1
|
Miao W, Wang Z, Gao J, Ohno Y. Polyphyllin II inhibits breast cancer cell proliferation via the PI3K/Akt signaling pathway. Mol Med Rep 2024; 30:224. [PMID: 39364737 PMCID: PMC11465422 DOI: 10.3892/mmr.2024.13348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Paridis Rhizoma saponins (PRS) are significant components of Rhizoma Paridis and have inhibitory effects on various tumors, such as bladder, breast, liver and colon cancer. Polyphyllin II (PPII), one of the PRS, has an unclear effect on breast cancer. The present study aimed to explore the effect and mechanism of PPII in breast cancer. A network pharmacology approach was employed to predict the core components and breast cancer‑related targets of PRS. Moreover, a xenograft tumor model was established to determine the anti‑breast cancer effect of PPII in vivo. The viability of MDA‑MB‑231 cells was determined by a Cell Counting Kit‑8 assay. Apoptosis was analyzed using annexin V/PI double staining. Additionally, Transwell and scratch assays were performed to evaluate invasion and migration. The potential mechanism was predicted by Kyoto Encyclopedia of Genes and Genomes enrichment analysis and molecular docking analysis and verified by western blot analysis. The effect of PPII on aerobic glycolysis in breast cancer cells was detected by lactic acid and pyruvate kits and Western blotting of glycolytic rate‑limiting enzymes. Network pharmacology analysis revealed 26 core targets involved in breast cancer and that PPII was the core active component of PRS. The in vivo studies showed that PPII could inhibit the growth of breast cancer in mice. In vitro experiments confirmed that PPII induced cancer cell apoptosis and inhibited invasion and migration. Furthermore, PPII was capable of suppressing the expression of key proteins in the PI3K/Akt signaling pathway, reducing the generation of aerobic glycolytic products, and diminishing the protein expression levels of hexokinase 2 and pyruvate kinase M2. The results indicated that PPII inhibited aerobic glycolysis in breast cancer cells through the PI3K/Akt signaling pathway, thereby inhibiting breast cancer growth.
Collapse
Affiliation(s)
- Weiwei Miao
- Department of Health Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
- College of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, P.R. China
| | - Zhixiong Wang
- College of Health Management, Shanghai Jian Qiao University, Shanghai 201306, P.R. China
| | - Jianwen Gao
- College of Health Management, Shanghai Jian Qiao University, Shanghai 201306, P.R. China
| | - Yuko Ohno
- Department of Health Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Khan M, Lam SK, Yan S, Feng Y, Chen C, Ko FCF, Ho JCM. The anti-neoplastic impact of thymoquinone from Nigella sativa on small cell lung cancer: In vitro and in vivo investigations. J Cancer Res Ther 2024; 20:1224-1231. [PMID: 39206985 DOI: 10.4103/jcrt.jcrt_883_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/03/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Malignant and aggressive, small cell lung cancer (SCLC) constitutes about 15% of all diagnosed lung cancer cases. With primary therapeutic options such as chemotherapy accompanied by debilitating side effects, interest has been soaring in the therapeutic competencies of herbs. The pharmacological driving force behind the beneficial properties of Nigella sativa is the quinone, thymoquinone (TQ). The anti-cancer effects of TQ on different cancers have been extensively studied. Nonetheless, only one paper in the entire National Center for Biotechnology Information (NCBI) database describes its effects on SCLC. A more detailed investigation is required. METHODS The current study examined the impact of TQ in vitro on five SCLC cell lines and in vivo in a nude mouse xenograft model. The following in vitro effects of TQ on SCLC were evaluated: (a) cell viability; (b) apoptosis; (c) cell cycle arrest; (d) intracellular reactive oxygen species (ROS) levels, and (e) protein expression in concomitant signaling pathways. For the in vivo effects of TQ on SCLC, (a) tumor volume was measured, and (b) selected protein expression in selected concomitant signaling pathways was determined by Western blotting. RESULT In general, TQ reduced cell viability, induced apoptosis and cell cycle arrest, depleted ROS, and altered protein expression in associated signaling pathways. Furthermore, TQ exhibited a tumor-suppressive effect in an H446 SCLC xenograft model. CONCLUSION The cytotoxic impact of TQ arising from anti-cancer mechanisms was elucidated. The positive results obtained in this study warrant further investigation.
Collapse
Affiliation(s)
- Mahjabin Khan
- Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
3
|
Thalappil MA, Singh P, Carcereri de Prati A, Sahoo SK, Mariotto S, Butturini E. Essential oils and their nanoformulations for breast cancer therapy. Phytother Res 2024; 38:556-591. [PMID: 37919622 DOI: 10.1002/ptr.8054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Breast Cancer (BC) is the most prevalent type of cancer in the world. Current treatments include surgery, radiation, and chemotherapy but often are associated with high toxicity to normal tissues, chemoresistance, and relapse. Thus, developing novel therapies which could combat these limitations is essential for effective treatment. In this context, phytochemicals are increasingly getting popular due to their safety profile, ability to efficiently target tumors, and circumvent limitations of existing treatments. Essential Oils (EOs) are mixtures of various phytochemicals which have shown potential anticancer activity in preclinical BC models. However, their clinical translation is limited by factors such as high volatility, low stability, and poor solubility. Nanotechnology has facilitated their encapsulation in a variety of nanostructures and proven to overcome these limitations. In this review, we have efficiently summarized the current knowledge on the anticancer effect of EOs and constituents in both in in vitro and in in vivo BC models. Further, we also provide a descriptive account on the potential of nanotechnology in enhancing the anti-BC activity of EOs and their constituents. The papers discussed in this review were selected using the keywords "antiproliferative Essential Oils in breast cancer," "anticancer activity of Essential Oil in breast cancer," and "cytotoxicity of Essential Oils in breast cancer" performed in PubMed and ScienceDirect databases.
Collapse
Affiliation(s)
- Muhammed Ashiq Thalappil
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Priya Singh
- Nanomedicine Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Alessandra Carcereri de Prati
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | | | - Sofia Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Elena Butturini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Padathpeedika Khalid J, Mary Martin T, Prathap L, Abhimanyu Nisargandha M, Boopathy N, Kishore Kumar MS. Exploring Tumor-Promoting Qualities of Cancer-Associated Fibroblasts and Innovative Drug Discovery Strategies With Emphasis on Thymoquinone. Cureus 2024; 16:e53949. [PMID: 38468988 PMCID: PMC10925941 DOI: 10.7759/cureus.53949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
Tumor epithelial development and chemoresistance are highly promoted by the tumor microenvironment (TME), which is mostly made up of the cancer stroma. This is due to several causes. Cancer-associated fibroblasts (CAFs) stand out among them as being essential for the promotion of tumors. Understanding the fibroblastic population within a single tumor is made more challenging by the undeniable heterogeneity within it, even though particular stromal alterations are still up for debate. Numerous chemical signals released by tumors improve the connections between heterotypic fibroblasts and CAFs, promoting the spread of cancer. It becomes essential to have a thorough understanding of this complex microenvironment to effectively prevent solid tumor growth. Important new insights into the role of CAFs in the TME have been revealed by recent studies. The objective of this review is to carefully investigate the relationship between CAFs in tumors and plant secondary metabolites, with a focus on thymoquinone (TQ). The literature published between 2010 and 2023 was searched in PubMed and Google Scholar with keywords such as TQ, TME, cancer-associated fibroblasts, mechanism of action, and flavonoids. The results showed a wealth of data substantiating the activity of plant secondary metabolites, particularly TQ's involvement in blocking CAF operations. Scrutinized research also clarified the wider effect of flavonoids on pathways related to cancer. The present study highlights the complex dynamics of the TME and emphasizes the critical role of CAFs. It also examines the possible interventions provided by secondary metabolites found in plants, with TQ playing a vital role in regulating CAF function based on recent literature.
Collapse
Affiliation(s)
- Jabir Padathpeedika Khalid
- Department of Physiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Taniya Mary Martin
- Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Lavanya Prathap
- Department of Anatomy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Milind Abhimanyu Nisargandha
- Department of Physiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Nisha Boopathy
- Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Meenakshi Sundaram Kishore Kumar
- Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
5
|
Kotsifaki A, Alevizopoulos N, Dimopoulou V, Armakolas A. Unveiling the Immune Microenvironment's Role in Breast Cancer: A Glimpse into Promising Frontiers. Int J Mol Sci 2023; 24:15332. [PMID: 37895012 PMCID: PMC10607694 DOI: 10.3390/ijms242015332] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC), one of the most widespread and devastating diseases affecting women worldwide, presents a significant public health challenge. This review explores the emerging frontiers of research focused on deciphering the intricate interplay between BC cells and the immune microenvironment. Understanding the role of the immune system in BC is critical as it holds promise for novel therapeutic approaches and precision medicine strategies. This review delves into the current literature regarding the immune microenvironment's contribution to BC initiation, progression, and metastasis. It examines the complex mechanisms by which BC cells interact with various immune cell populations, including tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs). Furthermore, this review highlights the impact of immune-related factors, such as cytokines and immune checkpoint molecules. Additionally, this comprehensive analysis sheds light on the potential biomarkers associated with the immune response in BC, enabling early diagnosis and prognostic assessment. The therapeutic implications of targeting the immune microenvironment are also explored, encompassing immunotherapeutic strategies and combination therapies to enhance treatment efficacy. The significance of this review lies in its potential to pave the way for novel therapeutic interventions, providing clinicians and researchers with essential knowledge to design targeted and personalized treatment regimens for BC patients.
Collapse
Affiliation(s)
| | | | | | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (N.A.); (V.D.)
| |
Collapse
|
6
|
Sunoqrot S, Abusulieh S, Abusara OH. Identifying synergistic combinations of Doxorubicin-Loaded polyquercetin nanoparticles and natural Products: Implications for breast cancer therapy. Int J Pharm 2023; 645:123392. [PMID: 37683979 DOI: 10.1016/j.ijpharm.2023.123392] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Combining chemotherapeutic agents with bioactive natural products is an attractive cancer treatment modality to reduce the dose and side effects of chemotherapy. Combination treatments with drugs having different mechanisms of action can also be beneficial in combatting the development of drug resistance by cancer cells. Nanoparticle (NP)-mediated drug delivery can further improve the therapeutic index of cytotoxic agents by enabling passive and/or active targeting to tumor tissues in vivo. Using doxorubicin (DOX) as a model chemotherapeutic agent, we developed three NP formulations based on polyquercetin (pQCT), an emerging nanocarrier platform. The NPs were co-assembled with DOX, pQCT, and either Pluronic P123, methoxy poly(ethylene glycol)-amine, or D-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS). Physicochemical characterization of the NPs revealed them to have a spherical morphology with high monodispersity, excellent drug loading capacity, and sustained drug release. Then, the NPs were evaluated in vitro to determine their potential synergism when combined with the bioactive natural products curcumin (CUR), tannic acid (TA), and thymoquinone (TQ) against breast cancer cells (MCF-7 and MDA-MB-231). Surprisingly, most of the combinations were found to be antagonistic. However, combinations containing CUR exhibited greater pro-apoptotic effects compared to the single agents, with polymer-modified pQCT NPs presenting as a promising nanoplatform for enhancing DOX's ability to promote cancer cell apoptosis. Our findings provide insights into the potential application of pQCT in nanomedicine, as well as the use of bioactive natural products in combination with DOX as a free agent and as an NP formulation in the treatment of breast cancer.
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan.
| | - Samah Abusulieh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Osama H Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
7
|
Adinew GM, Messeha S, Taka E, Mochona B, Redda KK, Soliman KFA. Thymoquinone Inhibition of Chemokines in TNF-α-Induced Inflammatory and Metastatic Effects in Triple-Negative Breast Cancer Cells. Int J Mol Sci 2023; 24:9878. [PMID: 37373025 PMCID: PMC10298461 DOI: 10.3390/ijms24129878] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The lack of identifiable molecular targets or biomarkers hinders the development of treatment options in triple-negative breast cancer (TNBC). However, natural products offer a promising alternative by targeting inflammatory chemokines in the tumor microenvironment (TME). Chemokines are crucial in promoting breast cancer growth and metastasis and correlate to the altered inflammatory process. In the present study, we evaluated the anti-inflammatory and antimetastatic effects of the natural product thymoquinone (TQ) on TNF-α-stimulated TNBC cells (MDA-MB-231 and MDA-MB-468) to study the cytotoxic, antiproliferative, anticolony, antimigratory, and antichemokine effects using enzyme-linked immunosorbent assays, quantitative real-time reverse transcription-polymerase chain reactions, and Western blots were used in sequence to validate the microarray results further. Four downregulated inflammatory cytokines were identified, CCL2 and CCL20 in MDA-MB-468 cells and CCL3 and CCL4 in MDA-MB-231 cells. Furthermore, when TNF-α-stimulated MDA-MB-231 cells were compared with MDA-MB-468 cells, the two cells were sensitive to TQ's antichemokine and antimetastatic effect in preventing cell migration. It was concluded from this investigation that genetically different cell lines may respond to TQ differently, as TQ targets CCL3 and CCL4 in MDA-MB-231 cells and CCL2 and CCL20 in MDA-MB-468 cells. Therefore, the results indicate that TQ may be recommended as a component of the therapeutic strategy for TNBC treatment. These outcomes stem from the compound's capacity to suppress the chemokine. Even though these findings support the usage of TQ as part of a therapy strategy for TNBC associated with the identified chemokine dysregulations, additional in vivo studies are needed to confirm these in vitro results.
Collapse
Affiliation(s)
- Getinet M. Adinew
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| | - Samia Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| | - Equar Taka
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| | - Bereket Mochona
- Department of Chemistry, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Kinfe K. Redda
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.M.); (E.T.); (K.K.R.)
| |
Collapse
|
8
|
Adinew GM, Messeha S, Taka E, Ahmed SA, Soliman KFA. The Role of Apoptotic Genes and Protein-Protein Interactions in Triple-negative Breast Cancer. Cancer Genomics Proteomics 2023; 20:247-272. [PMID: 37093683 PMCID: PMC10148064 DOI: 10.21873/cgp.20379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND/AIM Compared to other breast cancer types, triple-negative breast cancer (TNBC) has historically had few treatment alternatives. Therefore, exploring and pinpointing potentially implicated genes could be used for treating and managing TNBC. By doing this, we will provide essential data to comprehend how the genes are involved in the apoptotic pathways of the cancer cells to identify potential therapeutic targets. Analysis of a single genetic alteration may not reveal the pathogenicity driving TNBC due to the high genomic complexity and heterogeneity of TNBC. Therefore, searching through a large variety of gene interactions enabled the identification of molecular therapeutic genes. MATERIALS AND METHODS This study used integrated bioinformatics methods such as UALCAN, TNM plotter, PANTHER, GO-KEEG and PPIs to assess the gene expression, protein-protein interaction (PPI), and transcription factor interaction of apoptosis-regulated genes. RESULTS Compared to normal breast tissue, gene expressions of BNIP3, TNFRSF10B, MCL1, and CASP4 were downregulated in UALCAN. At the same time, BIK, AKT1, BAD, FADD, DIABLO, and CASP9 was down-regulated in bc-GeneExMiner v4.5 mRNA expression (BCGM) databases. Based on GO term enrichment analysis, the cellular process (GO:0009987), which has about 21 apoptosis-regulated genes, is the top category in the biological processes (BP), followed by biological regulation (GO:0065007). We identified 29 differentially regulated pathways, including the p53 pathway, angiogenesis, apoptosis signaling pathway, and the Alzheimer's disease presenilin pathway. We examined the PPIs between the genes that regulate apoptosis; CASP3 and CASP9 interact with FADD, MCL1, TNF, TNFRSRF10A, and TNFRSF10; additionally, CASP3 significantly forms PPIs with CASP9, DFFA, and TP53, and CASP9 with DIABLO. In the top 10 transcription factors, the androgen receptor (AR) interacts with five apoptosis-regulated genes (p<0.0001; q<0.01), followed by retinoic acid receptor alpha (RARA) (p<0.0001; q<0.01) and ring finger protein (RNF2) (p<0.0001; q<0.01). Overall, the gene expression profile, PPIs, and the apoptosis-TF interaction findings suggest that the 27 apoptosis-regulated genes might be used as promising targets in treating and managing TNBC. Furthermore, from a total of 27 key genes, CASP2, CASP3, DAPK1, TNF, TRAF2, and TRAF3 were significantly correlated with poor overall survival in TNBC (p-value <0.05); they could play important roles in the progression of TNBC and provide attractive therapeutic targets that may offer new candidate molecules for targeted therapy. CONCLUSION Our findings demonstrate that CASP2, CASP3, DAPK1, TNF, TRAF2, and TRAF3 were substantially associated with the overall survival rate (OS) difference of TNBC patients out of a total of 27 specific genes used in this study, which may play crucial roles in the development of TNBC and offer promising therapeutic interventions.
Collapse
Affiliation(s)
- Getinet M Adinew
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Samia Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Equar Taka
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Shade A Ahmed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F A Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
9
|
Gao J, Kumari A, Zeng XA, Chan S, Farooq MA, Alee M, Khan SH, Rahaman A, He S, Xin X, Mehmood T. Coating of chitosan on poly D,L-lactic-co-glycolic acid thymoquinone nanoparticles enhances the anti-tumor activity in triple-negative breast cancer. Front Chem 2023; 11:1044953. [PMID: 36846852 PMCID: PMC9945229 DOI: 10.3389/fchem.2023.1044953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Breast cancer is the second most common cancer around the world. Triple-negative breast cancer (TNBC) is characterized by the absence of three receptors: progesterone, estrogen, and human epidermal growth factor-2 receptor (HER2). Various synthetic chemotherapies have gained attention but they caused unwanted side effects. Therefore, some secondary therapies are now becoming famous against this disease. For instance, natural compounds have been extensively researched against many diseases. However, enzymatic degradation and low solubility remain a major concern. To combat these issues, various nanoparticles have been synthesized and optimized from time to time, which increases its solubility and hence therapeutic potential of a particular drug increases. In this study, we have synthesized Poly D,L-lactic-co-glycolic acid (PLGA) loaded thymoquinone (TQ) nanoparticle (PLGA-TQ-NPs) and then coated them by chitosan (CS) (PLGA-CS-TQ-NPs), which was characterized by different methods. Size of non-coated NPs was 105 nm with PDI value of 0.3 and the size of coated NPs was 125 nm with PDI value of 0.4. Encapsulation efficiency (EE%) and Drug loading (DL%) was found to be 70.5 ± 2.33 and 3.38 for non-coated and 82.3 ± 3.11 and 2.66 for coated NPs respectively. We have also analysed their cell viability against MDA-MB-231 and SUM-149 TNBC cell lines. The resultant, nanoformulations exhibit anti-cancerous activity in a dose and time-dependent manner for MDA-MB-231 and SUM-149 cell lines with an IC50 value of (10.31 ± 1.15, 15.60 ± 1.25, 28.01 ± 1.24) and (23.54 ± 1.24, 22.37 ± 1.25, 35 ± 1.27) for TQ free, PLGA-TQ-NPs and PLGA-CS-TQ-NPs respectively. For the first time, we have developed a nanoformulations of PLGA loaded TQ coated with CS NPs (PLGA-CS-TQ-NPs) against TNBC which led to their enhanced anti-cancerous effects.
Collapse
Affiliation(s)
- Jingrong Gao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ankita Kumari
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Siewyin Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Muhammad Adil Farooq
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, Punjab, Pakistan
| | - Mahafooj Alee
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Shaheer Hasan Khan
- Enzymology and nanotechnology laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
- China-Singapore International Joint Research Institute, Guangzhou, China
| | - Shan He
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- Institute for Nano Scale and Technology, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
- College of Engineering, Information, Technology & Environment, Charles Darwin University, Darwin, NT, Australia
| | - Xiong Xin
- The Department of Anaesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tariq Mehmood
- Department of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahimyar Khan, Punjab, Pakistan
| |
Collapse
|
10
|
Cancer-Associated Adipocytes and Breast Cancer: Intertwining in the Tumor Microenvironment and Challenges for Cancer Therapy. Cancers (Basel) 2023; 15:cancers15030726. [PMID: 36765683 PMCID: PMC9913307 DOI: 10.3390/cancers15030726] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Adipocytes are the main components in breast tissue, and cancer-associated adipocytes (CAAs) are one of the most important components in the tumor microenvironment of breast cancer (BC). Bidirectional regulation was found between CAAs and BC cells. BC facilitates the dedifferentiation of adjacent adipocytes to form CAAs with morphological and biological changes. CAAs increase the secretion of multiple cytokines and adipokines to promote the tumorigenesis, progression, and metastasis of BC by remodeling the extracellular matrix, changing aromatase expression, and metabolic reprogramming, and shaping the tumor immune microenvironment. CAAs are also associated with the therapeutic response of BC and provide potential targets in BC therapy. The present review provides a comprehensive description of the crosstalk between CAAs and BC and discusses the potential strategies to target CAAs to overcome BC treatment resistance.
Collapse
|
11
|
Adinew GM, Messeha SS, Taka E, Badisa RB, Soliman KFA. Anticancer Effects of Thymoquinone through the Antioxidant Activity, Upregulation of Nrf2, and Downregulation of PD-L1 in Triple-Negative Breast Cancer Cells. Nutrients 2022; 14:nu14224787. [PMID: 36432484 PMCID: PMC9695946 DOI: 10.3390/nu14224787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The variety of therapies available for treating and preventing triple-negative breast cancer (TNBC) is constrained by the absence of progesterone receptors, estrogen receptors, and human epidermal growth factor receptor 2. Nrf2 (nuclear factor-erythroid 2-related factor), and PD-L1 (program cell death ligand 1), a downstream signaling target, have a strong correlation to oxidative stress and inflammation, major factors in the development and progression of TNBC. In this study, the genetically distinct MDA-MB-231 and MDA-MB-468 TNBC cells were treated with the natural component thymoquinone (TQ). The results show that TQ exhibits considerable antioxidant activity and decreases the generation of H2O2, at the same time increasing catalase (CAT) activity, superoxide dismutase (SOD) enzyme, and glutathione (GSH). Additionally, the results show that TQ treatment increased the levels of the different genes involved in the oxidative stress-antioxidant defense system PRNP, NQO1, and GCLM in both cell lines with significant large-fold change in MDA-MB-468 cells (+157.65 vs. +1.7, +48.87 vs. +2.63 and +4.78 vs. +2.17), respectively. Nrf2 mRNA and protein expression were also significantly increased in TQ-treated TNBC cells despite being higher in MDA-MB-468 cells (6.67 vs. 4.06). Meanwhile, TQ administration increased mRNA levels while decreasing PD-L1 protein expression in both cell lines. In conclusion, TQ modifies the expression of multiple oxidative-stress-antioxidant system genes, ROS, antioxidant enzymes, Nrf2, and PD-L1 protein, pointing to the therapeutic potential and chemopreventive utilization of TQ in TNBC.
Collapse
|
12
|
Adinew GM, Messeha S, Taka E, Soliman KFA. The Prognostic and Therapeutic Implications of the Chemoresistance Gene BIRC5 in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14215180. [PMID: 36358602 PMCID: PMC9659000 DOI: 10.3390/cancers14215180] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Chemoresistance affects TNBC patient treatment responses. Therefore, identifying the chemoresistant gene provides a new approach to understanding chemoresistance in TNBC. BIRC5 was examined in the current study as a tool for predicting the prognosis of TNBC patients and assisting in developing alternative therapies using online database tools. According to the examined studies, BIRC5 was highly expressed in 45 to 90% of TNBC patients. BIRC5 is not only abundantly expressed but also contributes to resistance to chemotherapy, anti-HER2 therapy, and radiotherapy. Patients with increased expression of BIRC5 had a median survival of 31.2 months compared to 85.8 months in low-expression counterparts (HR, 1.73; CI, 1.4−2.13; p = 2.5 × 10−7). The overall survival, disease-free survival, relapse-free survival, distant metastasis-free survival, and the complete pathological response of TNBC patients with high expression of BIRC5 who received any chemotherapy (Taxane, Ixabepilone, FAC, CMF, FEC, Anthracycline) and anti-HER2 therapy (Trastuzumab, Lapatinib) did not differ significantly from those patients receiving any other treatment. Data obtained indicate that the BIRC5 promoter region was substantially methylated, and hypermethylation was associated with higher BIRC5 mRNA expression (p < 0.05). The findings of this study outline the role of BIRC5 in chemotherapy-induced resistance of TNBC, further indicating that BIRC5 may serve as a promising prognostic biomarker that contributes to chemoresistance and could be a possible therapeutic target. Meanwhile, several in vitro studies show that flavonoids were highly effective in inhibiting BIRC5 in genetically diverse TNBC cells. Therefore, flavonoids would be a promising strategy for preventing and treating TNBC patients with the BIRC5 molecule.
Collapse
|
13
|
Chemopreventive Efficacy of Thymoquinone in Chemically Induced Urinary Bladder Carcinogenesis in Rat. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6276768. [PMID: 36158887 PMCID: PMC9499785 DOI: 10.1155/2022/6276768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
The effects of thymoquinone (TQ) in a carcinogen-based models of urinary bladder cancer were evaluated, using 45 male rats in five groups. In negative control (
), only tap water was given. In positive control (
), the rats received 0.05% N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) in drinking water for 9 weeks. In preventive groups with 25 mg/kg (
) and 50 mg/kg (
), oral TQ was concurrently given with 0.05% BBN for 9 weeks and continued for one more week after cessation of BBN. Preventive-treatment group (
) received 50 mg/kg TQ orally for 20 weeks. Five rats from each group were sequentially sacrificed in two phases: the induction phase at 12th week (except the last group) and the rest in postinduction phase at 20th week. The bladders were examined macroscopically for lesion formation, and the masses were submitted for histopathological evaluation. Markers for total oxidant status (TOS), inflammation (nuclear factor kappa B (NF-κB)), and angiogenesis (vascular endothelial growth factor (VEGF)) were also assessed. There was a reduced number of bladder lesions in the TQ groups versus the carcinogen group at both phases. Histopathological findings demonstrated a significant improvement in the abnormal morphological changes in the urothelium of the TQ-treated groups. Thymoquinone exerted a significant antioxidant and anti-inflammatory effect by a decrease in serum level of TOS and NF-κB at week 12 which was maintained low in phase two at week 20. The serum level of VEGF was also alleviated in the induction phase at week 12 and maintained low in postinduction period. In TQ preventive-treatment approach, a nonsignificant elevation of serum level of TOS and NF-κB and slight reduction in VEGF were observed at the end of the experiment. These data suggest that TQ may be effective in preventing bladder carcinogenesis, and the suggested mechanisms might be related to antioxidant, prooxidant, and anti-inflammatory properties of TQ.
Collapse
|
14
|
Adinew GM, Messeha SS, Taka E, Badisa RB, Antonie LM, Soliman KFA. Thymoquinone Alterations of the Apoptotic Gene Expressions and Cell Cycle Arrest in Genetically Distinct Triple-Negative Breast Cancer Cells. Nutrients 2022; 14:2120. [PMID: 35631261 PMCID: PMC9144154 DOI: 10.3390/nu14102120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/08/2023] Open
Abstract
Breast cancer (BC) is the most common cancer in women worldwide, and it is one of the leading causes of cancer death in women. triple-negative breast Cancer (TNBC), a subtype of BC, is typically associated with the highest pathogenic grade and incidence in premenopausal and young African American (AA) women. Chemotherapy, the most common treatment for TNBC today, can lead to acquired resistance and ineffective treatment. Therefore, novel therapeutic approaches are needed to combat medication resistance and ineffectiveness in TNBC patients. Thymoquinone (TQ) is shown to have a cytotoxic effect on human cancer cells in vitro. However, TQ's mode of action and precise mechanism in TNBC disease in vitro have not been adequately investigated. Therefore, TQ's effects on the genetically different MDA-MB-468 and MDA-MB-231 human breast cancer cell lines were assessed. The data obtained show that TQ displayed cytotoxic effects on MDA-MB-468 and MDA-MB-231 cells in a time- and concentration-dependent manner after 24 h, with IC50 values of 25.37 µM and 27.39 µM, respectively. Moreover, MDA-MB-231 and MDA-MB-468 cells in a scratched wound-healing assay displayed poor wound closure, inhibiting invasion and migration via cell cycle blocking after 24 h. TQ arrested the cell cycle phase in MDA-MB-231 and MDA-MB-468 cells. The three cell cycle stages in MDA-MB-468 cells were significantly affected at 15 and 20 µM for G0/G1 and S phases, as well as all TQ concentrations for G2/M phases. In MDA-MB-468 cells, there was a significant decrease in G0/G1 phases with a substantial increase in the S phase and G2/M phases. In contrast, MDA-MB-231 showed a significant effect only during the two cell cycle stages (S and G2/M), at concentrations of 15 and 20 µM for S phases and all TQ values for G2/M phases. The TQ effect on the apoptotic gene profiles indicated that TQ upregulated 15 apoptotic genes in MDA-MB-231 TNBC cells, including caspases, GADD45A, TP53, DFFA, DIABLO, BNIP3, TRAF2/3, and TNFRSF10A. In MDA-MB-468 cells, 16 apoptotic genes were upregulated, including TNFRSF10A, TNF, TNFRSF11B, FADD TNFRSF10B, CASP2, and TRAF2, all of which are important for the apoptotic pathway andsuppress the expression of one anti-apoptotic gene, BIRC5, in MDA-MB-231 cells. Compared to MDA-MB-231 cells, elevated levels of TNF and their receptor proteins may contribute to their increased sensitivity to TQ-induced apoptosis. It was concluded from this study that TQ targets the MDA-MB-231 and MDA-MB-468 cells differently. Additionally, due to the aggressive nature of TNBC and the lack of specific therapies in chemoresistant TNBC, our findings related to the identified apoptotic gene profile may point to TQ as a potential agent for TNBC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, Institute of Public Health, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (G.M.A.); (S.S.M.); (E.T.); (R.B.B.); (L.M.A.)
| |
Collapse
|