1
|
Kurhaluk N. Palm oil as part of a high-fat diet: advances and challenges, or possible risks of pathology? Nutr Rev 2024:nuae038. [PMID: 38699959 DOI: 10.1093/nutrit/nuae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Nutritional status disorders have the most significant impact on the development of cardiovascular and oncologic diseases; therefore, the interest in the study of palm oil as among the leading components of nutrition has been increasing. The data examined in this review were sourced from the Scopus, SCIE (Web of Science), PubMed and PubMed Central, MEDLINE, CAPlus/SciFinder, and Embase databases; experts in the field; bibliographies; and abstracts from review analyses from the past 15 years. This review summarizes recent research data focusing on the quantitative and qualitative composition of nutrition of modern humans; concepts of the relationship between high-fat diets and disorders of insulin functioning and transport and metabolism of fatty acids; analyses of data regarding the palmitic acid (16:0) to oleic acid (18:1) ratio; and the effect of diet based on palm oil consumption on cardiovascular risk factors and lipid and lipoprotein levels. Several studies suggest a potential vector contributing to the transmission of maternal, high-fat-diet-induced, addictive-like behaviors and obesogenic phenotypes across generations. The relationship between cholesterol accumulation in lysosomes that may lead to lysosome dysfunction and inhibition of the autophagy process is analyzed, as is the progression of inflammatory diseases, atherosclerosis, nonalcoholic liver inflammation, and obesity with associated complications. Data are discussed from analyses of differences between rodent models and human population studies in the investigated different effects of palm oil consumption as a high-fat diet component. A conclusion is reached that the results cannot be generalized in human population studies because no similar effects were observed. Although there are numerous published reports, more studies are necessary to elucidate the complex regulatory mechanisms in digestive and nutrition processes, because there are great differences in lipoprotein profiles between rodents and humans, which makes it difficult to reproduce the pathology of many diseases caused by different types of the high-fat diet.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Animal Physiology, Institute of Biology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
2
|
Zhang H, Gao P, Chen Z, Liu H, Zhong W, Hu C, He D, Wang X. Changes in the physicochemical properties and antioxidant capacity of Sichuan hotpot oil. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:562-571. [PMID: 36712221 PMCID: PMC9873884 DOI: 10.1007/s13197-022-05638-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/30/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022]
Abstract
This study aimed to develop nutritious and healthy Sichuan hotpot oil. Four blended oil formulas were formulated using MATLAB based on the fatty acid composition of four base constituents (beef tallow, mutton tallow, peanut oil, and palm oil). The sensory characteristics, physicochemical properties, nutritional composition, harmful substances, and antioxidant capacity of the oils were analyzed during the boiling process. A blend of 60% beef tallow + 10% mutton tallow + 10% peanut oil + 20% palm oil exhibited a low level of peroxide (0.03 g/100 g) and malondialdehyde (0.04 mg/kg), and high phytosterol content (1028.33 mg/kg), which was the suitable hotpot blending oil. Furthermore, the changes in the physicochemical properties during boring were low, with a high retention rate of phytosterol (94.85%), and the levels of 3,4-benzopyrene (1.12 μg/kg) and 3-monochloropropane-1,2-diol ester (0.67 mg/kg) were both lower than the recommended limits. This study will provide a theoretical basis for the advancement of the hotpot oil industry.
Collapse
Affiliation(s)
- Huihui Zhang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan, 430023 People’s Republic of China
| | - Pan Gao
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan, 430023 People’s Republic of China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Institute for Food and Cosmetic Control, 1137 Jinshan Avenue, Wuhan, 430012 People’s Republic of China
| | - Zhe Chen
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Institute for Food and Cosmetic Control, 1137 Jinshan Avenue, Wuhan, 430012 People’s Republic of China
| | - Hui Liu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan, 430023 People’s Republic of China
| | - Wu Zhong
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan, 430023 People’s Republic of China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Institute for Food and Cosmetic Control, 1137 Jinshan Avenue, Wuhan, 430012 People’s Republic of China
| | - Chuanrong Hu
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan, 430023 People’s Republic of China
| | - Dongping He
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan, 430023 People’s Republic of China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan Institute for Food and Cosmetic Control, 1137 Jinshan Avenue, Wuhan, 430012 People’s Republic of China
| | - Xingguo Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education in China, College of Food Science and Engineering, Wuhan Polytechnic University, 68 Xuefu South Road, Changqing Garden, Wuhan, 430023 People’s Republic of China
- International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 People’s Republic of China
| |
Collapse
|
3
|
Sulaiman N, Sintang M, Mantihal S, Zaini H, Munsu E, Mamat H, Kanagaratnam S, Jahurul M, Pindi W. Balancing functional and health benefits of food products formulated with palm oil as oil sources. Heliyon 2022; 8:e11041. [PMID: 36303903 PMCID: PMC9593283 DOI: 10.1016/j.heliyon.2022.e11041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/23/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Palm oil (PO) is widely utilised in the food industry and consumed in large quantities by humans. Owing to its bioactive components, such as fatty acids, carotenoids, vitamin E, and phenolic compounds, PO has been utilised for generations. However, public concern about their adverse effects on human health is growing. A literature search was conducted to identify fractionated palm oil processing techniques, proof of their health advantages, and potential food applications. Refined palm oil (RPO) is made from crude palm oil (CPO) and can be fractionated into palm olein (POl) and palm stearin (PS). Fractional crystallisation, dry fractionation, and solvent fractionation are the three basic fractionation procedures used in the PO industry. The composition of triacylglycerols and fatty acids in refined and fractionated palm oil and other vegetable oils is compared to elucidate the triacylglycerols and fatty acids that may be important in product development. It is well proven that RPO, POl, and PS extends the oil's shelf life in the food business. These oils have a more significant saturated fat content and antioxidant compounds than some vegetable oils, such as olive and coconut oils, making them more stable. Palm olein and stearin are also superior shortening agents and frying mediums for baking goods and meals. Furthermore, when ingested modestly daily, palm oils, especially RPO and POl, provide health benefits such as cardioprotective, antidiabetic, anti-inflammatory, and antithrombotic effects. Opportunities exist for fractionated palm oil to become a fat substitute; however, nutrition aspects need to be considered in further developing the market.
Collapse
Affiliation(s)
- N.S. Sulaiman
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - M.D. Sintang
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - S. Mantihal
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - H.M. Zaini
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - E. Munsu
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - H. Mamat
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - S. Kanagaratnam
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - M.H.A. Jahurul
- Department of Agriculture, University of Arkansas, 1200 North University Dr., M/S 4913, Pine Bluff, AR 71601, United States
| | - W. Pindi
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
4
|
Kackley ML, Brownlow ML, Buga A, Crabtree CD, Sapper TN, O’Connor A, Volek JS. The effects of a 6-week controlled, hypocaloric ketogenic diet, with and without exogenous ketone salts, on cognitive performance and mood states in overweight and obese adults. Front Neurosci 2022; 16:971144. [PMID: 36248655 PMCID: PMC9563373 DOI: 10.3389/fnins.2022.971144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Ketogenic diets are a commonly used weight loss method, but little is known how variations in sodium content and ketones influence cognition and mood during the early keto-adaptation period. Objectives To investigate the effects of an exogenous ketone salt (KS) as part of a hypocaloric KD on mood and cognitive outcomes in overweight and obese adults. A secondary objective was to evaluate changes in biochemical markers associated with inflammatory and cognitive responses. Materials and methods Adults who were overweight or obese participated in a 6-week controlled-feeding intervention comparing hypocaloric diets (∼75% of energy expenditure). KD groups received twice daily ketone salt (KD + KS; n = 12) or a flavor-matched placebo, free of minerals (KD + PL; n = 13). A separate group of age and BMI matched adults were later assigned to an isoenergetic low-fat diet (LFD; n = 12) as comparison to KD. Mood was assessed by shortened Profile of Mood States and Visual Analog Mood Scale surveys. Cognitive function was determined by the Automated Neuropsychological Assessment Metrics mental test battery. Results Both KD groups achieved nutritional ketosis. Fasting serum glucose decreased in both KD groups, whereas glucose was unaffected in the LFD. Insulin decreased at week 2 and remained lower in all groups. At week 2, depression scores in the KD + PL group were higher compared to KD + KS. Performance in the math processing and go/no-go cognitive tests were lower for KD + PL and LFD participants, respectively, compared to KD + KS. Serum leptin levels decreased for all groups throughout the study but were higher for KD + KS group at week 6. Serum TNF-α steadily increased for LFD participants, reaching significance at week 6. Conclusion During a short-term hypocaloric diet, no indication of a consistent decline in mood or cognitive function were seen in participants following either KD, despite KD + PL being relatively low in sodium. WK2 scores of “anger” and “depression” were higher in the LFD and KD + PL groups, suggesting that KS may attenuate negative mood parameters during the early intervention stages.
Collapse
Affiliation(s)
- Madison L. Kackley
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Milene L. Brownlow
- Research and Development Department, Metagenics Inc., Gig Harbor, WA, United States
| | - Alex Buga
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Chris D. Crabtree
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Teryn N. Sapper
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
| | - Annalouise O’Connor
- Research and Development Department, Metagenics Inc., Gig Harbor, WA, United States
| | - Jeff S. Volek
- Department of Human Sciences, The Ohio State University, Columbus, OH, United States
- *Correspondence: Jeff S. Volek,
| |
Collapse
|
5
|
Buga A, Welton GL, Scott KE, Atwell AD, Haley SJ, Esbenshade NJ, Abraham J, Buxton JD, Ault DL, Raabe AS, Noakes TD, Hyde PN, Volek JS, Prins PJ. The Effects of Carbohydrate versus Fat Restriction on Lipid Profiles in Highly Trained, Recreational Distance Runners: A Randomized, Cross-Over Trial. Nutrients 2022; 14:nu14061135. [PMID: 35334791 PMCID: PMC8955386 DOI: 10.3390/nu14061135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
A growing number of endurance athletes have considered switching from a traditional high-carbohydrate/low-fat (HCLF) to a low-carbohydrate/high-fat (LCHF) eating pattern for health and performance reasons. However, few studies have examined how LCHF diets affect blood lipid profiles in highly-trained runners. In a randomized and counterbalanced, cross-over design, athletes (n = 7 men; VO2max: 61.9 ± 6.1 mL/kg/min) completed six weeks of two, ad libitum, LCHF (6/69/25% en carbohydrate/fat/protein) and HCLF (57/28/15% en carbohydrate/fat/protein) diets, separated by a two-week washout. Plasma was collected on days 4, 14, 28, and 42 during each condition and analyzed for: triglycerides (TG), LDL-C, HDL-C, total cholesterol (TC), VLDL, fasting glucose, and glycated hemoglobin (HbA1c). Capillary blood beta-hydroxybutyrate (BHB) was monitored during LCHF as a measure of ketosis. LCHF lowered plasma TG, VLDL, and TG/HDL-C (all p < 0.01). LCHF increased plasma TC, LDL-C, HDL-C, and TC/HDL-C (all p < 0.05). Plasma glucose and HbA1c were unaffected. Capillary BHB was modestly elevated throughout the LCHF condition (0.5 ± 0.05 mmol/L). Healthy, well-trained, normocholesterolemic runners consuming a LCHF diet demonstrated elevated circulating LDL-C and HDL-C concentrations, while concomitantly decreasing TG, VLDL, and TG/HDL-C ratio. The underlying mechanisms and implications of these adaptive responses in cholesterol should be explored.
Collapse
Affiliation(s)
- Alex Buga
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.B.); (J.S.V.)
| | - Gary L. Welton
- Department of Exercise Science, Grove City College, Grove City, PA 16127, USA; (G.L.W.); (K.E.S.); (A.D.A.); (S.J.H.); (N.J.E.); (J.A.); (J.D.B.); (D.L.A.)
| | - Katie E. Scott
- Department of Exercise Science, Grove City College, Grove City, PA 16127, USA; (G.L.W.); (K.E.S.); (A.D.A.); (S.J.H.); (N.J.E.); (J.A.); (J.D.B.); (D.L.A.)
| | - Adam D. Atwell
- Department of Exercise Science, Grove City College, Grove City, PA 16127, USA; (G.L.W.); (K.E.S.); (A.D.A.); (S.J.H.); (N.J.E.); (J.A.); (J.D.B.); (D.L.A.)
| | - Sarah J. Haley
- Department of Exercise Science, Grove City College, Grove City, PA 16127, USA; (G.L.W.); (K.E.S.); (A.D.A.); (S.J.H.); (N.J.E.); (J.A.); (J.D.B.); (D.L.A.)
| | - Noah J. Esbenshade
- Department of Exercise Science, Grove City College, Grove City, PA 16127, USA; (G.L.W.); (K.E.S.); (A.D.A.); (S.J.H.); (N.J.E.); (J.A.); (J.D.B.); (D.L.A.)
| | - Jacqueline Abraham
- Department of Exercise Science, Grove City College, Grove City, PA 16127, USA; (G.L.W.); (K.E.S.); (A.D.A.); (S.J.H.); (N.J.E.); (J.A.); (J.D.B.); (D.L.A.)
| | - Jeffrey D. Buxton
- Department of Exercise Science, Grove City College, Grove City, PA 16127, USA; (G.L.W.); (K.E.S.); (A.D.A.); (S.J.H.); (N.J.E.); (J.A.); (J.D.B.); (D.L.A.)
| | - Dana L. Ault
- Department of Exercise Science, Grove City College, Grove City, PA 16127, USA; (G.L.W.); (K.E.S.); (A.D.A.); (S.J.H.); (N.J.E.); (J.A.); (J.D.B.); (D.L.A.)
| | - Amy S. Raabe
- Department of Human Ecology, Youngstown State University, Youngstown, OH 44555, USA;
| | - Timothy D. Noakes
- Department of Applied Design, Cape Peninsula University of Technology, Cape Town 8000, South Africa;
| | - Parker N. Hyde
- Department of Kinesiology, University of Northern Georgia, Dahlonega, GA 30597, USA;
| | - Jeff S. Volek
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.B.); (J.S.V.)
| | - Philip J. Prins
- Department of Exercise Science, Grove City College, Grove City, PA 16127, USA; (G.L.W.); (K.E.S.); (A.D.A.); (S.J.H.); (N.J.E.); (J.A.); (J.D.B.); (D.L.A.)
- Correspondence: ; Tel.: +1-724-458-3863
| |
Collapse
|
6
|
Mohd Hanafiah K, Abd Mutalib AH, Miard P, Goh CS, Mohd Sah SA, Ruppert N. Impact of Malaysian palm oil on sustainable development goals: co-benefits and trade-offs across mitigation strategies. SUSTAINABILITY SCIENCE 2022; 17:1639-1661. [PMID: 34667481 PMCID: PMC8517301 DOI: 10.1007/s11625-021-01052-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/28/2021] [Indexed: 05/10/2023]
Abstract
UNLABELLED Palm oil (PO) is an important source of livelihood, but unsustainable practices and widespread consumption may threaten human and planetary health. We reviewed 234 articles and summarized evidence on the impact of PO on health, social and economic aspects, environment, and biodiversity in the Malaysian context, and discuss mitigation strategies based on the sustainable development goals (SDGs). The evidence on health impact of PO is equivocal, with knowledge gaps on whether moderate consumption elevates risk for chronic diseases, but the benefits of phytonutrients (SDG2) and sensory characteristics of PO seem offset by its high proportion of saturated fat (SDG3). While PO contributes to economic growth (SDG9, 12), poverty alleviation (SDG1, 8, 10), enhanced food security (SDG2), alternative energy (SDG9), and long-term employment opportunities (SDG1), human rights issues and inequities attributed to PO production persist (SDG8). Environmental impacts arise through large-scale expansion of monoculture plantations associated with increased greenhouse gas emissions (SDG13), especially from converted carbon-rich peat lands, which can cause forest fires and annual trans-boundary haze; changes in microclimate properties and soil nutrient content (SDG6, 13); increased sedimentation and change of hydrological properties of streams near slopes (SDG6); and increased human wildlife conflicts, increase of invasive species occurrence, and reduced biodiversity (SDG14, 15). Practices such as biological pest control, circular waste management, multi-cropping and certification may mitigate negative impacts on environmental SDGs, without hampering progress of socioeconomic SDGs. While strategies focusing on improving practices within and surrounding plantations offer co-benefits for socioeconomic, environment and biodiversity-related SDGs, several challenges in achieving scalable solutions must be addressed to ensure holistic sustainability of PO in Malaysia for various stakeholders. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11625-021-01052-4.
Collapse
Affiliation(s)
- Khayriyyah Mohd Hanafiah
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
- Life Sciences, Macfarlane Burnet Institute, Melbourne, VIC 3004 Australia
| | - Aini Hasanah Abd Mutalib
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Malaysia
| | - Priscillia Miard
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Chun Sheng Goh
- Jeffrey Cheah Institute on Southeast Asia, Sunway University, 47500 Bandar Sunway, Selangor Malaysia
| | | | - Nadine Ruppert
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|