1
|
Pal C. Small Molecules Targeting Mitochondria: A Mechanistic Approach to Combating Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2024:10.1007/s12012-024-09941-7. [PMID: 39495464 DOI: 10.1007/s12012-024-09941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Doxorubicin (Dox) is a commonly used chemotherapy drug effective against a range of cancers, but its clinical application is greatly limited by dose-dependent and cumulative cardiotoxicity. Mitochondrial dysfunction is recognized as a key factor in Dox-induced cardiotoxicity, leading to oxidative stress, disrupted calcium balance, and activation of apoptotic pathways. Recent research has emphasized the potential of small molecules that specifically target mitochondria to alleviate these harmful effects. This review provides a comprehensive analysis of small molecules that offer cardioprotection by preserving mitochondrial function in the context of doxorubicin-induced cardiotoxicity (DIC). The mechanisms of action include the reduction of reactive oxygen species (ROS) production, stabilization of mitochondrial membrane potential, enhancement of mitochondrial biogenesis, and modulation of key signaling pathways involved in cell survival and apoptosis. By targeting mitochondria, these small molecules present a promising therapeutic strategy to prevent or reduce the cardiotoxic effects associated with Dox treatment. This review not only discusses the mechanistic actions of these agents but also emphasizes their potential in improving cardiovascular outcomes for cancer patients. Gaining insight into these mechanisms can help in creating more effective strategies to safeguard the heart during chemotherapy, allowing for the ongoing use of Dox with a lower risk to the patient's cardiovascular health. This review highlights the critical role of mitochondria-targeted therapies as a promising approach in addressing DIC.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal, 743273, India.
| |
Collapse
|
2
|
Yi X, Wang Q, Zhang M, Shu Q, Zhu J. Ferroptosis: A novel therapeutic target of natural products against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2024; 178:117217. [PMID: 39079260 DOI: 10.1016/j.biopha.2024.117217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
Doxorubicin (DOX), a commonly used chemotherapy drug, is hindered due to its tendency to induce cardiotoxicity (DIC). Ferroptosis, a novel mode of programmed cell death, has received substantial attention for its involvement in DIC. Recently, natural product-derived ferroptosis regulator emerged as a potential strategy for treating DIC. In this review, a comprehensive search was conducted across PubMed, Web of Science, Google Scholar, and ScienceDirect databases to gather relevant articles on the use of natural products for treating DIC in relation to ferroptosis. The available papers were carefully reviewed to summarize the therapeutic effects and underlying mechanisms of natural products in modulating ferroptosis for DIC treatment. It was found that ferroptosis plays an important role in DIC pathogenesis, with dysregulated expression of ferroptosis-related proteins strongly implicated in the condition. Natural products, such as flavonoids, polyphenols, terpenoids, and quinones can act as GPX4 activators, Nrf2 agonists, and lipid peroxidation inhibitors, thereby enhancing cell viability, attenuating myocardial fibrosis, improving cardiac function, and suppressing ferroptosis in both in vitro and in vivo models of DIC. This review demonstrates a strong correlation between DOX-induced cardiac ferroptosis and key proteins, such as GPX4, Keap1, Nrf2, AMPK, and HMOX1. Natural products are likely to exert therapeutic effects against DIC by modulating the activity of these proteins.
Collapse
Affiliation(s)
- Xiaojiao Yi
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Qi Wang
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Mengjie Zhang
- Department of Pharmacy, Hangzhou Xixi Hospital, Hangzhou Sixth People's Hospital, Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310023, China
| | - Qi Shu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - Junfeng Zhu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
3
|
Yoon CS, Nifantiev NE, Yashunsky DV, Kim HK, Han J. Neopetroside-B alleviates doxorubicin-induced cardiotoxicity via mitochondrial protection. Biomed Pharmacother 2023; 165:115232. [PMID: 37523986 DOI: 10.1016/j.biopha.2023.115232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
Doxorubicin, a member of the anthracycline family, is a widely prescribed anticancer chemotherapy drug. Unfortunately, cumulative doses of doxorubicin can cause mitochondrial dysfunction, leading to acute or chronic cardiotoxicity. This study demonstrated that Neopetroside-B (NPS-B) protects cardiomyocytes in the presence of doxorubicin. NPS-B improved mitochondrial function in cardiomyocytes by increasing ATP production and oxygen consumption rates. On the other hand, NPS-B negatively influenced cancer cell lines by increasing reactive oxygen species. We analyzed NPS-B-influenced metabolites (VIP > 1.0; AUC>0.7; p < 0.05) and proteins (FC > 2.0) and constructed metabolite-protein enrichment, which showed that NPS-B affected uracil metabolism and NAD-binding proteins (e.g., aldehyde dehydrogenase and glutathione reductase) in cardiomyocytes. However, for the cancer cells, NPS-B decreased the NAD+/NADH balance, impairing cell viability. In a xenograft mouse model treated with doxorubicin, NPS-B reduced cardiac fibrosis and improved cardiac function. NPS-B may be a beneficial intervention to reducing doxorubicin-induced cardiotoxicity with anticancer effects.
Collapse
Affiliation(s)
- Chang Shin Yoon
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Department of Physiology, College of Medicine, Inje University, Busan 47397, the Republic of Korea
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Department of Physiology, College of Medicine, Inje University, Busan 47397, the Republic of Korea
| | - Jin Han
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Department of Physiology, College of Medicine, Inje University, Busan 47397, the Republic of Korea.
| |
Collapse
|
4
|
Podyacheva E, Shmakova T, Kushnareva E, Onopchenko A, Martynov M, Andreeva D, Toropov R, Cheburkin Y, Levchuk K, Goldaeva A, Toropova Y. Modeling Doxorubicin-Induced Cardiomyopathy With Fibrotic Myocardial Damage in Wistar Rats. Cardiol Res 2022; 13:339-356. [PMID: 36660062 PMCID: PMC9822674 DOI: 10.14740/cr1416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022] Open
Abstract
Background Cardiovascular complications, arising after anthracycline chemotherapy, cause a significant deterioration in the life quality and expectancy of those patients who were previously successfully treated for malignant neoplasms. A number of clinical studies have demonstrated that patients with cardiotoxicity manifested during anthracyclines therapy also have extensive fibrotic changes in the cardiac muscle in the long term. Given the lack of an unambiguous understanding of the mechanisms of fibrotic changes formation under doxorubicin treatment in the myocardium, there is the obvious necessity to create a relevant experimental model of chronic doxorubicin-induced cardiomyopathy with fibrotic myocardial lesions and delayed development of diastolic dysfunction. Methods The study was divided into two stages: first stage (creation of acute doxorubicin cardiomyopathy) - 35 male Wistar rats; second stage (creation of chronic doxorubicin cardiomyopathy) - 40 male Wistar rats. The animals were split into eight groups (two control ones and six experimental ones), which determined the doxorubicin dose (first stage: 25, 20.4, 15 mg/kg; second stage: 5, 10, 15 mg/kg, intraperitoneally) and the frequency of injection. Echocardiographic, hematological, histological, and molecular methods were used to confirm the successful modeling of acute and chronic doxorubicin-induced cardiomyopathy with fibrotic lesions. Results A model of administration six times every other day with a cumulative dose of doxorubicin 20 mg/kg is suitable for evaluation of acute cardiotoxicity. The 15 mg/kg doxorubicin dose is highly cardiotoxic; what's more, it correlates with progressive deterioration of the clinical condition of the animals after 2 months. The optimal cumulative dose of doxorubicin leads to clinical manifestations confirmed by echocardiographic, histological, molecular changes associated with the development of chronic doxorubicin-induced cardiomyopathy with fibrotic lesions of the left ventricular of the cardiac muscle and ensure long-term survival of animals is 10 mg/kg doxorubicin. A dose of 5 mg/kg of the doxorubicin does not ensure the development of fibrous changes formation. Conclusion We assume that cumulative dose of 10 mg/kg with a frequency of administration of six times in 2 days can be used to study the mechanisms of anthracycline cardiomyopathy development.
Collapse
Affiliation(s)
- Ekaterina Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation,Corresponding Author: Ekaterina Podyacheva, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation.
| | - Tatiana Shmakova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Ekaterina Kushnareva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Anatoliya Onopchenko
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Mikhail Martynov
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Daria Andreeva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Roman Toropov
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Yuri Cheburkin
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Ksenia Levchuk
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Alexandra Goldaeva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| |
Collapse
|
5
|
Podyacheva E, Toropova Y. SIRT1 activation and its effect on intercalated disc proteins as a way to reduce doxorubicin cardiotoxicity. Front Pharmacol 2022; 13:1035387. [PMID: 36408244 PMCID: PMC9672938 DOI: 10.3389/fphar.2022.1035387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
According to the World Health Organization, the neoplasm is one of the main reasons for morbidity and mortality worldwide. At the same time, application of cytostatic drugs like an independent type of cancer treatment and in combination with surgical methods, is often associated with the development of cardiovascular complications both in the early and in the delayed period of treatment. Doxorubicin (DOX) is the most commonly used cytotoxic anthracycline antibiotic. DOX can cause both acute and delayed side effects. The problem is still not solved, as evidenced by the continued activity of researchers in terms of developing approaches for the prevention and treatment of cardiovascular complications. It is known, the heart muscle consists of cardiomyocytes connected by intercalated discs (ID), which ensure the structural, electrical, metabolic unity of the heart. Various defects in the ID proteins can lead to the development of cardiovascular diseases of various etiologies, including DOX-induced cardiomyopathy. The search for ways to influence the functioning of ID proteins of the cardiac muscle can become the basis for the creation of new therapeutic approaches to the treatment and prevention of cardiac pathologies. SIRT1 may be an interesting cardioprotective variant due to its wide functional significance. SIRT1 activation triggers nuclear transcription programs that increase the efficiency of cellular, mitochondrial metabolism, increases resistance to oxidative stress, and promotes cell survival. It can be assumed that SIRT1 can not only provide a protective effect at the cardiomyocytes level, leading to an improvement in mitochondrial and metabolic functions, reducing the effects of oxidative stress and inflammatory processes, but also have a protective effect on the functioning of IDs structures of the cardiac muscle.
Collapse
|
6
|
Podyacheva E, Semenova N, Zinserling V, Mukhametdinova D, Goncharova I, Zelinskaya I, Sviridov E, Martynov M, Osipova S, Toropova Y. Intravenous Nicotinamide Riboside Administration Has a Cardioprotective Effect in Chronic Doxorubicin-Induced Cardiomyopathy. Int J Mol Sci 2022; 23:13096. [PMID: 36361882 PMCID: PMC9653852 DOI: 10.3390/ijms232113096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Doxorubicin, which is widely used to treat a broad spectrum of malignancies, has pronounced dose-dependent side effects leading to chronic heart failure development. Nicotinamide riboside (NR) is one of the promising candidates for leveling the cardiotoxic effect. In the present work, we performed a comparative study of the cardioprotective and therapeutic actions of various intravenous NR administration modes in chronic doxorubicin-induced cardiomyopathy in Wistar rats. The study used 60 mature male SPF Wistar rats. The animals were randomized into four groups (a control group and three experimental groups) which determined the doxorubicin (intraperitoneally) and NR (intravenous) doses as well as the specific modes of NR administration (combined, preventive). We demonstrated the protective effect of NR on the cardiovascular system both with combined and preventive intravenous drug administration, which was reflected in a fibrous tissue formation decrease, reduced fractional-shortening decrease, and better antioxidant system performance. At the same time, it is important to note that the preventive administration of NR had a more significant protective effect on the animal organism as a whole. This was confirmed by better physical activity parameters and vascular bed conditions. Thus, the data obtained during the study can be used for further investigation into chronic doxorubicin-induced cardiomyopathy prevention and treatment approaches.
Collapse
Affiliation(s)
- Ekaterina Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Natalia Semenova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Vsevolod Zinserling
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Daria Mukhametdinova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Irina Goncharova
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 194021 Saint-Petersburg, Russia
| | - Irina Zelinskaya
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Eric Sviridov
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Michael Martynov
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Svetlana Osipova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| |
Collapse
|
7
|
Chini CCS, Peclat TR, Gomez LS, Zeidler JD, Warner GM, Kashyap S, Mazdeh DZ, Hayat F, Migaud ME, Paulus A, Chanan-Khan AA, Chini EN. Dihydronicotinamide Riboside Is a Potent NAD+ Precursor Promoting a Pro-Inflammatory Phenotype in Macrophages. Front Immunol 2022; 13:840246. [PMID: 35281060 PMCID: PMC8913500 DOI: 10.3389/fimmu.2022.840246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 01/13/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) metabolism plays an important role in the regulation of immune function. However, a complete picture of how NAD, its metabolites, precursors, and metabolizing enzymes work together in regulating immune function and inflammatory diseases is still not fully understood. Surprisingly, few studies have compared the effect of different forms of vitamin B3 on cellular functions. Therefore, we investigated the role of NAD boosting in the regulation of macrophage activation and function using different NAD precursors supplementation. We compared nicotinamide mononucleotide (NMN), nicotinamide riboside (NR), and nicotinamide (NAM) supplementation, with the recently described potent NAD precursor NRH. Our results show that only NRH supplementation strongly increased NAD+ levels in both bone marrow-derived and THP-1 macrophages. Importantly, NRH supplementation activated a pro-inflammatory phenotype in resting macrophages, inducing gene expression of several cytokines, chemokines, and enzymes. NRH also potentiated the effect of lipopolysaccharide (LPS) on macrophage activation and cytokine gene expression, suggesting that potent NAD+ precursors can promote inflammation in macrophages. The effect of NRH in NAD+ boosting and gene expression was blocked by inhibitors of adenosine kinase, equilibrative nucleoside transporters (ENT), and IκB
kinase (IKK). Interestingly, the IKK inhibitor, BMS-345541, blocked the mRNA expression of several enzymes and transporters involved in the NAD boosting effect of NRH, indicating that IKK is also a regulator of NAD metabolism. In conclusion, NAD precursors such as NRH may be important tools to understand the role of NAD and NADH metabolism in the inflammatory process of other immune cells, and to reprogram immune cells to a pro-inflammatory phenotype, such as the M2 to M1 switch in macrophage reprogramming, in the cancer microenvironment.
Collapse
Affiliation(s)
- Claudia C. S. Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Thais R. Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Lilian S. Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Julianna D. Zeidler
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Gina M. Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Sonu Kashyap
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Delaram Z. Mazdeh
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Faisal Hayat
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Marie E. Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, United States
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Aneel Paulus
- Division of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Asher A. Chanan-Khan
- Division of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Eduardo N. Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
- *Correspondence: Eduardo N. Chini,
| |
Collapse
|