1
|
Sosa-Holwerda A, Park OH, Albracht-Schulte K, Niraula S, Thompson L, Oldewage-Theron W. The Role of Artificial Intelligence in Nutrition Research: A Scoping Review. Nutrients 2024; 16:2066. [PMID: 38999814 PMCID: PMC11243505 DOI: 10.3390/nu16132066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Artificial intelligence (AI) refers to computer systems doing tasks that usually need human intelligence. AI is constantly changing and is revolutionizing the healthcare field, including nutrition. This review's purpose is four-fold: (i) to investigate AI's role in nutrition research; (ii) to identify areas in nutrition using AI; (iii) to understand AI's future potential impact; (iv) to investigate possible concerns about AI's use in nutrition research. Eight databases were searched: PubMed, Web of Science, EBSCO, Agricola, Scopus, IEEE Explore, Google Scholar and Cochrane. A total of 1737 articles were retrieved, of which 22 were included in the review. Article screening phases included duplicates elimination, title-abstract selection, full-text review, and quality assessment. The key findings indicated AI's role in nutrition is at a developmental stage, focusing mainly on dietary assessment and less on malnutrition prediction, lifestyle interventions, and diet-related diseases comprehension. Clinical research is needed to determine AI's intervention efficacy. The ethics of AI use, a main concern, remains unresolved and needs to be considered for collateral damage prevention to certain populations. The studies' heterogeneity in this review limited the focus on specific nutritional areas. Future research should prioritize specialized reviews in nutrition and dieting for a deeper understanding of AI's potential in human nutrition.
Collapse
Affiliation(s)
- Andrea Sosa-Holwerda
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Oak-Hee Park
- College of Health & Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Surya Niraula
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Leslie Thompson
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | | |
Collapse
|
2
|
Suresh V, Singh KK, Vaish E, Gurjar M, Ambuli Nambi A, Khulbe Y, Muzaffar S. Artificial Intelligence in the Intensive Care Unit: Current Evidence on an Inevitable Future Tool. Cureus 2024; 16:e59797. [PMID: 38846182 PMCID: PMC11154024 DOI: 10.7759/cureus.59797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
Artificial intelligence (AI) is a technique that attempts to replicate human intelligence, analytical behavior, and decision-making ability. This includes machine learning, which involves the use of algorithms and statistical techniques to enhance the computer's ability to make decisions more accurately. Due to AI's ability to analyze, comprehend, and interpret considerable volumes of data, it has been increasingly used in the field of healthcare. In critical care medicine, where most of the patient load requires timely interventions due to the perilous nature of the condition, AI's ability to monitor, analyze, and predict unfavorable outcomes is an invaluable asset. It can significantly improve timely interventions and prevent unfavorable outcomes, which, otherwise, is not always achievable owing to the constrained human ability to multitask with optimum efficiency. AI has been implicated in intensive care units over the past many years. In addition to its advantageous applications, this article discusses its disadvantages, prospects, and the changes needed to train future critical care professionals. A comprehensive search of electronic databases was performed using relevant keywords. Data from articles pertinent to the topic was assimilated into this review article.
Collapse
Affiliation(s)
- Vinay Suresh
- General Medicine and Surgery, King George's Medical University, Lucknow, IND
| | - Kaushal K Singh
- General Medicine, King George's Medical University, Lucknow, IND
| | - Esha Vaish
- Internal Medicine, Mount Sinai Morningside West, New York, USA
| | - Mohan Gurjar
- Critical Care Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | | | - Yashita Khulbe
- General Medicine and Surgery, King George's Medical University, Lucknow, IND
| | - Syed Muzaffar
- Critical Care Medicine, King George's Medical University, Lucknow, IND
| |
Collapse
|
3
|
Ferguson CE, Tatucu-Babet OA, Amon JN, Chapple LAS, Malacria L, Myint Htoo I, Hodgson CL, Ridley EJ. Dietary assessment methods for measurement of oral intake in acute care and critically ill hospitalised patients: a scoping review. Nutr Res Rev 2023:1-14. [PMID: 38073417 DOI: 10.1017/s0954422423000288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Quantification of oral intake within the hospital setting is required to guide nutrition care. Multiple dietary assessment methods are available, yet details regarding their application in the acute care setting are scarce. This scoping review, conducted in accordance with JBI methodology, describes dietary assessment methods used to measure oral intake in acute and critical care hospital patients. The search was run across four databases to identify primary research conducted in adult acute or critical care settings from 1st of January 2000-15th March 2023 which quantified oral diet with any dietary assessment method. In total, 155 articles were included, predominantly from the acute care setting (n = 153, 99%). Studies were mainly single-centre (n = 138, 88%) and of observational design (n = 135, 87%). Estimated plate waste (n = 59, 38%) and food records (n = 43, 28%) were the most frequent assessment methods with energy and protein the main nutrients quantified (n = 81, 52%). Validation was completed in 23 (15%) studies, with the majority of these using a reference method reliant on estimation (n = 17, 74%). A quarter of studies (n = 39) quantified completion (either as complete versus incomplete or degree of completeness) and four studies (2.5%) explored factors influencing completion. Findings indicate a lack of high-quality evidence to guide selection and application of existing dietary assessment methods to quantify oral intake with a particular absence of evidence in the critical care setting. Further validation of existing tools and identification of factors influencing completion is needed to guide the optimal approach to quantification of oral intake in both research and clinical contexts.
Collapse
Affiliation(s)
- Clare E Ferguson
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Dietetics and Nutrition Department, Alfred Health, Melbourne, Victoria, Australia
| | - Oana A Tatucu-Babet
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Dietetics and Nutrition Department, Alfred Health, Melbourne, Victoria, Australia
| | - Jenna N Amon
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Dietetics and Nutrition Department, Alfred Health, Melbourne, Victoria, Australia
| | - Lee-Anne S Chapple
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lauren Malacria
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ivy Myint Htoo
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Carol L Hodgson
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Division of Clinical Trials and Cohort Studies, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Critical Care, University of Melbourne, Melbourne, Victoria, Australia
- The George Institute for Global Health, Sydney, NSW, Australia
- Physiotherapy Department, Alfred Health, Melbourne, Victoria, Australia
| | - Emma J Ridley
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Dietetics and Nutrition Department, Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Shonkoff E, Cara KC, Pei X(A, Chung M, Kamath S, Panetta K, Hennessy E. AI-based digital image dietary assessment methods compared to humans and ground truth: a systematic review. Ann Med 2023; 55:2273497. [PMID: 38060823 PMCID: PMC10836267 DOI: 10.1080/07853890.2023.2273497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVE Human error estimating food intake is a major source of bias in nutrition research. Artificial intelligence (AI) methods may reduce bias, but the overall accuracy of AI estimates is unknown. This study was a systematic review of peer-reviewed journal articles comparing fully automated AI-based (e.g. deep learning) methods of dietary assessment from digital images to human assessors and ground truth (e.g. doubly labelled water). MATERIALS AND METHODS Literature was searched through May 2023 in four electronic databases plus reference mining. Eligible articles reported AI estimated volume, energy, or nutrients. Independent investigators screened articles and extracted data. Potential sources of bias were documented in absence of an applicable risk of bias assessment tool. RESULTS Database and hand searches identified 14,059 unique publications; fifty-two papers (studies) published from 2010 to 2023 were retained. For food detection and classification, 79% of papers used a convolutional neural network. Common ground truth sources were calculation using nutrient tables (51%) and weighed food (27%). Included papers varied widely in food image databases and results reported, so meta-analytic synthesis could not be conducted. Relative errors were extracted or calculated from 69% of papers. Average overall relative errors (AI vs. ground truth) ranged from 0.10% to 38.3% for calories and 0.09% to 33% for volume, suggesting similar performance. Ranges of relative error were lower when images had single/simple foods. CONCLUSIONS Relative errors for volume and calorie estimations suggest that AI methods align with - and have the potential to exceed - accuracy of human estimations. However, variability in food image databases and results reported prevented meta-analytic synthesis. The field can advance by testing AI architectures on a limited number of large-scale food image and nutrition databases that the field determines to be adequate for training and testing and by reporting accuracy of at least absolute and relative error for volume or calorie estimations.
Collapse
Affiliation(s)
- Eleanor Shonkoff
- School of Health Sciences, Merrimack College, North Andover, MA, USA
| | - Kelly Copeland Cara
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Xuechen (Anna) Pei
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Mei Chung
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Shreyas Kamath
- School of Engineering, Tufts University, Medford, MA, USA
| | - Karen Panetta
- School of Engineering, Tufts University, Medford, MA, USA
| | - Erin Hennessy
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
- ChildObesity180, Tufts University, Boston, MA, USA
| |
Collapse
|
5
|
Hiraguchi H, Perone P, Toet A, Camps G, Brouwer AM. Technology to Automatically Record Eating Behavior in Real Life: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:7757. [PMID: 37765812 PMCID: PMC10534458 DOI: 10.3390/s23187757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
To monitor adherence to diets and to design and evaluate nutritional interventions, it is essential to obtain objective knowledge about eating behavior. In most research, measures of eating behavior are based on self-reporting, such as 24-h recalls, food records (food diaries) and food frequency questionnaires. Self-reporting is prone to inaccuracies due to inaccurate and subjective recall and other biases. Recording behavior using nonobtrusive technology in daily life would overcome this. Here, we provide an up-to-date systematic overview encompassing all (close-to) publicly or commercially available technologies to automatically record eating behavior in real-life settings. A total of 1328 studies were screened and, after applying defined inclusion and exclusion criteria, 122 studies were included for in-depth evaluation. Technologies in these studies were categorized by what type of eating behavior they measure and which type of sensor technology they use. In general, we found that relatively simple sensors are often used. Depending on the purpose, these are mainly motion sensors, microphones, weight sensors and photo cameras. While several of these technologies are commercially available, there is still a lack of publicly available algorithms that are needed to process and interpret the resulting data. We argue that future work should focus on developing robust algorithms and validating these technologies in real-life settings. Combining technologies (e.g., prompting individuals for self-reports at sensed, opportune moments) is a promising route toward ecologically valid studies of eating behavior.
Collapse
Affiliation(s)
- Haruka Hiraguchi
- TNO Human Factors, Netherlands Organization for Applied Scientific Research, Kampweg 55, 3769 DE Soesterberg, The Netherlands (A.-M.B.)
- Kikkoman Europe R&D Laboratory B.V., Nieuwe Kanaal 7G, 6709 PA Wageningen, The Netherlands
| | - Paola Perone
- TNO Human Factors, Netherlands Organization for Applied Scientific Research, Kampweg 55, 3769 DE Soesterberg, The Netherlands (A.-M.B.)
| | - Alexander Toet
- TNO Human Factors, Netherlands Organization for Applied Scientific Research, Kampweg 55, 3769 DE Soesterberg, The Netherlands (A.-M.B.)
| | - Guido Camps
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- OnePlanet Research Center, Plus Ultra II, Bronland 10, 6708 WE Wageningen, The Netherlands
| | - Anne-Marie Brouwer
- TNO Human Factors, Netherlands Organization for Applied Scientific Research, Kampweg 55, 3769 DE Soesterberg, The Netherlands (A.-M.B.)
- Department of Artificial Intelligence, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, The Netherlands
| |
Collapse
|
6
|
Papathanail I, Abdur Rahman L, Brigato L, Bez NS, Vasiloglou MF, van der Horst K, Mougiakakou S. The Nutritional Content of Meal Images in Free-Living Conditions-Automatic Assessment with goFOOD TM. Nutrients 2023; 15:3835. [PMID: 37686866 PMCID: PMC10490087 DOI: 10.3390/nu15173835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
A healthy diet can help to prevent or manage many important conditions and diseases, particularly obesity, malnutrition, and diabetes. Recent advancements in artificial intelligence and smartphone technologies have enabled applications to conduct automatic nutritional assessment from meal images, providing a convenient, efficient, and accurate method for continuous diet evaluation. We now extend the goFOODTM automatic system to perform food segmentation, recognition, volume, as well as calorie and macro-nutrient estimation from single images that are captured by a smartphone. In order to assess our system's performance, we conducted a feasibility study with 50 participants from Switzerland. We recorded their meals for one day and then dietitians carried out a 24 h recall. We retrospectively analysed the collected images to assess the nutritional content of the meals. By comparing our results with the dietitians' estimations, we demonstrated that the newly introduced system has comparable energy and macronutrient estimation performance with the previous method; however, it only requires a single image instead of two. The system can be applied in a real-life scenarios, and it can be easily used to assess dietary intake. This system could help individuals gain a better understanding of their dietary consumption. Additionally, it could serve as a valuable resource for dietitians, and could contribute to nutritional research.
Collapse
Affiliation(s)
- Ioannis Papathanail
- ARTORG Center for Biomedical Engineering Research, University of Bern, 3008 Bern, Switzerland; (I.P.); (L.A.R.); (L.B.); (M.F.V.)
| | - Lubnaa Abdur Rahman
- ARTORG Center for Biomedical Engineering Research, University of Bern, 3008 Bern, Switzerland; (I.P.); (L.A.R.); (L.B.); (M.F.V.)
| | - Lorenzo Brigato
- ARTORG Center for Biomedical Engineering Research, University of Bern, 3008 Bern, Switzerland; (I.P.); (L.A.R.); (L.B.); (M.F.V.)
| | - Natalie S. Bez
- School of Health Professions, Bern University of Applied Sciences, 3008 Bern, Switzerland; (N.S.B.); (K.v.d.H.)
| | - Maria F. Vasiloglou
- ARTORG Center for Biomedical Engineering Research, University of Bern, 3008 Bern, Switzerland; (I.P.); (L.A.R.); (L.B.); (M.F.V.)
| | - Klazine van der Horst
- School of Health Professions, Bern University of Applied Sciences, 3008 Bern, Switzerland; (N.S.B.); (K.v.d.H.)
| | - Stavroula Mougiakakou
- ARTORG Center for Biomedical Engineering Research, University of Bern, 3008 Bern, Switzerland; (I.P.); (L.A.R.); (L.B.); (M.F.V.)
| |
Collapse
|
7
|
A feasibility study to assess Mediterranean Diet adherence using an AI-powered system. Sci Rep 2022; 12:17008. [PMID: 36220998 PMCID: PMC9554192 DOI: 10.1038/s41598-022-21421-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022] Open
Abstract
Mediterranean diet (MD) can play a major role in decreasing the risks of non-communicable diseases and preventing overweight and obesity. In order for a person to follow the MD and assess their adherence to it, proper dietary assessment methods are required. We have developed an Artificial Intelligence-powered system that recognizes the food and drink items from a single meal photo and estimates their respective serving size, and integrated it into a smartphone application that automatically calculates MD adherence score and outputs a weekly feedback report. We compared the MD adherence score of four users as calculated by the system versus an expert dietitian, and the mean difference was 3.5% and statistically not significant. Afterwards, we conducted a feasibility study with 24 participants, to evaluate the system's performance and to gather the users' and dietitians' feedback. The image recognition system achieved 61.8% mean Average Precision for the testing set and 57.3% for the feasibility study images (where the ground truth was taken as the participants' annotations). The feedback from the participants of the feasibility study was also very positive.
Collapse
|
8
|
Vasiloglou MF, Marcano I, Lizama S, Papathanail I, Spanakis EK, Mougiakakou S. Multimedia Data-Based Mobile Applications for Dietary Assessment. J Diabetes Sci Technol 2022:19322968221085026. [PMID: 35348398 DOI: 10.1177/19322968221085026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Diabetes mellitus (DM) and obesity are chronic medical conditions associated with significant morbidity and mortality. Accurate macronutrient and energy estimation could be beneficial in attempts to manage DM and obesity, leading to improved glycemic control and weight reduction, respectively. Existing dietary assessment methods are subject to major errors in measurement, are time consuming, are costly, and do not provide real-time feedback. The increasing adoption of smartphones and artificial intelligence, along with the advances in algorithms and hardware, allowed the development of technologies executed in smartphones that use food/beverage multimedia data as an input, and output information about the nutrient content in almost real time. Scope of this review was to explore the various image-based and video-based systems designed for dietary assessment. We identified 22 different systems and divided these into three categories on the basis of their setting for evaluation: laboratory (12), preclinical (7), and clinical (3). The major findings of the review are that there is still a number of open research questions and technical challenges to be addressed and end users-including health care professionals and patients-need to be involved in the design and development of such innovative solutions. Last, there is a clear need that these systems should be validated under unconstrained real-life conditions and that they should be compared with conventional methods for dietary assessment.
Collapse
Affiliation(s)
- Maria F Vasiloglou
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Isabel Marcano
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sergio Lizama
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ioannis Papathanail
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Elias K Spanakis
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Endocrinology, Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Stavroula Mougiakakou
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Emergency Medicine, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
9
|
Bellanti F, lo Buglio A, Quiete S, Vendemiale G. Malnutrition in Hospitalized Old Patients: Screening and Diagnosis, Clinical Outcomes, and Management. Nutrients 2022; 14:nu14040910. [PMID: 35215559 PMCID: PMC8880030 DOI: 10.3390/nu14040910] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/05/2023] Open
Abstract
Malnutrition in hospitalized patients heavily affects several clinical outcomes. The prevalence of malnutrition increases with age, comorbidities, and intensity of care in up to 90% of old populations. However, malnutrition frequently remains underdiagnosed and undertreated in the hospital. Thus, an accurate screening to identify patients at risk of malnutrition or malnourishment is determinant to elaborate a personal nutritional intervention. Several definitions of malnutrition were proposed in the last years, affecting the real frequency of nutritional disorders and the timing of intervention. Diagnosis of malnutrition needs a complete nutritional assessment, which is often challenging to perform during a hospital stay. For this purpose, various screening tools were proposed, allowing patients to be stratified according to the risk of malnutrition. The present review aims to summarize the actual evidence in terms of diagnosis, association with clinical outcomes, and management of malnutrition in a hospital setting.
Collapse
|