1
|
Pinon A, Trentesaux C, Chaffaut C, Lemaire M, Parere X, Lecerf JM, Schnebelen-Berthier C. Infant growth and tolerance with a formula based on novel native demineralized whey: A randomized double-blind pilot study. J Pediatr Gastroenterol Nutr 2024; 79:905-914. [PMID: 38988234 DOI: 10.1002/jpn3.12305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/22/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVES The aim of the study was to evaluate the effects on infant growth and tolerance of a Test infant formula based on a novel whey extraction and demineralization process, compared to a Standard formula and a breastfed reference arm. METHODS Healthy term infants (n = 61) aged up to 21 days were randomized to Test or Control formula. A breastfed group (n = 39) served as a reference. Growth, tolerance, adverse events, and sleep were evaluated every month until 6 months of age. Plasma amino-acid concentrations at 3 months of age were measured in a subgroup population. RESULTS Growth curves of all infants globally agreed with World Health Organization standards across the 6-month period study. Regarding tolerance, no difference between the formula-fed groups was observed on daily number of crying episodes, intensity or time to onset of regurgitations, and stool frequency or consistency, except at 5 months with infants in the Control group having more watery stools. Plasma concentration of some amino acids differed between the groups, especially tryptophan concentration which was higher in infants fed with the Test formula. In parallel, total sleep duration was longer in these infants at 2, 3, and 5 months of age, corresponding to an increase in daytime sleep. CONCLUSIONS Test formula supported an adequate infant growth from birth to 6 months of age and was well-tolerated by all infants. An increase in total sleep at several months was also observed with the Test formula.
Collapse
Affiliation(s)
- Anthony Pinon
- Clinical Research Department, Centre Prévention Santé Longévité - Institut Pasteur de Lille, Lille, France
| | - Claire Trentesaux
- Clinical Research Department, Centre Prévention Santé Longévité - Institut Pasteur de Lille, Lille, France
| | | | - Marion Lemaire
- Research & Innovation Center, Sodiaal Group, Rennes, France
| | - Xavier Parere
- Research & Innovation Center, Sodiaal Group, Rennes, France
| | - Jean-Michel Lecerf
- Clinical Research Department, Centre Prévention Santé Longévité - Institut Pasteur de Lille, Lille, France
| | | |
Collapse
|
2
|
Kim D, Kim SY, Yoo R, Choo J, Yang H. Innovative AI methods for monitoring front-of-package information: A case study on infant foods. PLoS One 2024; 19:e0303083. [PMID: 38753840 PMCID: PMC11098498 DOI: 10.1371/journal.pone.0303083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Front-of-package (FOP) is one of the most direct communication channels connecting manufacturers and consumers, as it displays crucial information such as certification, nutrition, and health. Traditional methods for obtaining information from FOPs often involved manual collection and analysis. To overcome these labor-intensive characteristics, new methods using two artificial intelligence (AI) approaches were applied for information monitoring of FOPs. In order to provide practical implementations, a case study was conducted on infant food products. First, FOP images were collected from Amazon.com. Then, from the FOP images, 1) the certification usage status of the infant food group was obtained by recognizing the certification marks using object detection. Moreover, 2) the nutrition and health-related texts written on the images were automatically extracted based on optical character recognition (OCR), and the associations between health-related texts were identified by network analysis. The model attained a 94.9% accuracy in identifying certification marks, unveiling prevalent certifications like Kosher. Frequency and network analysis revealed common nutrients and health associations, providing valuable insights into consumer perception. These methods enable fast and efficient monitoring capabilities, which can significantly benefit various food industries. Moreover, the AI-based approaches used in the study are believed to offer insights for related industries regarding the swift transformations in product information status.
Collapse
Affiliation(s)
- Dohee Kim
- Kim Jaechul Graduate School of Artificial Intelligence, KAIST, Daejeon, Republic of Korea
| | - Seo-Young Kim
- Advanced Institute of Convergence Technology, Suwon, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Ra Yoo
- Advanced Institute of Convergence Technology, Suwon, Republic of Korea
| | - Jaegul Choo
- Kim Jaechul Graduate School of Artificial Intelligence, KAIST, Daejeon, Republic of Korea
| | - Hee Yang
- Department of Food and Nutrition, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Calvez J, Blais A, Deglaire A, Gaudichon C, Blachier F, Davila AM. Minimal processed infant formula vs. conventional shows comparable protein quality and increased postprandial plasma amino acid kinetics in rats. Br J Nutr 2024; 131:1115-1124. [PMID: 37993121 DOI: 10.1017/s0007114523002696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
During industrial processing, heat treatments applied to infant formulas may affect protein digestion. Recently, innovative processing routes have been developed to produce minimally heat-processed infant formula. Our objective was to compare the in vivo protein digestion kinetics and protein quality of a minimally processed (T−) and a heat-treated (T+++) infant formula. Sixty-eight male Wistar rats (21 d) were fed with either a diet containing 40 % T− (n 30) or T+++ (n 30), or a milk protein control diet (n 8) during 2 weeks. T− and T+++ rats were then sequentially euthanised 0, 1, 2, 3 or 6 h (n 6/time point) after ingestion of a meal containing their experimental diet. Control rats were euthanised 6 h after ingestion of a protein-free meal to determine nitrogen and amino acid endogenous losses. Nitrogen and amino acid true caecal digestibility was high for both T− and T+++ diets (> 90 %), but a tendency towards higher nitrogen digestibility was observed for the T− diet (96·6 ± 3·1 %) compared with the T+++ diet (91·9 ± 5·4 %, P = 0·0891). This slightly increased digestibility led to a greater increase in total amino acid concentration in plasma after ingestion of the T− diet (P = 0·0010). Comparable protein quality between the two infant formulas was found with a digestible indispensable amino acid score of 0·8. In conclusion, this study showed that minimal processing routes to produce native infant formula do not modify protein quality but tend to enhance its true nitrogen digestibility and increase postprandial plasma amino acid kinetics in rats.
Collapse
Affiliation(s)
- Juliane Calvez
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91123, Palaiseau, France
| | - Anne Blais
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91123, Palaiseau, France
| | | | - Claire Gaudichon
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91123, Palaiseau, France
| | - François Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91123, Palaiseau, France
| | - Anne-Marie Davila
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 91123, Palaiseau, France
| |
Collapse
|
4
|
Abstract
OBJECTIVE To carry out a narrative review on the use of marketing strategies in child nutrition, as well as potential implications for health professionals and children. DATA SOURCE Searches were carried out on the PubMed, SciELO, and Google platforms, using the terms "child nutrition" or "industrialized baby food" or "infant formula" or "breast milk" or "breastfeeding" and "marketing", with original articles, review articles, institutional reports, institutional position documents and websites considered relevant to the topic being analyzed. DATA SYNTHESIS Children's food marketing started with the industrialization of food and the resulting actions aimed at increasing sales and meeting commercial interests. Since its inception to the present, infant formulas have been the most widely used products, which has impacted breastfeeding practices. International and national institutions, that care for children's health, are searching for strategies to limit the abusive marketing of industrialized children's foods. Marketing strategies interfere with medical knowledge and actions, potentially influencing the guidance provided by pediatricians to families, and finally, compromising healthy eating practices at a critical period in life, with possible long-term effects. CONCLUSIONS Health professionals, especially pediatricians, must provide the best care for children and families, and need to maintain the search for quality scientific information, not influenced by conflicts of interest. Updated and critical knowledge on the part of healthcare professionals can curb marketing strategies that aim to influence their actions.
Collapse
Affiliation(s)
- Kátia Galeão Brandt
- Universidade Federal de Pernambuco (UFPE), Centro de Ciências Médicas, Área Acadêmica de Pediatria, Recife, PE, Brazil; Universidade Federal de Pernambuco (UFPE), Centro de Ciências Médicas, Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Recife, PE, Brazil; Universidade Federal de Pernambuco (UFPE), Hospital das Clínicas, Serviço de Gastroenterologia Pediátrica, Recife, PE, Brazil.
| | - Giselia Alves Pontes da Silva
- Universidade Federal de Pernambuco (UFPE), Centro de Ciências Médicas, Área Acadêmica de Pediatria, Recife, PE, Brazil; Universidade Federal de Pernambuco (UFPE), Centro de Ciências Médicas, Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Recife, PE, Brazil
| |
Collapse
|
5
|
Luo G, Zhu Y, Ni D, Chen J, Zhang W, Mu W. Infant formulae - Key components, nutritional value, and new perspectives. Food Chem 2023; 424:136393. [PMID: 37210844 DOI: 10.1016/j.foodchem.2023.136393] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Breastfeeding is the most effective strategy for meeting the nutritional demands of infants, whilst infant formulae are manufactured foods that mimic human milk and can be safely used to replace breastfeeding. In this paper, the compositional differences between human milk and other mammalian milk are reviewed, and thus nutritional profiles and compositions of standard bovine milk-based formulae as well as special formulae are discussed. Differences between breast milk and other mammalian milk in composition and content affect their digestion and absorption in infants. Characteristics and mimicking of breast milk have been intensively studied with the objective of narrowing the gap between human milk and infant formulae. The functions of the key nutritional components in infant formulae are examined. This review detailed recent developments in the formulation of different types of special infant formulae and efforts for their humanization, and summarized safety and quality control of infant formulae.
Collapse
Affiliation(s)
- Guocong Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Nie P, Pan B, Ahmad MJ, Zhang X, Chen C, Yao Z, Lv H, Wei K, Yang L. Summer Buffalo Milk Produced in China: A Desirable Diet Enriched in Polyunsaturated Fatty Acids and Amino Acids. Foods 2022; 11:3475. [PMID: 36360088 PMCID: PMC9654212 DOI: 10.3390/foods11213475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/26/2023] Open
Abstract
The objective of the study was to compare and reveal differences in basic chemical parameters, fatty acids, amino acids, and lipid quality indices of crossbred buffalo (swamp x river type) milk produced in summer and winter. The buffalo milk samples were collected in summer (Jul-Aug) and winter (Dec-Jan) from Hubei province, China. The samples were detected by using CombiFoss apparatus, gas chromatography, and an automated specialized amino acid analyzer. The results showed that the basic chemical parameters, fatty acid profiles, lipid quality indices, and amino acid profiles of crossbred buffalo milk differed between summer and winter. Specifically, summer buffalo milk exhibited a higher content of MUFA (monounsaturated fatty acids) and PUFA (polyunsaturated fatty acids) than winter buffalo milk. Summer buffalo milk had a lower content of major SFA (saturated fatty acids), a higher content of ω-3 and DFA (hypocholesterolemic fatty acids), a lower ω-6/ω-3 ratio, a higher value of 3 unsaturated fatty acid indices (C14, C16, C18), and a lower value of IA (index of atherogenicity) and IT (index of thrombogenicity) than winter buffalo milk. Additionally, 17 amino acids, including 8 EAA (essential amino acids) and 9 NEAA (non-essential amino acids) were higher in summer buffalo milk. These results indicated that summer buffalo milk was more health-beneficial than winter buffalo milk. Therefore, summer buffalo milk might be a desirable diet option for human nutrition and health. Our findings provide valuable information for the research and development of buffalo dairy products in China or other Asian countries.
Collapse
Affiliation(s)
- Pei Nie
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Bin Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammd Jamil Ahmad
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Xinxin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiqiu Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Haimiao Lv
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Ke Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- International Joint Research Centre for Animal Genetics, Breeding and Reproduction (IJRCAGBR), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Province’s Engineering Research Center in Buffalo Breeding and Products, Wuhan 430070, China
| |
Collapse
|
7
|
de Almeida CC, Baião DDS, Rodrigues PDA, Saint’Pierre TD, Hauser-Davis RA, Leandro KC, Paschoalin VMF, da Costa MP, Conte-Junior CA. Toxic Metals and Metalloids in Infant Formulas Marketed in Brazil, and Child Health Risks According to the Target Hazard Quotients and Target Cancer Risk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11178. [PMID: 36141460 PMCID: PMC9517614 DOI: 10.3390/ijerph191811178] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Children are highly vulnerable to chemical exposure. Thus, metal and metalloid in infant formulas are a concern, although studies in this regard are still relatively scarce. Thus, the presence of aluminum, arsenic, cadmium, tin, mercury, lead, and uranium was investigated in infant formulas marketed in Brazil by inductively coupled plasma mass spectrometry, and the Target Hazard Quotients (THQ) and Target Cancer Risk (TCR) were calculated in to assess the potential risk of toxicity for children who consume these products continuously. Aluminum ranging from 0.432 ± 0.049 to 1.241 ± 0.113 mg·kg-1, arsenic from 0.012 ± 0.009 to 0.034 ± 0.006 mg·kg-1, and tin from 0.007 ± 0.003 to 0.095 ± 0.024 mg·kg-1 were the major elements, while cadmium and uranium were present at the lowest concentrations. According to the THQ, arsenic contents in infant formulas showed a THQ > 1, indicating potential health risk concerns for newborns or children. Minimal carcinogenic risks were observed for the elements considered carcinogenic. Metabolic and nutritional interactions are also discussed. This study indicates the need to improve infant formula surveillance concerning contamination by potentially toxic and carcinogenic elements.
Collapse
Affiliation(s)
- Cristine Couto de Almeida
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Diego dos Santos Baião
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Paloma de Almeida Rodrigues
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Tatiana Dillenburg Saint’Pierre
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente, 225, Rio de Janeiro 22541-041, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratory for Environmental Health Assessment and Promotion, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Katia Christina Leandro
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Vania Margaret Flosi Paschoalin
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Marion Pereira da Costa
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
- Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador 40170-110, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
8
|
Nutritional Habits and Interventions in Childhood. Nutrients 2022; 14:nu14132730. [PMID: 35807910 PMCID: PMC9268943 DOI: 10.3390/nu14132730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023] Open
|