osteoporosis, with ORs of 0.418 (95% CI, 0.334, 0.522) for individuals under the age of 70 and 0.632 (95% CI, 0.506, 0.790) for individuals aged 70 or above. Similar trends were also observed in SCF and GAM models. CONCLUSION The present study indicated that postmenopausal women with a higher DOBS have a lower risk of femur osteoporosis. This finding may highlight the potential protective role of an antioxidant-rich diet for the bones of the postmenopausal population. Moreover, DOBS may also be a valuable tool in identifying individuals with osteoporosis. Screening and early intervention for osteoporosis may be essential for postmenopausal women with low DOBS.
Collapse
Affiliation(s)
- Jie Wang
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Fei Xing
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Ning Sheng
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
León-Reyes G, Argoty-Pantoja AD, Becerra-Cervera A, López-Montoya P, Rivera-Paredez B, Velázquez-Cruz R. Oxidative-Stress-Related Genes in Osteoporosis: A Systematic Review. Antioxidants (Basel) 2023; 12:antiox12040915. [PMID: 37107290 PMCID: PMC10135393 DOI: 10.3390/antiox12040915] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Osteoporosis is characterized by a decline in bone mineral density (BMD) and increased fracture risk. Free radicals and antioxidant systems play a central role in bone remodeling. This study was conducted to illustrate the role of oxidative-stress-related genes in BMD and osteoporosis. A systematic review was performed following the PRISMA guidelines. The search was computed in PubMed, Web of Sciences, Scopus, EBSCO, and BVS from inception to November 1st, 2022. The risk of bias was evaluated using the Joanna Briggs Institute Critical Appraisal Checklist tool. A total of 427 potentially eligible articles exploring this search question were detected. After removing duplicates (n = 112) and excluding irrelevant manuscripts based on screenings of their titles and abstracts (n = 317), 19 articles were selected for full-text review. Finally, 14 original articles were included in this systematic review after we applied the exclusion and inclusion criteria. Data analyzed in this systematic review indicated that oxidative-stress-related genetic polymorphisms are associated with BMD at different skeletal sites in diverse populations, influencing the risk of osteoporosis or osteoporotic fracture. However, it is necessary to look deep into their association with bone metabolism to determine if the findings can be translated into the clinical management of osteoporosis and its progression.
Collapse
Affiliation(s)
- Guadalupe León-Reyes
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Anna D Argoty-Pantoja
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Adriana Becerra-Cervera
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
- National Council of Science and Technology (CONACYT), Mexico City 03940, Mexico
| | - Priscilla López-Montoya
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| | - Berenice Rivera-Paredez
- Research Center in Policies, Population and Health, School of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico
| |
Collapse
|
6
|
Niu P, Liu Y, Zhang Y, Li L. Associations between blood antioxidant levels and femoral neck strength. BMC Musculoskelet Disord 2023; 24:252. [PMID: 37005594 PMCID: PMC10067155 DOI: 10.1186/s12891-023-06370-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Studies have confirmed that antioxidants contribute to a lower risk of osteoporosis, which is an independent factor for femoral neck fracture (FNF). However, the associations between blood antioxidant levels and femoral neck strength remain unclear. OBJECTIVE Our aim was to test the hypothesis that levels of blood antioxidants are positively associated with composite indices of bone strength in femoral neck, which integrate the bending strength index (BSI), compressive strength index (CSI), and impact strength index (ISI), in a population of middle-aged and elderly individuals. METHODS This cross-sectional study utilized data from the Midlife in the United States (MIDUS) study. Blood levels of antioxidants were measured and analyzed. RESULTS In total, data from 878 participants were analyzed. Results of Spearman correlation analyses indicated that blood levels of 6 antioxidants (total lutein, zeaxanthin, alpha-carotene, 13-cis-beta-carotene, trans-beta-carotene and total lycopene) were positively associated with CSI, BSI, or ISI in middle-aged and elderly individuals. Conversely, blood gamma-tocopherol and alpha-tocopherol levels were negatively associated with CSI, BSI, or ISI scores. Furthermore, linear regression analyses suggested that only blood zeaxanthin levels remained positively associated with CSI (odds ratio, OR 1.27; 95% CI: 0.03, 2.50; p = 0.045), BSI (OR, 0.54; 95% CI: 0.03-1.06; p = 0.037), and ISI (OR, 0.06; 95% CI: 0.00, 0.13; p = 0.045) scores in the study population after adjusting for age and sex. CONCLUSIONS Our results indicated that elevated blood zeaxanthin levels were significantly and positively associated with femoral neck strength (CSI, BSI, or ISI) in a population of middle-aged and elderly individuals. These findings suggest that zeaxanthin supplementation may reduce FNF risk independently.
Collapse
Affiliation(s)
- Peng Niu
- Department of spine and joint surgery, Nan Yang Second General Hospital, Nanyang City, Henan Province, 473009, China
| | - Yongxi Liu
- Department of spine and joint surgery, Nan Yang Second General Hospital, Nanyang City, Henan Province, 473009, China
| | - Yanfeng Zhang
- Department of spine and joint surgery, Nan Yang Second General Hospital, Nanyang City, Henan Province, 473009, China
| | - Lei Li
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou City, Zhejiang Province, 324002, China.
| |
Collapse
|
7
|
Rondanelli M, Faliva MA, Barrile GC, Cavioni A, Mansueto F, Mazzola G, Oberto L, Patelli Z, Pirola M, Tartara A, Riva A, Petrangolini G, Peroni G. Nutrition, Physical Activity, and Dietary Supplementation to Prevent Bone Mineral Density Loss: A Food Pyramid. Nutrients 2021; 14:74. [PMID: 35010952 PMCID: PMC8746518 DOI: 10.3390/nu14010074] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Bone is a nutritionally modulated tissue. Given this background, aim of this review is to evaluate the latest data regarding ideal dietary approach in order to reduce bone mineral density loss and to construct a food pyramid that allows osteopenia/osteoporosis patients to easily figure out what to eat. The pyramid shows that carbohydrates should be consumed every day (3 portions of whole grains), together with fruits and vegetables (5 portions; orange-colored fruits and vegetables and green leafy vegetables are to be preferred), light yogurt (125 mL), skim milk (200 mL,) extra virgin olive oil (almost 20 mg/day), and calcium water (almost 1 l/day); weekly portions should include fish (4 portions), white meat (3 portions), legumes (2 portions), eggs (2 portions), cheeses (2 portions), and red or processed meats (once/week). At the top of the pyramid, there are two pennants: one green means that osteopenia/osteoporosis subjects need some personalized supplementation (if daily requirements cannot be satisfied through diet, calcium, vitamin D, boron, omega 3, and isoflavones supplementation could be an effective strategy with a great benefit/cost ratio), and one red means that there are some foods that are banned (salt, sugar, inorganic phosphate additives). Finally, three to four times per week of 30-40 min of aerobic and resistance exercises must be performed.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, 27100 Pavia, Italy;
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Milena Anna Faliva
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| | - Alessandro Cavioni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| | - Francesca Mansueto
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| | - Giuseppe Mazzola
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| | - Letizia Oberto
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| | - Zaira Patelli
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| | - Martina Pirola
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| | - Alice Tartara
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| | - Antonella Riva
- Research and Development Department, Indena SpA, 20139 Milan, Italy; (A.R.); (G.P.)
| | | | - Gabriella Peroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (M.A.F.); (G.C.B.); (A.C.); (F.M.); (G.M.); (L.O.); (Z.P.); (M.P.); (A.T.)
| |
Collapse
|