1
|
Song J, Lee N, Yang HJ, Lee MS, Kopalli SR, Kim YU, Lee Y. The beneficial potential of ginseng for menopause. J Ginseng Res 2024; 48:449-453. [PMID: 39263310 PMCID: PMC11385173 DOI: 10.1016/j.jgr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 05/30/2024] [Indexed: 09/13/2024] Open
Abstract
Korean Red Ginseng (KRG) has long been used not only as a food supplement but also as a treatment for various diseases. Ginseng originated in South Korea, which later spread to China and Japan, has a wide range of pharmacological activities including immune, endocrine, cardiovascular, and central nervous system effects. KRG is produced by repetitions of steaming and drying of ginseng to extend preservation. During this steaming process, the components of ginseng undergo physio-chemical changes forming a variety of potential active constituents including ginsenoside-Rg3, a unique compound in KRG. Pandemic Coronavirus disease 2019 (COVID-19), has affected both men and women differentially. In particular, women were more vulnerable to COVID-related distress which in turn could aggravate menopause-related disturbances. Complementary and alternative medicinal plants could have aided middle-aged women for several menopause-related symptoms during and post COVID-19 pandemic. This review aimed to explore the beneficial effects of KRG on menopausal symptoms and gynecological cancer.
Collapse
Affiliation(s)
- JiHyeon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Namkyu Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Hyun-Jeong Yang
- Department of Integrative Healthcare, University of Brain Education, Cheonan, Republic of Korea
| | - Myeong Soo Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Yong-Ung Kim
- Department of Pharmaceutical Engineering, College of Cosmetics and Pharmaceuticals, Daegu Haany University, Gyeongsan, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Kim H, Suh HS, Lee EE. Association between dietary supplements and frailty: a cross-sectional study using national survey data in South Korea. Int J Food Sci Nutr 2024; 75:486-495. [PMID: 38816911 DOI: 10.1080/09637486.2024.2356802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024]
Abstract
We aimed to examine the association between the use of specific types of dietary supplements and frailty using cross-sectional, nationally representative survey data. Adults aged ≥50 years in the Korea National Health and Nutrition Examination Survey 2018-2020 were included. We calculated a 46-item frailty index to assess frailty. In total, 27,384 older adults were included (mean age: 62.47 years; median frailty index: 0.12). Among them, 72% used at least one dietary supplement. The prevalence of dietary supplement use was higher among women than among men and in participants with higher socioeconomic status. Compared to non-users, users of dietary supplements had a healthier diet and nutrient intake, and lower levels of frailty. After adjusting for socioeconomic and dietary factors, users of vitamin C, red ginseng or calcium were found to be significantly less frail. Our findings indicate promising results concerning dietary supplement intake in managing frailty among older Korean adults.
Collapse
Affiliation(s)
- Hyunjoo Kim
- College of Pharmacy & Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hae Sun Suh
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Institute of Regulatory Innovation through Science (IRIS), Kyung Hee University, Seoul, Republic of Korea
| | - Eunkyung Euni Lee
- College of Pharmacy & Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Chen X, Bahramimehr F, Shahhamzehei N, Fu H, Lin S, Wang H, Li C, Efferth T, Hong C. Anti-aging effects of medicinal plants and their rapid screening using the nematode Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155665. [PMID: 38768535 DOI: 10.1016/j.phymed.2024.155665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 04/20/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Aging is the primary risk factor of most chronic diseases in humans, including cardiovascular diseases, osteoporosis and neurodegenerative diseases, which extensively damage the quality of life for elderly individuals. Aging is a multifaceted process with numerous factors affecting it. Efficient model organisms are essential for the research and development of anti-aging agents, particularly when investigating pharmacological mechanisms are needed. PURPOSE This review discusses the application of Caenorhabditis elegans for studying aging and its related signaling pathways, and presents an overview of studies exploring the mechanism and screening of anti-aging agents in C. elegans. Additionally, the review summarizes related clinical trials of anti-aging agents to inspire the development of new medications. METHOD Literature was searched, analyzed, and collected using PubMed, Web of Science, and Science Direct. The search terms used were "anti-aging", "medicinal plants", "synthetic compounds", "C. elegans", "signal pathway", etc. Several combinations of these keywords were used. Studies conducted in C. elegans or humans were included. Articles were excluded, if they were on studies conducted in silico or in vitro or could not offer effective data. RESULTS Four compounds mainly derived through synthesis (metformin, rapamycin, nicotinamide mononucleotide, alpha-ketoglutarate) and four active ingredients chiefly obtained from plants (resveratrol, quercetin, Astragalus polysaccharide, ginsenosides) are introduced emphatically. These compounds and active ingredients exhibit potential anti-aging effects in preclinical and clinical studies. The screening of these anti-aging agents and the investigation of their pharmacological mechanisms can benefit from the use of C. elegans. CONCLUSION Medicinal plants provide valuable resource for the treatment of diseases. A wide source of raw materials for the particular plant medicinal compounds having anti-aging effects meet diverse pharmaceutical requirements, such as immunomodulatory, anti-inflammation and alleviating oxidative stress. C. elegans possesses advantages in scientific research including short life cycle, small size, easy maintenance, genetic tractability and conserved biological processes related to aging. C. elegans can be used for the efficient and rapid evaluation of compounds with the potential to slow down aging.
Collapse
Affiliation(s)
- Xiaodan Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Faranak Bahramimehr
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Nasim Shahhamzehei
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Huangjie Fu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siyi Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hanxiao Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Changyu Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Chunlan Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
4
|
Li Z, Li Y, Liu C, Gu Y, Han G. Research progress of the mechanisms and applications of ginsenosides in promoting bone formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155604. [PMID: 38614042 DOI: 10.1016/j.phymed.2024.155604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Bone deficiency-related diseases caused by various factors have disrupted the normal function of the skeleton and imposed a heavy burden globally, urgently requiring potential new treatments. The multi-faceted role of compounds like ginsenosides and their interaction with the bone microenvironment, particularly osteoblasts can promote bone formation and exhibit anti-inflammatory, vascular remodeling, and antibacterial properties, holding potential value in the treatment of bone deficiency-related diseases and bone tissue engineering. PURPOSE This review summarizes the interaction between ginsenosides and osteoblasts and the bone microenvironment in bone formation, including vascular remodeling and immune regulation, as well as their therapeutic potential and toxicity in the broad treatment applications of bone deficiency-related diseases and bone tissue engineering, to provide novel insights and treatment strategies. METHODS The literature focusing on the mechanisms and applications of ginsenosides in promoting bone formation before March 2024 was searched in PubMed, Web of Science, Google Scholar, Scopus, and Science Direct databases. Keywords such as "phytochemicals", "ginsenosides", "biomaterials", "bone", "diseases", "bone formation", "microenvironment", "bone tissue engineering", "rheumatoid arthritis", "periodontitis", "osteoarthritis", "osteoporosis", "fracture", "toxicology", "pharmacology", and combinations of these keywords were used. RESULTS Ginsenoside monomers regulate signaling pathways such as WNT/β-catenin, FGF, and BMP/TGF-β, stimulating osteoblast generation and differentiation. It exerts angiogenic and anti-inflammatory effects by regulating the bone surrounding microenvironment through signaling such as WNT/β-catenin, NF-κB, MAPK, PI3K/Akt, and Notch. It shows therapeutic effects and biological safety in the treatment of bone deficiency-related diseases, including rheumatoid arthritis, osteoarthritis, periodontitis, osteoporosis, and fractures, and bone tissue engineering by promoting osteogenesis and improving the microenvironment of bone formation. CONCLUSION The functions of ginsenosides are diverse and promising in treating bone deficiency-related diseases and bone tissue engineering. Moreover, potential exists in regulating the bone microenvironment, modifying biomaterials, and treating inflammatory-related bone diseases and dental material applications. However, the mechanisms and effects of some ginsenoside monomers are still unclear, and the lack of clinical research limits their clinical application. Further exploration and evaluation of the potential of ginsenosides in these areas are expected to provide more effective methods for treating bone defects.
Collapse
Affiliation(s)
- Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Yuqing Gu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
5
|
Wang F, Zhu L, Cui H, Guo S, Wu J, Li A, Wang Z. Renshen Yangrong decoction for secondary malaise and fatigue: network pharmacology and Mendelian randomization study. Front Nutr 2024; 11:1404123. [PMID: 38966421 PMCID: PMC11222649 DOI: 10.3389/fnut.2024.1404123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024] Open
Abstract
Background Renshen Yangrong decoction (RSYRD) has been shown therapeutic effects on secondary malaise and fatigue (SMF). However, to date, its bioactive ingredients and potential targets remain unclear. Purpose The purpose of this study is to assess the potential ingredients and targets of RSYRD on SMF through a comprehensive strategy integrating network pharmacology, Mendelian randomization as well as molecular docking verification. Methods Search for potential active ingredients and corresponding protein targets of RSYRD on TCMSP and BATMAN-TCM for network pharmacology analysis. Mendelian randomization (MR) was performed to find therapeutic targets for SMF. The eQTLGen Consortium (sample sizes: 31,684) provided data on cis-expression quantitative trait loci (cis-eQTL, exposure). The summary data on SMF (outcome) from genome-wide association studies (GWAS) were gathered from the MRC-IEU Consortium (sample sizes: 463,010). We built a target interaction network between the probable active ingredient targets of RSYRD and the therapeutic targets of SMF. We next used drug prediction and molecular docking to confirm the therapeutic value of the therapeutic targets. Results In RSYRD, network pharmacology investigations revealed 193 possible active compounds and 234 associated protein targets. The genetically predicted amounts of 176 proteins were related to SMF risk in the MR analysis. Thirty-seven overlapping targets for RSYRD in treating SMF, among which six (NOS3, GAA, IMPA1, P4HTM, RB1, and SLC16A1) were prioritized with the most convincing evidence. Finally, the 14 active ingredients of RSYRD were identified as potential drug molecules. The strong affinity between active components and putative protein targets was established by molecular docking. Conclusion This study revealed several active components and possible RSYRD protein targets for the therapy of SMF and provided novel insights into the feasibility of using Mendelian randomization for causal inference between Chinese medical formula and disease.
Collapse
Affiliation(s)
- Fanghan Wang
- Department of Medical Oncology, The Fourth People’s Hospital of Zibo, Zibo, China
| | - Liping Zhu
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| | - Haiyan Cui
- Department of Pathology, The Fourth People’s Hospital of Zibo, Zibo, China
| | - Shanchun Guo
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, United States
| | - Jingliang Wu
- Medical School, Weifang University of Science and Technology, Shouguang, China
| | - Aixiang Li
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| | - Zhiqiang Wang
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, China
| |
Collapse
|
6
|
Mohapatra S, Kumar PA, Aggarwal A, Iqubal A, Mirza MA, Iqbal Z. Phytotherapeutic approach for conquering menopausal syndrome and osteoporosis. Phytother Res 2024; 38:2728-2763. [PMID: 38522005 DOI: 10.1002/ptr.8172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 03/25/2024]
Abstract
Women face a significant change in their reproductive health as menopause sets in. It is marred with numerous physiological changes that negatively impact their quality of life. This universal, transition phase is associated with menopausal and postmenopausal syndrome, which may spread over 2-10 years. This creates a depletion of female hormones causing physical, mental, sexual and social problems and may, later on, manifest as postmenopausal osteoporosis leading to weak bones, causing fractures and ultimately morbidity and mortality. Menopausal hormone therapy generally encompasses the correction of hormone balance through various pharmacological agents, but the associated side effects often lead to cessation of therapy with poor clinical outcomes. However, it has been noticed that phytotherapeutics is trusted by women for the amelioration of symptoms related to menopause and for improving bone health. This could primarily be due to their reduced side effects and lesser costs. This review attempts to bring forth the suitability of phytotherapeutics/herbals for the management of menopausal, postmenopausal syndrome, and menopausal osteoporosis through several published research. It tries to enlist the available botanicals with their key constituents and mechanism of action for mitigating symptoms associated with menopause as well as osteoporosis. It also includes a list of a few herbal commercial products available for these complications. The article also intends to collate the findings of various clinical trials and patents available in this field and provide a window for newer research avenues in this highly important yet ignored health segment.
Collapse
Affiliation(s)
- Sradhanjali Mohapatra
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - P Ayash Kumar
- Sun Pharmaceutical Industries Limited, R&D Centre, Gurugram, India
| | - Akshay Aggarwal
- Sun Pharmaceutical Industries Limited, R&D Centre, Gurugram, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Aamir Mirza
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Zeenat Iqbal
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
7
|
Shin MS, Lee Y, Cho IH, Yang HJ. Brain plasticity and ginseng. J Ginseng Res 2024; 48:286-297. [PMID: 38707640 PMCID: PMC11069001 DOI: 10.1016/j.jgr.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 05/07/2024] Open
Abstract
Brain plasticity refers to the brain's ability to modify its structure, accompanied by its functional changes. It is influenced by learning, experiences, and dietary factors, even in later life. Accumulated researches have indicated that ginseng may protect the brain and enhance its function in pathological conditions. There is a compelling need for a more comprehensive understanding of ginseng's role in the physiological condition because many individuals without specific diseases seek to improve their health by incorporating ginseng into their routines. This review aims to deepen our understanding of how ginseng affects brain plasticity of people undergoing normal aging process. We provided a summary of studies that reported the impact of ginseng on brain plasticity and related factors in human clinical studies. Furthermore, we explored researches focused on the molecular mechanisms underpinning the influence of ginseng on brain plasticity and factors contributing to brain plasticity. Evidences indicate that ginseng has the potential to enhance brain plasticity in the context of normal aging by mediating both central and peripheral systems, thereby expecting to improve age-related declines in brain function. Moreover, given modern western diet can damage neuroplasticity in the long term, ginseng can be a beneficial supplement for better brain health.
Collapse
Affiliation(s)
- Myoung-Sook Shin
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Jeong Yang
- Department of Integrative Bioscience, University of Brain Education, Cheonan, Republic of Korea
- Department of Integrative Healthcare, University of Brain Education, Cheonan, Republic of Korea
- Korea Institute of Brain Science, Seoul, Republic of Korea
| |
Collapse
|
8
|
Fu B, Ma R, Liu F, Chen X, Wang M, Jin W, Zhang S, Wang Y, Sun L. New insights into ginsenoside Rg1 regulating the niche to inhibit age-induced germline stem cells depletion through targeting ECR/BMP signaling pathway in Drosophila. Aging (Albany NY) 2024; 16:3612-3630. [PMID: 38364249 PMCID: PMC10929810 DOI: 10.18632/aging.205548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE The age-induced imbalance in ecological niches leads to the loss of GSCs, which is the main reason for ovarian germline senescence. Ginsenoside Rg1 can delay ovarian senescence. Here, we shed light on new insights of ginsenoside Rg1 in regulating the niche to maintain GSCs self-renewal and discussing related molecular mechanisms. METHODS The differences among GSC number, reproductive capacity of naturally aging female Drosophila after ginsenoside Rg1 feeding were analyzed by immunofluorescence and behavior monitoring. The expressions of the active factors in the niche and the BMP signaling were analyzed through Western blot and RT-qPCR. The target effect was verified in the ECR mutant and combined with the molecular docking. RESULTS Ginsenoside Rg1 inhibited the age-induced reduction of the GSCs number and restored offspring production and development. Ginsenoside Rg1 promoted the expression of anchor proteins E-cadherin, stemness maintenance factor Nos and differentiation promoting factor Bam, thereby GSCs niche homeostasis was regulated. In addition, ginsenoside Rg1 was bound to the LBD region of the hormone receptor ECR. Ginsenoside Rg1 promotes the regeneration of GSCs by targeting the ECR to increase pSmad1/5/8 expression and thereby activating the BMP signaling pathway. In addition, ginsenoside Rg1 maintenance of niche homeostasis to promote GSCs regeneration is dependent on ECR as demonstrated in ECR mutants. CONCLUSIONS Ginsenoside Rg1 regulated the ecological niche homeostasis of GSCs and promoted the regeneration of GSCs by targeting the ECR/BMP signaling pathway in hormone-deficient states in aging ovaries. It is of great significance for prolonging fertility potential and delaying ovarian senescence.
Collapse
Affiliation(s)
- Baoyu Fu
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Rui Ma
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Fangbing Liu
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Xuenan Chen
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Manying Wang
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Wenqi Jin
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Shuai Zhang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| | - Yanping Wang
- Obstetrics and Gynecology Diagnosis and Treatment Center, The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130062, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
| |
Collapse
|
9
|
Arabi SM, Shahraki-Jazinaki M, Abadi MN, Bahrami LS, Chambari M, Bahari H, Sahebkar A. The Effect of Ginseng Supplementation on Lipid Profile: GRADE-assessed Systematic Review and Dose-response Meta-analysis of Randomized Controlled Trials. Curr Pharm Des 2024; 30:2047-2058. [PMID: 38877862 DOI: 10.2174/0113816128306300240522074056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/18/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND This systematic review and meta-analysis aimed to evaluate the overall impact of Panax ginseng on lipid profile by synthesizing existing evidence. Cardiovascular Disease (CVD) is the leading cause of morbidity and mortality among the elderly population, and serum lipids play a crucial role in its development. Maintaining optimal levels of triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total cholesterol is essential in reducing the risk of CVD. Ginsenosides, the active constituents in ginseng, have shown positive effects on lipid metabolism. This review aimed to provide a comprehensive understanding of the potential benefits of ginseng in managing dyslipidemia, which could have significant implications for the prevention and treatment of CVD. METHODS A comprehensive analysis of 29 Randomized Controlled Trials (RCTs) was conducted to assess the effects of ginseng supplementation on lipid profile, including Triglyceride (TG), Total Cholesterol (TC), High-density Lipoprotein Cholesterol (HDL-C), and Low-density Lipoprotein Cholesterol (LDL-C) levels. A systematic search was done in online databases, such as MEDLINE, Scopus, and Clarivate Analytics Web of Science, using relevant keywords and MeSH terms to identify relevant studies until January 2024. RESULTS The Weighted Mean Differences (WMD) and 95% Confidence Intervals (CI) for TG, TC, LDL-C, and HDL-C did not show significant changes with ginseng supplementation. CONCLUSION Taking into account the results, using ginseng did not have a statistically significant influence on lipid profile parameters in individuals with different health conditions. Further, well-designed RCTs focusing on specific diseases are needed to clarify the potential beneficial effects of ginseng and its derivatives on lipid profile.
Collapse
Affiliation(s)
- Seyyed Mostafa Arabi
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | | | - Maryam Nayyer Abadi
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Program of Biomedical Sciences, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Leila Sadat Bahrami
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Chambari
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Hossein Bahari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Yang X, Pei X, Zhang H, Zhang W. Mechanisms of single herbs and herbal pairs in the treatment of mammary gland hyperplasia: An integrated review. Heliyon 2023; 9:e21000. [PMID: 37920486 PMCID: PMC10618780 DOI: 10.1016/j.heliyon.2023.e21000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Background The pathogenesis of hyperplasia of mammary glands (HMG) is a complex process, involving multiple links and systems within the body. Current clinical research indicates that traditional Chinese medicine (TCM) demonstrates a significant therapeutic effect in treating HMG. Single herbs or herbal pairs (two herbs) are the basic units of preventing and treating HMG. It is of great significance to explore the mechanism of single herbs or herbal pairs in treating HMG for clarifying the mechanism of preventing HMG with TCM. Purpose This study aimed to review the literature, summarize the known mechanisms of single herbs and herbal pair therapy for treating hyperplasia of mammary glands (HMG), and elucidate the relevant substances involved within and outside the body during these treatments. Study design In this study, the action mechanism of single herbs or herbal pairs in treating HMG was selected as the research object. English articles were mainly selected and Chinese articles were supplemented. We conducted a literature search in PubMed, CNKI, WanFang Database, etc,including full-text studies published between January 1992 and December 31, 2022. The primary literature was carefully screened, and the mechanism of action was explored by logical analysis. Methods We conducted a literature review focusing on basic studies that explored the mechanisms underlying the effects of herbal treatments for mammary gland hyperplasia. The literature search was performed in PubMed, CNKI, and WanFang Database, covering full-text articles published from January 1992 to 31 December 2022, using various keywords (e.g., hyperplasia of mammary glands, single herb, herbal pair, effect, mechanism, inclusion criteria). Exclusion criteria were also set. We employed methods such as literature measurement, literature research, and content analysis to logically analyze, induce, and deduce the findings of the collected literature. Results This review reveals that several distinct mechanisms contribute to the beneficial effects of single herbs or herbal pairs on the recovery of mammary gland hyperplasia. Regarding hormone levels, Chinese herbs can decrease hormones such as Estradiol(E2) and Prolactin(PRL), increase Progesterone(P) levels, balance the E2/P ratio, reduce the expression of sex hormone receptors, and lessen the self-sensitivity of breast tissue under the influence of E2. Histologically, Chinese herbs can inhibit breast neovascularization and alleviate blood viscosity. At the cellular level, Chinese herbs can modulate the expression of apoptosis genes and proteins, decrease cell proliferation activity, and ultimately inhibit or even reverse breast hyperplasia. From a pharmacological perspective, Chinese herbs exhibit analgesic, anti-inflammatory, antioxidant, and immune-regulating properties. Conclusion The evidence in this review demonstrates the effectiveness of single herbs or herbal pairs in preventing and treating mammary gland hyperplasia, with precise underlying mechanisms.
Collapse
Affiliation(s)
- Xujie Yang
- Hebei University of Chinese Medicine, TCM History Literature Department, Shijiazhuang, Hebei, 050200, China
| | - Xiaohua Pei
- Beijing University of Chinese Medicine, Xiamen Hospital, Surgical Department, Xiamen, Fujian, 361009, China
| | - Hong Zhang
- Hebei University of Chinese Medicine, TCM History Literature Department, Shijiazhuang, Hebei, 050200, China
| | - Wanyue Zhang
- Hebei University of Chinese Medicine, TCM History Literature Department, Shijiazhuang, Hebei, 050200, China
| |
Collapse
|
11
|
Li W, Zhuang T, Wang Z, Wang X, Liu L, Luo Y, Wang R, Li L, Huang W, Wang Z, Yang L, Ding L. Red ginseng extracts ameliorate high-fat diet-induced obesity and insulin resistance by activating the intestinal TGR5-mediated bile acids signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154982. [PMID: 37531904 DOI: 10.1016/j.phymed.2023.154982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Obesity has emerged as a worldwide metabolic disease, given its rapid growth in global prevalence. Red ginseng extracts (RGS), one of the traditional processed products of ginseng, show the potential to improve the metabolic phenotype of obesity. However, the RGS mechanism for regulating obesity and late insulin resistance remains to be clarified. PURPOSE This study aimed to emphasize the potential use of RGS in treatment of obesity and insulin resistance (IR) and explore the underlying mechanism affecting glucose and lipid metabolism improvements. METHODS The role of RGS was evaluated in a high-fat diet (HFD) rodent model. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed to characterize the glucose metabolism level. The expression of lipolysis proteins and uncoupling protein-1 (UCP-1) were investigated by western blot. Glucagon-like peptide-1 (GLP-1) and apical sodium-dependent bile acid transporter (ASBT) protein expression in the intestine were determined via immunofluorescence. UPLC-Q-TOF-MS were used to detect the alterations in bile acids (BAs) levels in serum, ileum, and inguinal white adipose tissue (iWAT). In addition, intestine-specific Tgr5 knockout mice were employed to verify the efficacy of RGS in improving obesity. RESULTS RGS treatment alleviated dietary-induced dyslipidemia and IR in obese mice in a dose-dependent manner and improved glucose and insulin tolerance, and energy expenditure. RGS treatment significantly reduced lipid deposition and induced GLP-1 secretion in the intestine of wild-type mice but not in Tgr5ΔIN obese mice. Furthermore, RGS intervention increased BA levels in serum, ileum, and iWAT. The increase of circulating BAs in mice was related to the activation of ileal TGR5 and the promotion of ASBT translocation to the plasma membrane, thus affecting BA transport. Next, the increased level of circulating BAs entered the periphery, which might facilitate lipolysis and energy consumption by activating TGR5 in iWAT. CONCLUSION Our results demonstrated that RGS significantly alleviated HFD-induced obesity and insulin resistance in mice. RGS intervention improved glucose metabolism, promoted lipolysis, and energy metabolism by activating TGR5 in the intestine. In addition, we found that activating intestinal TGR5 facilitated the localization of ASBT to the plasma membrane, which ultimately promoted the transport of BAs to regulate metabolic phenotype.
Collapse
Affiliation(s)
- Wei Li
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines and SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Tongxi Zhuang
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines and SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China; Department of Diabetes Complications and Metabolism, Institute of Diabetes Center, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Zixuan Wang
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines and SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Xunjiang Wang
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines and SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Longchan Liu
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines and SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Yixuan Luo
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines and SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Rufeng Wang
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines and SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Linnan Li
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines and SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Institute of Diabetes Center, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines and SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines and SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescription, MOE Key Laboratory for Standardization of Chinese Medicines and SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| |
Collapse
|
12
|
Cong L, Ma J, Zhang Y, Zhou Y, Cong X, Hao M. Effect of anti-skin disorders of ginsenosides- A Systematic Review. J Ginseng Res 2023; 47:605-614. [PMID: 37720567 PMCID: PMC10499590 DOI: 10.1016/j.jgr.2023.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 09/19/2023] Open
Abstract
Ginsenosides are bioactive components of Panax ginseng with many functions such as anti-aging, anti-oxidation, anti-inflammatory, anti-fatigue, and anti-tumor. Ginsenosides are categorized into dammarane, oleanene, and ocotillol type tricyclic triterpenoids based on the aglycon structure. Based on the sugar moiety linked to C-3, C-20, and C-6, C-20, dammarane type was divided into protopanaxadiol (PPD) and protopanaxatriol (PPT). The effects of ginsenosides on skin disorders are noteworthy. They play anti-aging roles by enhancing immune function, resisting melanin formation, inhibiting oxidation, and elevating the concentration of collagen and hyaluronic acid. Thus, ginsenosides have previously been widely used to resist skin diseases and aging. This review details the role of ginsenosides in the anti-skin aging process from mechanisms and experimental research.
Collapse
Affiliation(s)
- Lele Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jinli Ma
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yundong Zhang
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, Jilin, China
| | - Xianling Cong
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Ren Q, Lin J, Wang H, Huang M, Tan X, Huang W, Xu Y. Effects of ginseng consumption on the biomarkers of oxidative stress: A systematic review and meta-analysis. Phytother Res 2023; 37:3262-3274. [PMID: 37216939 DOI: 10.1002/ptr.7893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/07/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Oxidative stress (OS) is a key factor involved in the initiation and development of chronic diseases. Despite its widespread acceptance as an antioxidant, the effects of ginseng on OS in human clinical trials have not been comprehensively analyzed. Therefore, this study aimed to synthesize the results of previous randomized clinical trials (RCTs) examining the impact of ginseng consumption on OS indicators. PubMed, Web of Science, Scopus, and Cochrane databases were searched for articles on the effects of ginseng consumption on oxidative stress markers up to March 20, 2023. Standardized mean difference (SMD) and 95% confidence intervals (CIs) were used to assess effect sizes. Twelve RCTs with 15 effect sizes revealed that the effects of ginseng lowered serum malondialdehyde (MDA) levels (SMD = 0.45, 95% CI: -0.87, -0.08; p = 0.03) and significantly increased the serum total antioxidant capacity (TAC) (SMD = 0.23, 95% CI: 0.01, 0.45; p = 0.04), oxidative dismutase (SOD) (SMD = 0.39, 95% CI: 0.21, 0.57; p < 0.0001), glutathione (GSH) (SMD = 0.36; 95% CI: 0.11, 0.61; p = 0.005), and glutathione reductase (GR) (SMD = 0.56; 95% CI: 0.31, 0.81; p < 0.0001) levels compared to the effects of placebo. However, the effects on serum glutathione peroxidase (GPx) and catalase (CAT) were not significant. Moreover, subgroup analysis based on intervention duration showed that ginseng consumption increased GPx (SMD = 0.91, 95% CI: 0.05, 1.78; p = 0.039) and CAT (SMD = 0.74, 95% CI: 0.27, 1.21; p = 0.002) levels after more than 4 weeks of intervention. According to the results of this meta-analysis, ginseng supplementation dramatically reduced MDA levels and increased TAC, SOD, GSH, and GR levels. Our results open up a new line of defense against oxidative stress-induced diseases.
Collapse
Affiliation(s)
- Qian Ren
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Jie Lin
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Hongya Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Mengting Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Xiaozhen Tan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China
| |
Collapse
|
14
|
Kang KA, Piao MJ, Fernando PDSM, Herath HMUL, Yi JM, Hyun JW. Korean Red Ginseng Attenuates Particulate Matter-Induced Senescence of Skin Keratinocytes. Antioxidants (Basel) 2023; 12:1516. [PMID: 37627511 PMCID: PMC10451201 DOI: 10.3390/antiox12081516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Skin is a direct target of fine particulate matter (PM2.5), as it is constantly exposed. Herein, we investigate whether Korean red ginseng (KRG) can inhibit PM2.5-induced senescence in skin keratinocytes. PM2.5-treated human keratinocyte cell lines and normal human epidermal keratinocytes showed characteristics of cellular senescence, including flat and enlarged forms; however, KRG suppressed them in both cell types. Moreover, while cells exposed to PM2.5 showed a higher level of p16INK4A expression (a senescence inducer), KRG inhibited its expression. Epigenetically, KRG decreased the expression of the ten-eleven translocation (TET) enzyme, a DNA demethylase induced by PM2.5, and increased the expression of DNA methyltransferases suppressed by PM2.5, resulting in the decreased methylation of the p16INK4A promoter region. Additionally, KRG decreased the expression of mixed-lineage leukemia 1 (MLL1), a histone methyltransferase, and histone acetyltransferase 1 (HAT1) induced by PM2.5. Contrastingly, KRG increased the expression of the enhancer of zeste homolog 2, a histone methyltransferase, and histone deacetyltransferase 1 reduced by PM2.5. Furthermore, KRG decreased TET1, MLL1, and HAT1 binding to the p16INK4A promoter, corresponding with the decreased mRNA expression of p16INK4A. These results suggest that KRG exerts protection against the PM2.5-induced senescence of skin keratinocytes via the epigenetic regulation of p16INK4A.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; (K.A.K.); (M.J.P.); (P.D.S.M.F.); (H.M.U.L.H.)
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; (K.A.K.); (M.J.P.); (P.D.S.M.F.); (H.M.U.L.H.)
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | | | - Joo Mi Yi
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan 47392, Republic of Korea;
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea; (K.A.K.); (M.J.P.); (P.D.S.M.F.); (H.M.U.L.H.)
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
15
|
Moini Jazani A, Arabzadeh A, Haghi-Aminjan H, Nasimi Doost Azgomi R. The role of ginseng derivatives against chemotherapy-induced cardiotoxicity: A systematic review of non-clinical studies. Front Cardiovasc Med 2023; 10:1022360. [PMID: 36844721 PMCID: PMC9946988 DOI: 10.3389/fcvm.2023.1022360] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Aims Although chemotherapy agents are used to treating cancers, they have serious side effects, like their harmful effects on the cardiovascular system, limiting the clinical use of these chemotherapy agents. This study aimed to systematically investigate the potential role of ginseng derivatives in the prevention of chemotherapy-induced cardiac toxicity. Methods This systematic review was performed according to PRISMA guidelines strategy in databases till August 2022. First, identify studies related to using search terms in titles and abstracts. After studying and screening 209 articles, 16 articles were selected in this study according to our inclusion and exclusion criteria. Results According to the findings of this study, ginseng derivatives showed significant changes in biochemical, histological, and heart weight loss, as well as a reduction in mortality, which occurred in the groups treated with chemotherapy agents compared to the control groups. Co-administration of ginseng derivatives with chemotherapy agents inhibited or reversed these changes to near-moderate levels. The protective effects of ginseng derivatives can be due to their anti-inflammatory, anti-oxidant, and anti-apoptotic action. Conclusion This systematic review shows evidence that concomitant administration of ginseng derivatives improves chemotherapy-induced cardiac toxicity. However, for better conclusions about the practical mechanisms of ginseng derivatives in reducing the cardiac toxic effects of chemotherapy agents and evaluating the efficacy and safety of the compound simultaneously, it is necessary to design comprehensive studies.
Collapse
Affiliation(s)
- Arezoo Moini Jazani
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - AmirAhmad Arabzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran,*Correspondence: Hamed Haghi-Aminjan,✉
| | - Ramin Nasimi Doost Azgomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran,Ramin Nasimi Doost Azgomi,✉
| |
Collapse
|
16
|
Park JY, Park WY, Song G, Jung SJ, Kim B, Choi M, Kim SH, Park J, Kwak HJ, Ahn KS, Lee JH, Um JY. Panax ginseng C.A. meyer alleviates benign prostatic hyperplasia while preventing finasteride-induced side effects. Front Pharmacol 2023; 14:1039622. [PMID: 36713838 PMCID: PMC9877295 DOI: 10.3389/fphar.2023.1039622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Panax ginseng C.A. Meyer, a widely used traditional medicine in East Asia, shows many beneficial effects on immune function, male erectile dysfunction, cancer, excessive oxidants, and aging issues. However, its effect on benign prostatic hyperplasia (BPH) and its potential in the treatment of side effects related to finasteride (Fi), an FDA-approved drug for BPH, are less known. This study aimed to verify the therapeutic effects of a water extract of P. ginseng (PGWE) on BPH in testosterone propionate (TP)-induced BPH rats and TP-treated RWPE-1 human epithelial cells, and the inhibitory potential on the Fi-induced side effects is also explored. In the TP-induced BPH rat model, PGWE alleviated the pathological markers of BPH such as weight and epithelial thickness of the prostate, and the serum level of dihydrotestosterone. PGWE downregulated androgen-related BPH factors such as 5α-reductase 2 and androgen receptor. PGWE also showed prostatic cell apoptosis accompanied by increased expression of Bax and decreased expression of Bcl-xL and cleaved-caspase 3, respectively, in addition to increasing mitochondrial dynamics in both in vivo and in vitro BPH models. Notably, reduced sperm count, one of the serious side effects of Fi, in the epididymis of BPH rats was recovered with PGWE treatment, suggesting less toxicity to sperm development by PGWE. PGWE also protected against Fi-induced sperm loss when PGWE was administered in combination with Fi without compromising the therapeutic effects of Fi on BPH. Based on these findings, we propose that PGWE could be an alternative therapeutic agent for BPH.
Collapse
Affiliation(s)
- Ja Yeon Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic ofKorea
| | - Woo Yong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic ofKorea
| | - Gahee Song
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic ofKorea
| | - Se Jin Jung
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic ofKorea
| | - Beomsu Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic ofKorea
| | - Minji Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic ofKorea
| | - Sang Hee Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic ofKorea
| | - Jinbong Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic ofKorea,Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic ofKorea
| | - Hyun Jeong Kwak
- Department of Life Science, College of Natural Sciences, Kyonggi University, Seoul, Republic ofKorea,*Correspondence: Hyun Jeong Kwak, ; Jae-Young Um,
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, Republic ofKorea
| | - Jun Hee Lee
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic ofKorea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic ofKorea,Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic ofKorea,*Correspondence: Hyun Jeong Kwak, ; Jae-Young Um,
| |
Collapse
|
17
|
Choi JI, Lee YL, Lee SY. Efficacy and safety of fermented Prunus mume vinegar on fatigue improvement in adults with unexplained fatigue: A randomized controlled trial. Front Nutr 2022; 9:990418. [PMID: 36438753 PMCID: PMC9682036 DOI: 10.3389/fnut.2022.990418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background The accumulation of fatigue leads to reduced physical, emotional, psychological, and social functions. Objectives Fermented Prunus mume vinegar (PV) improves fatigue in animals; however, studies in humans have not been conducted. We aimed to examine the effects and safety of consuming fermented PV for 8 weeks on fatigue indices in adults with unexplained fatigue while considering the placebo effect. Methods A randomized, double-blind, placebo-controlled trial was conducted in adults of >19 years, who were diagnosed with unexplained fatigue for at least 1 month. Eighty participants were randomly assigned to receive daily 70 mL of fermented PV (2.56 mg/g, chlorogenic acid, and 15.3 mg/g, citric acid) or a placebo for 8 weeks. At baseline and 4 and 8 weeks after treatment, the participants were visited for blood tests (liver enzyme, glucose, creatinine, lactate, malondialdehyde [MDA], and creatine kinase [CK]) and questionnaires (Fatigue Severity Scale [FSS], fatigue visual analog scale [VAS], Beck Depression Inventory [BDI], the Korean version of the Brief Encounter Psychosocial Instrument [BEPSI-K], EQ-5D-3L, and EQ-VAS]). Results Fermented PV supplementation for 8 weeks did not remarkably improve the fatigue indices when compared to placebo. Additionally, differences in fatigue VAS, BDI, BEPSI-K, EQ-5D-3L, EQ-VAS, lactate, CK, and MDA concentrations between the groups were not observed. However, FSS had positively correlated with fatigue VAS, BDI, and BEPSI-K, whereas it was negatively correlated with EQ-5D-3L and EQ-VAS at the baseline and 8 weeks. None of the participants reported adverse events. Conclusion The efficacy of fermented PV did not exceed the efficacy of placebo in adults with unexplained fatigue. Clinical trial registration [ClinicalTrials.gov], identifier [NCT04319692].
Collapse
Affiliation(s)
- Jung In Choi
- Family Medicine Clinic and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Ye Li Lee
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan, South Korea
| | - Sang Yeoup Lee
- Family Medicine Clinic and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, South Korea
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan, South Korea
- Department of Medical Education, Pusan National University School of Medicine, Yangsan, South Korea
| |
Collapse
|
18
|
Liu X, Li Z, Zheng Y, Wang W, He P, Guan K, Wu T, Wang X, Zhang X. Extracellular vesicles isolated from hyperuricemia patients might aggravate airway inflammation of COPD via senescence-associated pathway. J Inflamm (Lond) 2022; 19:18. [PMID: 36324164 PMCID: PMC9628085 DOI: 10.1186/s12950-022-00315-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/19/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUNDS Chronic obstructive pulmonary disease (COPD) is a major health issue resulting in significant mortality worldwide. Due to the high heterogeneity and unclear pathogenesis, the management and therapy of COPD are still challenging until now. Elevated serum uric acid(SUA) levels seem to be associated with the inflammatory level in patients with COPD. However, the underlying mechanism is not yet clearly established. In the current research, we aim to elucidate the effect of high SUA levels on airway inflammation among COPD patients. METHODS Through bioinformatic analysis, the common potential key genes were determined in both COPD and hyperuricemia (HUA) patients. A total of 68 COPD patients aged 50-75-year were included in the study, and their clinical parameters, including baseline characteristics, lung function test, as well as blood chemistry test were recorded. These parameters were then compared between the COPD patients with and without HUA. Hematoxylin & Eosin (HE), immunofluorescence (IF), and Masson trichrome staining were performed to demonstrate the pathological changes in the lung tissues. Furthermore, we isolated extracellular vesicles (EVs) from plasma, sputum, and bronchoalveolar lavage fluid (BALF) samples and detected the expression of inflammatory factor (Interleukin-6 (IL-6), IL-8 and COPD related proteases (antitrypsin and elastase) between two groups. Additionally, we treated the human bronchial epithelial (HBE) cells with cigarette smoke extract (CSE), and EVs were derived from the plasma in vitro experiments. The critical pathway involving the relationship between COPD and HUA was eventually validated based on the results of RNA sequencing (RNA-seq) and western blot (WB). RESULTS In the study, the COPD patients co-existing with HUA were found to have more loss of pulmonary function compared with those COPD patients without HUA. The lung tissue samples of patients who had co-existing COPD and HUA indicated greater inflammatory cell infiltration, more severe airway destruction and even fibrosis. Furthermore, the high SUA level could exacerbate the progress of airway inflammation in COPD through the transfer of EVs. In vitro experiments, we determined that EVs isolated from plasma, sputum, and BALF played pivotal roles in the CSE-induced inflammation of HBE. The EVs in HUA patients might exacerbate both systemic inflammation and airway inflammatory response via the senescence-related pathway. CONCLUSION The pulmonary function and clinical indicators of COPD patients with HUA were worse than those without HUA, which may be caused by the increased airway inflammatory response through the EVs in the patient's peripheral blood. Moreover, it might mediate the EVs via senescence-related pathways in COPD patients with HUA.
Collapse
Affiliation(s)
- Xuanqi Liu
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413087.90000 0004 1755 3939Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, China ,grid.413087.90000 0004 1755 3939Shanghai Institute of Infectious Disease and Biosecurity, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Li
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Yang Zheng
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Wenhao Wang
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Peiqing He
- grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Kangwei Guan
- grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Tao Wu
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Xiaojun Wang
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| | - Xuelin Zhang
- grid.413597.d0000 0004 1757 8802Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China ,grid.413597.d0000 0004 1757 8802Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040 China
| |
Collapse
|
19
|
Liu L, Yang X, Liao Y, Wang C, Wang Y. Resveratrol alleviates Ang II-induced vascular smooth muscle cell senescence by upregulating E2F1/SOD2 axis. Toxicol Res (Camb) 2022; 11:831-840. [PMID: 36337239 PMCID: PMC9618109 DOI: 10.1093/toxres/tfac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/06/2022] [Accepted: 07/15/2022] [Indexed: 09/05/2023] Open
Abstract
Background Vascular smooth muscle cells (VSMCs) senescence is a crucial factor relevant to accelerate cardiovascular diseases. Resveratrol (RES) has been reported that could obstruct vascular senescence. However, the detailed molecular mechanisms of RES in VSMCs senescence are still indistinct and deserve further investigations. Methods and Results In this study, VSMCs were treated with 100 nM angiotensin II (Ang II) for 3 days and then followed with a range of different concentrations of RES (0.5, 5, 15, 25, 35, 50 μM), and 25 μM of RES was chose for following experiments. We found that the E2F1 and SOD2 expressions were reduced in Ang II-induced VSMCs. RES treatment impeded Ang II-induced oxidative stress and mitochondrial dysfunction through elevating E2F1 and SOD2 expression, thereby alleviating VSMCs senescence. Additionally, E2F1 knockdown reversed the protective effects of RES on VSMCs senescence caused by Ang II administration. Ch-IP assay and dual luciferase reporter gene assay validated that E2F1 could bind to the promoter region of SOD2. Furthermore, E2F1 or SOD2 overexpression blocked Ang II-induced on VSMCs senescence. Conclusion In conclusion, RES mitigated Ang II-induced VSMCs senescence by suppressing oxidative stress and mitochondrial dysfunction through activating E2F1/SOD2 axis. Our study disclosed that RES might be a potential drug and the axis of its regulatory mechanism might be therapeutic targets for postponing vascular senescence.
Collapse
Affiliation(s)
- Lei Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410125, China
- Hunan Economic & Trade Senior Technical School, Xiangtan, Hunan 410004, China
| | - Xiuhua Yang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410125, China
- Hunan Economic & Trade Senior Technical School, Xiangtan, Hunan 410004, China
| | - Yiyang Liao
- Hunan Economic & Trade Senior Technical School, Xiangtan, Hunan 410004, China
| | - Chuanhua Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410125, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410125, China
| |
Collapse
|
20
|
Tyler SEB, Tyler LDK. Therapeutic roles of plants for 15 hypothesised causal bases of Alzheimer's disease. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:34. [PMID: 35996065 PMCID: PMC9395556 DOI: 10.1007/s13659-022-00354-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is progressive and ultimately fatal, with current drugs failing to reverse and cure it. This study aimed to find plant species which may provide therapeutic bioactivities targeted to causal agents proposed to be driving AD. A novel toolkit methodology was employed, whereby clinical symptoms were translated into categories recognized in ethnomedicine. These categories were applied to find plant species with therapeutic effects, mined from ethnomedical surveys. Survey locations were mapped to assess how this data is at risk. Bioactivities were found of therapeutic relevance to 15 hypothesised causal bases for AD. 107 species with an ethnological report of memory improvement demonstrated therapeutic activity for all these 15 causal bases. The majority of the surveys were found to reside within biodiversity hotspots (centres of high biodiversity under threat), with loss of traditional knowledge the most common threat. Our findings suggest that the documented plants provide a large resource of AD therapeutic potential. In demonstrating bioactivities targeted to these causal bases, such plants may have the capacity to reduce or reverse AD, with promise as drug leads to target multiple AD hallmarks. However, there is a need to preserve ethnomedical knowledge, and the habitats on which this knowledge depends.
Collapse
Affiliation(s)
| | - Luke D K Tyler
- School of Natural Sciences, Bangor University, Gwynedd, UK
| |
Collapse
|
21
|
Lee HW, Ang L, Lee MS. Using ginseng for menopausal women's health care: A systematic review of randomized placebo-controlled trials. Complement Ther Clin Pract 2022; 48:101615. [DOI: 10.1016/j.ctcp.2022.101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/03/2022]
|
22
|
Chen Y, Hamidu S, Yang X, Yan Y, Wang Q, Li L, Oduro PK, Li Y. Dietary Supplements and Natural Products: An Update on Their Clinical Effectiveness and Molecular Mechanisms of Action During Accelerated Biological Aging. Front Genet 2022; 13:880421. [PMID: 35571015 PMCID: PMC9096086 DOI: 10.3389/fgene.2022.880421] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Accelerated biological aging, which involves the gradual decline of organ or tissue functions and the distortion of physiological processes, underlies several human diseases. Away from the earlier free radical concept, telomere attrition, cellular senescence, proteostasis loss, mitochondrial dysfunction, stem cell exhaustion, and epigenetic and genomic alterations have emerged as biological hallmarks of aging. Moreover, nutrient-sensing metabolic pathways are critical to an organism's ability to sense and respond to nutrient levels. Pharmaceutical, genetic, and nutritional interventions reverting physiological declines by targeting nutrient-sensing metabolic pathways can promote healthy aging and increase lifespan. On this basis, biological aging hallmarks and nutrient-sensing dependent and independent pathways represent evolving drug targets for many age-linked diseases. Here, we discuss and update the scientific community on contemporary advances in how dietary supplements and natural products beneficially revert accelerated biological aging processes to retrograde human aging and age-dependent human diseases, both from the clinical and preclinical studies point-of-view. Overall, our review suggests that dietary/natural products increase healthspan-rather than lifespan-effectively minimizing the period of frailty at the end of life. However, real-world setting clinical trials and basic studies on dietary supplements and natural products are further required to decisively demonstrate whether dietary/natural products could promote human lifespan.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sherif Hamidu
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Xintong Yang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Yuhong Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|