1
|
Kurokawa Y, Watanabe S, Yano T, Izumi T, Hidaka N, Yamaguchi T, Tanaka M. Valproic acid alleviates total-body irradiation-induced small intestinal mucositis in mice. Int J Radiat Biol 2024:1-8. [PMID: 39437146 DOI: 10.1080/09553002.2024.2418514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Gastrointestinal (GI) injury is one of the serious problems of total-body irradiation (TBI). However, no fundamental treatment for TBI and other radiation-induced GI injury has yet been established. Valproic acid (VPA) administration reduces mortality in mice subjected to total-body irradiation (TBI) with X-rays. This study aimed to evaluate the effects of VPA on GI injury induced by TBI in mice. MATERIALS AND METHODS Mice were subjected to TBI with X-rays to induce GI injury. Changes in survival and weight were observed after VPA administration. The small intestine was then sampled at 0, 1, 3, 7, and 10 d after irradiation for histological and immunohistological evaluation and measurement of myeloperoxidase (MPO) activity and inflammatory cytokine levels (IL-1β). RESULTS VPA (200 and 600 mg/kg) increased survival rate and reduced weight loss in model mice. IL-1β expression 1 d after irradiation was significantly lower in the VPA group than that in the vehicle group. Furthermore, the increase in MPO activity at 3 and 7 d after irradiation was significantly suppressed by VPA administration. Histological examination (hematoxylin and eosin staining) revealed that 600 mg/kg VPA inhibited inflammatory cell infiltration. Immunostaining for the proliferating cell nuclear antigen involved in cell proliferation showed that VPA suppressed the irradiation-induced decrease in cell proliferative capacity. CONCLUSIONS Treatment with VPA in mice with GI injury caused by TBI suppressed inflammatory responses in small intestinal mucosal cells. These results suggest that VPA may be a useful therapeutic agent against TBI-induced small intestinal mucositis.
Collapse
Affiliation(s)
- Yukiro Kurokawa
- Division of Pharmacy, Ehime University Hospital, Toon, Ehime, Japan
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Shinichi Watanabe
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Takaaki Yano
- Division of Pharmacy, Ehime University Hospital, Toon, Ehime, Japan
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Tomoki Izumi
- Division of Pharmacy, Ehime University Hospital, Toon, Ehime, Japan
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Noriaki Hidaka
- Division of Pharmacy, Ehime University Hospital, Toon, Ehime, Japan
| | - Takumi Yamaguchi
- Department of Clinical Pharmacy, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Mamoru Tanaka
- Division of Pharmacy, Ehime University Hospital, Toon, Ehime, Japan
| |
Collapse
|
2
|
Abankwah JK, Wang Y, Wang J, Ogbe SE, Pozzo LD, Chu X, Bian Y. Gut aging: A wane from the normal to repercussion and gerotherapeutic strategies. Heliyon 2024; 10:e37883. [PMID: 39381110 PMCID: PMC11456882 DOI: 10.1016/j.heliyon.2024.e37883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/01/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Globally, age-related diseases represent a significant public health concern among the elderly population. In aging, healthy organs and tissues undergo structural and functional changes that put the aged adults at risk of diseases. Some of the age-related diseases include cancer, atherosclerosis, brain disorders, muscle atrophy (sarcopenia), gastrointestinal (GIT) disorders, etc. In organs, a decline in stem cell function is the starting point of many conditions and is extremely important in GIT disorder development. Many studies have established that aging affects stem cells and their surrounding supportive niche components. Although there is a significant advancement in treating intestinal aging, the rising elderly population coupled with a higher occurrence of chronic gut ailments necessitates more effective therapeutic approaches to preserve gut health. Notable therapeutic strategies such as Western medicine, traditional Chinese medicine, and other health-promotion interventions have been reported in several studies to hold promise in mitigating age-related gut disorders. This review highlights findings across various facets of gut aging with a focus on aging-associated changes of intestinal stem cells and their niche components, thus a deviation from the normal to repercussion, as well as essential therapeutic strategies to mitigate intestinal aging.
Collapse
Affiliation(s)
- Joseph K. Abankwah
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jida Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Susan Enechojo Ogbe
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lisa Dal Pozzo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - XiaoQian Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - YuHong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Li W, Tang X, Liu H, Liu K, Tian Z, Zhao Y. Protective effect of 1,3-dioleoyl-2-palmitoylglycerol against DSS-induced colitis via modulating gut microbiota and maintaining intestinal epithelial barrier integrity. Food Funct 2024; 15:8700-8711. [PMID: 39076044 DOI: 10.1039/d4fo02344g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Inflammatory bowel disease (IBD) is a challenging condition to cure that can occur at any age. The gut microbiome and intestinal epithelial barrier play a crucial role in the development of IBD. 1,3-Dioleoyl-2-palmitoylglycerol (OPO), the predominant triglyceride in breast milk, is a structural lipid with multiple physiological functions. However, the protective effect of OPO on IBD and its underlying mechanism remains unclear. This study showed that oral administration of OPO markedly ameliorated dextran sulfate sodium (DSS)-induced colitis phenotypes. OPO treatment reduced inflammation levels by suppressing the TLR4-MyD88-NF-κB signaling pathway in colitis mice. Furthermore, OPO treatment improved intestinal epithelial barrier function via promoting epithelial cell proliferation and differentiation, inhibiting cell apoptosis, and upregulating tight junction protein expression. The 16S rRNA gene sequencing revealed that OPO treatment restored microbial alpha diversity and reshaped the microbiota of colitis mice. Therefore, our study revealed that OPO exhibited a protective role in DSS-induced colitis via maintaining intestinal epithelial barrier integrity and modulating gut microbiota. Our results highlight that OPO could be used as effective supplements for individuals with IBD or intestinal dysfunctions.
Collapse
Affiliation(s)
- Wusun Li
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaoyan Tang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hui Liu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Ke Liu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhiqing Tian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yujie Zhao
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards & Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Wang H, Zhang N, Wang X, Tian J, Yi J, Yao L, Huang G. Emerging role of mesenchymal stem cell-derived exosome microRNA in radiation injury. Int J Radiat Biol 2024; 100:996-1008. [PMID: 38776447 DOI: 10.1080/09553002.2024.2347348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Radiation injury (RI) is a common occurrence in malignant tumors patients receiving radiation therapy. While killing tumor cells, normal tissue surrounding the target area is inevitably irradiated at a certain dose, which can cause varying results of radiation injury. Currently, there are limited clinical treatments available for radiation injuries. In recent years, the negative effects of stem cell therapy have been reported more clearly and non-cellular therapies such as exosomes have become a focus of attention for researchers. As a type of vesicle-like substances secreted by mesenchymal stem cells (MSC), MSC derived exosomes (MSC-exo) carry DNA, mRNA, microRNA (miRNAs), specific proteins, lipids, and other active substances involved in intercellular information exchange. miRNAs released by MSC-exo are capable of alleviating and repairing damaged tissues through anti-apoptosis, modulating immune response, regulating inflammatory response and promoting angiogenesis, which indicates that MSC-exo miRNAs have great potential for application in the prevention and treatment of radiation injury. Therefore, it is necessary to explore the underlying therapeutic mechanisms of MSC-exo miRNAs in this process, which may shed new lights on the treatment of radiation injury. CONCLUSIONS Increasing evidence confirms that MSC-exo has shown encouraging applications in tissue repair due to the anti-apoptotic, immunoreactive, and pro-angiogenesis effects of the miRNAs it carries as intercellular communication carriers. However, miRNA-based therapeutics are still in their infancy and many practical issues remain to be addressed for clinical applications.
Collapse
Affiliation(s)
- Huike Wang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Nini Zhang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Xue Wang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Jia Tian
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Jie Yi
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | | | - Guilin Huang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
5
|
Fan H, Wu J, Yang K, Xiong C, Xiong S, Wu X, Fang Z, Zhu J, Huang J. Dietary regulation of intestinal stem cells in health and disease. Int J Food Sci Nutr 2023; 74:730-745. [PMID: 37758199 DOI: 10.1080/09637486.2023.2262780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Diet is a critical regulator for physiological metabolism and tissue homeostasis, with a close relation to health and disease. As an important organ for digestion and absorption, the intestine comes into direct contact with many dietary components. The rapid renewal of its mucosal epithelium depends on the continuous proliferation and differentiation of intestinal stem cells (ISCs). The function and metabolism of ISCs can be controlled by a variety of dietary patterns including calorie restriction, fasting, high-fat, ketogenic, and high-sugar diets, as well as different nutrients including vitamins, amino acids, dietary fibre, and probiotics. Therefore, dietary interventions targeting ISCs may make it possible to prevent and treat intestinal disorders such as colon cancer, inflammatory bowel disease, and radiation enteritis. This review summarised recent research on the role and mechanism of diet in regulating ISCs, and discussed the potential of dietary modulation for intestinal diseases.
Collapse
Affiliation(s)
- Hancheng Fan
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaoyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Siyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Xingwu Wu
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Zheng Fang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jing Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| |
Collapse
|
6
|
Yao C, Gou X, Tian C, Zhou L, Hao R, Wan L, Wang Z, Li M, Tong X. Key regulators of intestinal stem cells: diet, microbiota, and microbial metabolites. J Genet Genomics 2023; 50:735-746. [PMID: 36566949 DOI: 10.1016/j.jgg.2022.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Interactions between diet and the intestinal microbiome play an important role in human health and disease development. It is well known that such interactions, whether direct or indirect, trigger a series of metabolic reactions in the body. Evidence suggests that intestinal stem cells (ISCs), which are phenotypic precursors of various intestinal epithelial cells, play a significant role in the regulation of intestinal barrier function and homeostasis. The advent and evolution of intestinal organoid culture techniques have presented a key opportunity to study the association between the intestinal microenvironment and ISCs. As a result, the effects exerted by dietary factors, intestinal microbiomes, and their metabolites on the metabolic regulation of ISCs and the potential mechanisms underlying such effects are being gradually revealed. This review summarises the effects of different dietary patterns on the behaviour and functioning of ISCs and focuses on the crosstalk between intestinal microbiota, related metabolites, and ISCs, with the aim of fully understanding the relationship between these three factors and providing further insights into the complex mechanisms associated with ISCs in the human body. Gaining an understanding of these mechanisms may lead to the development of novel dietary interventions or drugs conducive to intestinal health.
Collapse
Affiliation(s)
- Chensi Yao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaowen Gou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chuanxi Tian
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lijuan Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Rui Hao
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li Wan
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, Jilin 130017, China.
| | - Min Li
- Molecular Biology Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital of China, Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
7
|
Munem F, Thianhlun PCK, Anderson PH, Stringer AM. Vitamin D is a potential treatment for the management of gastrointestinal mucositis. Curr Opin Support Palliat Care 2023; 17:247-252. [PMID: 37276064 DOI: 10.1097/spc.0000000000000651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
PURPOSE OF THE REVIEW Gastrointestinal mucositis (GM) is a severe side effect of cancer treatments, negatively impacting the patient's quality of life, and has limited treatment. GM consists of complex biological processes involving apoptosis and inflammation, leading to damage and ulceration of the gastrointestinal system. Recently, vitamin D has been shown to have multiple roles in the gut, including immunomodulation, epithelial barrier regulation and microbiome regulation. Hence, this review aims to put forth vitamin D as a potential therapeutic due to its protective role in the intestine. RECENT FINDINGS Recent studies have shown that vitamin D can reduce intestinal inflammation by reducing NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation. Vitamin D also targets and maintains the intestinal epithelial barrier via the tight junction protein expression and the inhibition of microbiome translocation. Significant evidence also suggests that vitamin D exerts multiple therapeutic effects through binding to vitamin D receptors (VDRs), and the downregulation of VDR has been associated with the severity of the disease. Additionally, vitamin D deficiency is reported in cancer patients. SUMMARY There is a dire need for effective treatment for GM, and recent animal and human studies show that vitamin D may be a potential therapy to prevent or treat GM.
Collapse
Affiliation(s)
- Fizza Munem
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
8
|
Wang Z, Qu YJ, Cui M. Modulation of stem cell fate in intestinal homeostasis, injury and repair. World J Stem Cells 2023; 15:354-368. [PMID: 37342221 PMCID: PMC10277971 DOI: 10.4252/wjsc.v15.i5.354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
The mammalian intestinal epithelium constitutes the largest barrier against the external environment and makes flexible responses to various types of stimuli. Epithelial cells are fast-renewed to counteract constant damage and disrupted barrier function to maintain their integrity. The homeostatic repair and regeneration of the intestinal epithelium are governed by the Lgr5+ intestinal stem cells (ISCs) located at the base of crypts, which fuel rapid renewal and give rise to the different epithelial cell types. Protracted biological and physicochemical stress may challenge epithelial integrity and the function of ISCs. The field of ISCs is thus of interest for complete mucosal healing, given its relevance to diseases of intestinal injury and inflammation such as inflammatory bowel diseases. Here, we review the current understanding of the signals and mechanisms that control homeostasis and regeneration of the intestinal epithelium. We focus on recent insights into the intrinsic and extrinsic elements involved in the process of intestinal homeostasis, injury, and repair, which fine-tune the balance between self-renewal and cell fate specification in ISCs. Deciphering the regulatory machinery that modulates stem cell fate would aid in the development of novel therapeutics that facilitate mucosal healing and restore epithelial barrier function.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yan-Ji Qu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Min Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
9
|
Passeri G, Giannini S. Benefits of Vitamin D in Health and Diseases. Nutrients 2023; 15:nu15112419. [PMID: 37299383 DOI: 10.3390/nu15112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
This Special Issue of Nutrients, titled "Benefits of Vitamin D in health and diseases", includes a total of twenty-five publications that consider different aspects of vitamin D, both at the cellular/preclinical and clinical levels, in neonates or children, in pregnant women, in adults and in elderly subjects [...].
Collapse
Affiliation(s)
- Giovanni Passeri
- Unit of Clinica e Terapia Medica, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Sandro Giannini
- Clinica Medica 1, Department of Medicine, University of Padova, 35128 Padova, Italy
| |
Collapse
|
10
|
Yang Q, Qin B, Hou W, Qin H, Yin F. Pathogenesis and therapy of radiation enteritis with gut microbiota. Front Pharmacol 2023; 14:1116558. [PMID: 37063268 PMCID: PMC10102376 DOI: 10.3389/fphar.2023.1116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
Radiotherapy is widely used in clinic due to its good effect for cancer treatment. But radiotherapy of malignant tumors in the abdomen and pelvis is easy to cause radiation enteritis complications. Gastrointestinal tract contains numerous microbes, most of which are mutualistic relationship with the host. Abdominal radiation results in gut microbiota dysbiosis. Microbial therapy can directly target gut microbiota to reverse microbiota dysbiosis, hence relieving intestinal inflammation. In this review, we mainly summarized pathogenesis and novel therapy of the radiation-induced intestinal injury with gut microbiota dysbiosis and envision the opportunities and challenges of radiation enteritis therapy.
Collapse
Affiliation(s)
- Qilin Yang
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- School of Clinical Medicine of Nanjing Medical University, Nanjing, China
| | - Bingzhi Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Weiliang Hou
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Huanlong Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Fang Yin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| |
Collapse
|
11
|
Vitamin A- and D-Deficient Diets Disrupt Intestinal Antimicrobial Peptide Defense Involving Wnt and STAT5 Signaling Pathways in Mice. Nutrients 2023; 15:nu15020376. [PMID: 36678247 PMCID: PMC9863741 DOI: 10.3390/nu15020376] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Vitamin A and D deficiencies are associated with immune modulatory effects and intestinal barrier impairment. However, the underlying mechanisms remain unclear. C57BL/6J mice were fed either a diet lacking in vitamin A (VAd), vitamin D (VDd) or a control diet (CD) for 12 weeks. Gut barrier function, antimicrobial peptide (AMP) defense and regulatory pathways were assessed. VAd mice compared to CD mice showed a reduced villus length in the ileum (p < 0.01) and decreased crypt depth in the colon (p < 0.05). In both VAd- and VDd-fed mice, ileal α-defensin 5 (p < 0.05/p < 0.0001 for VAd/VDd) and lysozyme protein levels (p < 0.001/p < 0.0001) were decreased. Moreover, mRNA expression of lysozyme (p < 0.05/p < 0.05) and total cryptdins (p < 0.001/p < 0.01) were reduced compared to controls. Furthermore, matrix metalloproteinase-7 (Mmp7) mRNA (p < 0.0001/p < 0.001) as well as components of the Wnt signaling pathway were decreased. VAd- and VDd-fed mice, compared to control mice, exhibited increased expression of pro-inflammatory markers and β-defensins in the colon. Organoid cell culture confirmed that vitamins A and D regulate AMP expression, likely through the Jak/STAT5 signaling pathway. In conclusion, our data show that vitamin A and D regulate intestinal antimicrobial peptide defense through Wnt and STAT5 signaling pathways.
Collapse
|
12
|
Lin Y, Xia P, Cao F, Zhang C, Yang Y, Jiang H, Lin H, Liu H, Liu R, Liu X, Cai J. Protective effects of activated vitamin D receptor on radiation-induced intestinal injury. J Cell Mol Med 2022; 27:246-258. [PMID: 36579449 PMCID: PMC9843524 DOI: 10.1111/jcmm.17645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 12/30/2022] Open
Abstract
Radiation-induced intestinal injury (RIII) is a common complication after radiation therapy in patients with pelvic, abdominal, or retroperitoneal tumours. Recently, in the model of DSS (Dextran Sulfate Sodium Salt) -induced intestinal inflammatory injury, it has been found in the study that transgenic mice expressing hVDR in IEC (Intestinal Epithelial Cell) manifest highly anti-injury properties in colitis, suggesting that activated VDR in the epithelial cells of intestine may inhibit colitis by protecting the mucosal epithelial barrier. In this study, we investigated the effect of the expression and regulation of VDR on the protection of RIII, and the radiosensitivity in vitro experiments, and explored the initial mechanism of VDR in regulating radiosensitivity of IEC. As a result, we found that the expression of VDR in intestinal tissues and cells in mice can be induced by ionizing radiation. VDR agonists are able to prolong the average survival time of mice after radiation and reduce the radiation-induced intestinal injury. For lack of vitamin D, the radiosensitivity of intestinal epithelial cells in mice increased, which can be reduced by VDR activation. Ensuing VDR activation, the radiation-induced intestinal stem cells damage is decreased, and the regeneration and differentiation of intestinal stem cells is promoted as well. Finally, on the basis of sequencing analysis, we validated and found that VDR may target the HIF/PDK1 pathway to mitigate RIII. We concluded that agonism or upregulation of VDR expression attenuates radiation-induced intestinal damage in mice and promotes the repair of epithelial damage in intestinal stem cells.
Collapse
Affiliation(s)
- Yuhan Lin
- School of Public Health and ManagementWenzhou Medical UniversityZhejiangChina
| | - Penglin Xia
- Department of Radiation Medicine, Faculty of Naval MedicineNaval Military Medical UniversityShanghaiChina
| | - Fangyu Cao
- Incubation Base for Undergraduates' Innovative Practice in Department of Radiation Medicine, Faculty of Naval MedicineNaval Military Medical UniversityShanghaiChina
| | - Cheng Zhang
- School of Public Health and ManagementWenzhou Medical UniversityZhejiangChina
| | - Yajie Yang
- Incubation Base for Undergraduates' Innovative Practice in Department of Radiation Medicine, Faculty of Naval MedicineNaval Military Medical UniversityShanghaiChina
| | - Haitao Jiang
- Department of Oral and maxillofacial Trauma and Orthognathic SurgeryStomatological Hospital of Zunyi Medical UniversityZunyiChina
| | - Haishan Lin
- Cancer Centre, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Hu Liu
- Department of Radiation Medicine, Faculty of Naval MedicineNaval Military Medical UniversityShanghaiChina
| | - Ruling Liu
- Department of Radiation Medicine, Faculty of Naval MedicineNaval Military Medical UniversityShanghaiChina
| | - Xiaodong Liu
- School of Public Health and ManagementWenzhou Medical UniversityZhejiangChina
| | - Jianming Cai
- School of Public Health and ManagementWenzhou Medical UniversityZhejiangChina,Department of Radiation Medicine, Faculty of Naval MedicineNaval Military Medical UniversityShanghaiChina
| |
Collapse
|
13
|
Yu H, Xie Y, Dai M, Pan Y, Xie C. SMAD3 interacts with vitamin D receptor and affects vitamin D-mediated oxidative stress to ameliorate cerebral ischaemia-reperfusion injury. Eur J Neurosci 2022; 56:6055-6068. [PMID: 36161391 DOI: 10.1111/ejn.15833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 12/29/2022]
Abstract
Cerebral ischaemia/reperfusion (I/R) injury is caused by blood flow restoration after an ischaemic insult, and effective treatments targeting I/R injury are still insufficient. Oxidative stress plays a critical role in the pathogenesis of cerebral I/R injury. This study investigated whether vitamin D receptor (VDR) could inhibit oxidative stress caused by cerebral I/R injury and explored the detailed mechanism. VDR was highly expressed in brain tissues of mice with cerebral I/R injury. Pretreatment with the active vitamin D calcitriol and synthetic vitamin D analogue paricalcitol (PC) reduced autophagy and apoptosis, improved neurological deficits and decreased infarct size in mice after cerebral I/R. Calcitriol or PC upregulated VDR expression to prevent cerebral I/R injury by affecting oxidative stress. Silencing of VDR reversed the protective effects of calcitriol or PC on brain tissues in mice with cerebral I/R. The bioinformatics analysis revealed that VDR interacted with SMAD family member 3 (SMAD3). It was validated through the chromatin immunoprecipitation assay that SMAD3 can bind to the VDR promoter and VDR can bind to the SMAD3 promoter. Collectively, these findings provide evidence that reciprocal activation between SMAD3 and VDR transcription factors defines vitamin D-mediated oxidative stress to prevent cerebral I/R injury.
Collapse
Affiliation(s)
- Hang Yu
- Department of Critical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yuxiang Xie
- Department of Critical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Mingming Dai
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yuxiang Pan
- Department of Critical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Chengzhi Xie
- Department of Critical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
14
|
Putt KS, Du Y, Fu H, Zhang ZY. High-throughput screening strategies for space-based radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:88-104. [PMID: 36336374 DOI: 10.1016/j.lssr.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
As humanity begins to venture further into space, approaches to better protect astronauts from the hazards found in space need to be developed. One particular hazard of concern is the complex radiation that is ever present in deep space. Currently, it is unlikely enough spacecraft shielding could be launched that would provide adequate protection to astronauts during long-duration missions such as a journey to Mars and back. In an effort to identify other means of protection, prophylactic radioprotective drugs have been proposed as a potential means to reduce the biological damage caused by this radiation. Unfortunately, few radioprotectors have been approved by the FDA for usage and for those that have been developed, they protect normal cells/tissues from acute, high levels of radiation exposure such as that from oncology radiation treatments. To date, essentially no radioprotectors have been developed that specifically counteract the effects of chronic low-dose rate space radiation. This review highlights how high-throughput screening (HTS) methodologies could be implemented to identify such a radioprotective agent. Several potential target, pathway, and phenotypic assays are discussed along with potential challenges towards screening for radioprotectors. Utilizing HTS strategies such as the ones proposed here have the potential to identify new chemical scaffolds that can be developed into efficacious radioprotectors that are specifically designed to protect astronauts during deep space journeys. The overarching goal of this review is to elicit broader interest in applying drug discovery techniques, specifically HTS towards the identification of radiation countermeasures designed to be efficacious towards the biological insults likely to be encountered by astronauts on long duration voyages.
Collapse
Affiliation(s)
- Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907 USA.
| |
Collapse
|
15
|
Matos C, Mamilos A, Shah PN, Meedt E, Weber D, Ghimire S, Hiergeist A, Gessner A, Dickinson A, Dressel R, Walter L, Stark K, Heid IM, Poeck H, Edinger M, Wolff D, Herr W, Holler E, Kreutz M, Ghimire S. Downregulation of the vitamin D receptor expression during acute gastrointestinal graft versus host disease is associated with poor outcome after allogeneic stem cell transplantation. Front Immunol 2022; 13:1028850. [PMID: 36341397 PMCID: PMC9632171 DOI: 10.3389/fimmu.2022.1028850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
The vitamin D receptor (VDR) is critical in regulating intestinal homeostasis and emerging evidence demonstrates that VDR deficiency is a critical factor in inflammatory bowel disease pathology. However, no clinical data exist regarding the intestinal expression of VDR in patients after allogeneic haematopoietic stem cell transplantation (HSCT). Analyzing intestinal biopsies from 90 patients undergoing HSCT with mortality follow-up, we demonstrated that patients with severe acute gastrointestinal graft versus host disease (GI-GvHD) showed significant downregulation of VDR gene expression compared to mild or no acute GI-GvHD patients (p = 0.007). Reduced VDR expression was already detectable at acute GI-GvHD onset compared to GvHD-free patients (p = 0.01). These results were confirmed by immunohistochemistry (IHC) where patients with severe acute GI-GvHD showed fewer VDR+ cells (p = 0.03) and a reduced VDR staining score (p = 0.02) as compared to mild or no acute GI-GvHD patients. Accordingly, low VDR gene expression was associated with a higher cumulative incidence of treatment-related mortality (TRM) (p = 1.6x10-6) but not with relapse-related mortality (RRM). A multivariate Cox regression analysis identified low VDR as an independent risk factor for TRM (p = 0.001, hazard ratio 4.14, 95% CI 1.78-9.63). Furthermore, VDR gene expression significantly correlated with anti-microbial peptides (AMPs) gene expression (DEFA5: r = 0.637, p = 7x10-5, DEFA6: r 0 0.546, p = 0.001). In conclusion, our findings suggest an essential role of the VDR in the pathogenesis of gut GvHD and the prognosis of patients undergoing HSCT.
Collapse
Affiliation(s)
- Carina Matos
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Mamilos
- Department of Pathology, University of Regensburg, Regensburg, Germany
| | - Pranali N. Shah
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| | - Elisabeth Meedt
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Daniela Weber
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Saroj Ghimire
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Anne Dickinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| | - Klaus Stark
- Department for Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Iris M. Heid
- Department for Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Hendrik Poeck
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Matthias Edinger
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ernst Holler
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Sakhila Ghimire
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
- *Correspondence: Sakhila Ghimire,
| |
Collapse
|
16
|
Pejchal J, Tichy A, Kmochova A, Fikejzlova L, Kubelkova K, Milanova M, Lierova A, Filipova A, Muckova L, Cizkova J. Mitigation of Ionizing Radiation-Induced Gastrointestinal Damage by Insulin-Like Growth Factor-1 in Mice. Front Pharmacol 2022; 13:663855. [PMID: 35847048 PMCID: PMC9277384 DOI: 10.3389/fphar.2022.663855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Insulin-like growth factor-1 (IGF-1) stimulates epithelial regeneration but may also induce life-threatening hypoglycemia. In our study, we first assessed its safety. Subsequently, we examined the effect of IGF-1 administered in different dose regimens on gastrointestinal damage induced by high doses of gamma radiation. Material and methods: First, fasting C57BL/6 mice were injected subcutaneously with IGF-1 at a single dose of 0, 0.2, 1, and 2 mg/kg to determine the maximum tolerated dose (MTD). The glycemic effect of MTD (1 mg/kg) was additionally tested in non-fasting animals. Subsequently, a survival experiment was performed. Animals were irradiated (60Co; 14, 14.5, or 15 Gy; shielded head), and IGF-1 was administered subcutaneously at 1 mg/kg 1, 24, and 48 h after irradiation. Simultaneously, mice were irradiated (60Co; 12, 14, or 15 Gy; shielded head), and IGF-1 was administered subcutaneously under the same regimen. Jejunum and lung damage were assessed 84 h after irradiation. Finally, we evaluated the effect of six different IGF-1 dosage regimens administered subcutaneously on gastrointestinal damage and peripheral blood changes in mice 6 days after irradiation (60Co; 12 and 14 Gy; shielded head). The regimens differed in the number of doses (one to five doses) and the onset of administration (starting at 1 [five regimens] or 24 h [one regimen] after irradiation). Results: MTD was established at 1 mg/kg. MTD mitigated lethality induced by 14 Gy and reduced jejunum and lung damage caused by 12 and 14 Gy. However, different dosing regimens showed different efficacy, with three and four doses (administered 1, 24, and 48 h and 1, 24, 48, and 72 h after irradiation, respectively) being the most effective. The three-dose regimens supported intestinal regeneration even if the administration started at 24 h after irradiation, but its potency decreased. Conclusion: IGF-1 seems promising in the mitigation of high-dose irradiation damage. However, the selected dosage regimen affects its efficacy.
Collapse
Affiliation(s)
- Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Ales Tichy
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Adela Kmochova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Lenka Fikejzlova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Marcela Milanova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Alzbeta Filipova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Lubica Muckova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| | - Jana Cizkova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno, Czechia
| |
Collapse
|