1
|
Addae HY, Apprey C, Kwarteng A. Gut Microbiome-Targeted Nutrition Interventions and Growth among Children in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. Curr Dev Nutr 2024; 8:102085. [PMID: 38455707 PMCID: PMC10918490 DOI: 10.1016/j.cdnut.2024.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
Background Childhood malnutrition is a public health challenge of much interest and concern globally. However, a perturbed gut microbiome (GM) may limit some nutrition interventions' effects among healthy children with undernutrition. Objectives This review aimed to evaluate the effects of GM-targeted nutrition interventions on growth outcomes among children (0-59 mo) using published studies in low- and middle-income countries. Methods The methods were guided by the Cochrane methodology. The literature search was conducted to include articles published from inception to July 2023 in PubMed, Google Scholar, and Cochrane Databases. We identified and included 35 studies among 11,047 children. The analysis was conducted considering various growth parameters in the qualitative synthesis and weight gain (kg) in the meta-analysis. Results In the qualitative synthesis, 55.6% of prebiotics, 66.7% of probiotics, 71.4% of synbiotics, and 28.6% of "microbiome complementary feed" studies had significant effects on growth outcomes. Also, prebiotics had more studies with significant effects among healthy children, whereas probiotics, synbiotics, and "microbiome complementary feeds" had more studies with significant effects among children with undernutrition. Nineteen studies were included in the meta-analyses, of which 7 (36.8%) measured GM outcomes. The meta-analysis showed that prebiotics exhibited heterogeneity but had significant effects on weight in the intervention as compared with the control (mean difference [MD]: 0.14 kg; 95% CI: 0.02, 0.25; I2 = 63%, P = 0.02; 4 studies, n = 932). Probiotics had significant effects on weight in the intervention (MD: 0.15 kg; 95% CI: 0.06, 0.25; I2 = 42%, P = 0.05; 8 studies, n = 2437) as compared to the control. However, synbiotics (MD: 0.26 kg; 95% CI: -0.04, 0.56; I2 = 41%, P = 0.17; 4 studies, n = 1896] and "microbiome complementary feed" (MD: -0.03 kg; 95% CI: -0.18, 0.11; I2 = 0%, P = 0.60; 3 studies, n = 733] had no significant effects on weight in the intervention as compared with control. Conclusions Although probiotics and synbiotics may be effective at enhancing growth among children, the selection of interventions should be contingent upon health status.This trial was registered at www.crd.york.ac.uk/prospero/ as CRD42023434109.
Collapse
Affiliation(s)
- Hammond Yaw Addae
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- Nursing Department, Nursing and Midwifery Training College, Kpembe, Ghana
| | - Charles Apprey
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, KNUST, Kumasi, Ghana
| |
Collapse
|
2
|
Pfluger BA, Giunta A, Calvimontes DM, Lamb MM, Delgado-Zapata R, Ramakrishnan U, Ryan EP. Pilot Study of Heat-Stabilized Rice Bran Acceptability in Households of Rural Southwest Guatemala and Estimates of Fiber, Protein, and Micro-Nutrient Intakes among Mothers and Children. Nutrients 2024; 16:460. [PMID: 38337744 PMCID: PMC10856929 DOI: 10.3390/nu16030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Nutrient-dense, acceptable foods are needed in low-resource settings. Rice bran, a global staple byproduct of white rice processing, is rich in amino acids, fibers, and vitamins, when compared to other cereal brans. This pilot study examines the nutritional contribution of rice bran to the daily diets of mother-child pairs in rural southwest Guatemala. Thirty households were screened. Mothers (≥18 years) and children (6 to 24 months) completed 24 h dietary recalls at baseline and after 12 weeks (endline) for diet intake and diversity analyses. During biweekly visits for 12 weeks, households with <5 members received 14 packets containing 60 g of heat-stabilized rice bran, and those with ≥5 members received 28 packets. The macro- and micro-nutrient contributions of rice bran and whole, cooked black beans were included in dietary simulation models with average intakes established between the recalls and for comparison with dietary reference intakes (DRIs). A baseline child food frequency questionnaire was administered. The 27 mothers and 23 children with complete recalls were included in analyses. Daily maternal consumption of 10 g/d of rice bran plus 100 g/d of black beans resulted in all achieving at least 50% of the fiber, protein, magnesium, niacin, potassium, and thiamin DRIs. Daily child consumption of 3 g/d of rice bran plus 10 g/d of black beans resulted in all achieving at least 50% of the magnesium, niacin, phosphorous, and thiamine DRIs. For 15/17 food categories, male children had a higher intake frequency, notably for animal-source foods and coffee. Dietary rice bran coupled with black beans could improve nutritional adequacy, especially for fiber and key micro-nutrients, with broader implications for addressing maternal and child malnutrition in low-resource settings.
Collapse
Affiliation(s)
- Brigitte A. Pfluger
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA;
| | - Alexis Giunta
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA;
| | - Diva M. Calvimontes
- Center for Human Development, Fundacion para la Salud Integral de los Guatemaltecos, FUNSALUD, Coatepeque 09020, Quetzaltenango, Guatemala;
- Departament of Pediatrics, Center for Global Health, University of Colorado, Aurora, CO 80045, USA
- Center for Global Health, Colorado School of Public Health, Aurora, CO 80045, USA; (M.M.L.); (R.D.-Z.)
| | - Molly M. Lamb
- Center for Global Health, Colorado School of Public Health, Aurora, CO 80045, USA; (M.M.L.); (R.D.-Z.)
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Roberto Delgado-Zapata
- Center for Global Health, Colorado School of Public Health, Aurora, CO 80045, USA; (M.M.L.); (R.D.-Z.)
- Department of Community & Behavioral Health, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Usha Ramakrishnan
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA 30322, USA;
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Colorado School of Public Health, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
3
|
Tipton M, Baxter BA, Pfluger BA, Sayre-Chavez B, Muñoz-Amatriaín M, Broeckling CD, Shani I, Steiner-Asiedu M, Manary M, Ryan EP. Urine and Dried Blood Spots From Children and Pregnant Women Reveal Phytochemicals, Amino Acids, and Carnitine Metabolites as Cowpea Consumption Biomarkers. Mol Nutr Food Res 2024; 68:e2300222. [PMID: 38233141 DOI: 10.1002/mnfr.202300222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/23/2023] [Indexed: 01/19/2024]
Abstract
SCOPE Legumes consumption has been proven to promote health across the lifespan; cowpeas have demonstrated efficacy in combating childhood malnutrition and growth faltering, with an estimated malnutrition prevalence of 35.6% of children in Ghana. This cowpea feeding study aimed to identify a suite of metabolic consumption biomarkers in children and adults. METHODS AND RESULTS Urine and dried blood spots (DBS) from 24 children (9-21 months) and 21 pregnant women (>18 years) in Northern Ghana are collected before and after dose-escalated consumption of four cowpea varieties for 15 days. Untargeted metabolomics identified significant increases in amino acids, phytochemicals, and lipids. The carnitine metabolism pathway is represented by 137 urine and 43 DBS metabolites, with significant changes to tiglylcarnitine and acetylcarnitine. Additional noteworthy candidate biomarkers are mansouramycin C, N-acetylalliin, proline betaine, N2, N5-diacetylornithine, S-methylcysteine, S-methylcysteine sulfoxide, and cis-urocanate. S-methylcysteine and S-methylcysteine sulfoxide are targeted and quantified in urine. CONCLUSION This feeding study for cowpea biomarkers supports the utility of a suite of key metabolites classified as amino acids, lipids, and phytochemicals for dietary legume and cowpea-specific food exposures of global health importance.
Collapse
Affiliation(s)
- Madison Tipton
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Bridget A Baxter
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Brigitte A Pfluger
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, 30322, USA
| | - Brooke Sayre-Chavez
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, 80521, USA
| | - María Muñoz-Amatriaín
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, 80521, USA
- Departamento de Biología Molecular - Área de Genética, Universidad de León, León, 24071, Spain
| | - Corey D Broeckling
- Analytical Resources Core: Bioanalysis and Omics Center, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Issah Shani
- Department of Nutrition and Food Science, College of Basic and Applied Science, University of Ghana, Legon, Accra, P.O. Box LG 134 Legon, Ghana
| | - Matilda Steiner-Asiedu
- Department of Nutrition and Food Science, College of Basic and Applied Science, University of Ghana, Legon, Accra, P.O. Box LG 134 Legon, Ghana
| | - Mark Manary
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, 63110, USA
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
4
|
Bossi E, Limo E, Pagani L, Monza N, Serrao S, Denti V, Astarita G, Paglia G. Revolutionizing Blood Collection: Innovations, Applications, and the Potential of Microsampling Technologies for Monitoring Metabolites and Lipids. Metabolites 2024; 14:46. [PMID: 38248849 PMCID: PMC10818866 DOI: 10.3390/metabo14010046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Blood serves as the primary global biological matrix for health surveillance, disease diagnosis, and response to drug treatment, holding significant promise for personalized medicine. The diverse array of lipids and metabolites in the blood provides a snapshot of both physiological and pathological processes, with many routinely monitored during conventional wellness checks. The conventional method involves intravenous blood collection, extracting a few milliliters via venipuncture, a technique limited to clinical settings due to its dependence on trained personnel. Microsampling methods have evolved to be less invasive (collecting ≤150 µL of capillary blood), user-friendly (enabling self-collection), and suitable for remote collection in longitudinal studies. Dried blood spot (DBS), a pioneering microsampling technique, dominates clinical and research domains. Recent advancements in device technology address critical limitations of classical DBS, specifically variations in hematocrit and volume. This review presents a comprehensive overview of state-of-the-art microsampling devices, emphasizing their applications and potential for monitoring metabolites and lipids in blood. The scope extends to diverse areas, encompassing population studies, nutritional investigations, drug discovery, sports medicine, and multi-omics research.
Collapse
Affiliation(s)
- Eleonora Bossi
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Elena Limo
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Lisa Pagani
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Nicole Monza
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Simone Serrao
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Vanna Denti
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| | - Giuseppe Astarita
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA;
| | - Giuseppe Paglia
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (E.B.); (E.L.); (L.P.); (N.M.); (V.D.)
| |
Collapse
|
5
|
Vilander AC, Hess A, Abdo Z, Ibrahim H, Doumbia L, Douyon S, Koné K, Boré A, Zambrana LE, Vilchez S, Koita O, Ryan EP. A Randomized Controlled Trial of Dietary Rice Bran Intake on Microbiota Diversity, Enteric Dysfunction, and Fecal Secretory IgA in Malian and Nicaraguan Infants. J Nutr 2022; 152:1792-1800. [PMID: 35441218 PMCID: PMC9258582 DOI: 10.1093/jn/nxac087] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/09/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Malnutrition and diarrhea are leading causes of death in children aged <5 y. Rice bran is a nutrient-dense prebiotic available globally. OBJECTIVES The objective of this secondary analysis was to evaluate the effects of daily rice bran supplementation on environmental enteric dysfunction (EED) markers, total fecal secretory IgA (sIgA), and microbiota in infants at high risk of malnutrition. METHODS Six-month-old Malian and Nicaraguan infants were randomly assigned to control or daily rice bran supplementation cohorts (1 to 5 g/d). Feces were collected monthly for 6 mo to evaluate fecal sIgA, markers of EED, and microbiota diversity. Statistical methods included linear mixed models, generalized mixed models, Spearman correlation, and Wilcoxon rank-sum tests. RESULTS Six-month-old Malian infants had significantly elevated sIgA (4.0× higher, P < 0.001), fecal myeloperoxidase (31.6× higher, P < 0.001), fecal α1-antitrypsin (1.8× higher, P = 0.006), and lower fecal neopterin (0.13× higher, P < 0.001) than the age-matched Nicaraguan infants. In the Nicaraguan rice bran cohort from 6 to 12 mo of age, there was a significant decrease in sIgA concentrations (0.4×, P < 0.05) and a correlation between sIgA and the EED marker α1-antitrypsin (0.523, P < 0.0001) at 12 mo of age. In Malian infants, daily rice bran ingestion resulted in decreased EED scores (0.71×, P = 0.02) and a stable sIgA concentration over time. The rice bran group of Malian infants also had correlation between sIgA and the EED marker neopterin (0.544, P < 0.001) at 12 mo of age and a significant (P < 0.05) increase in microbiota α-diversity at a younger age (9 mo with rice bran compared with 10 mo in control group), which supports earlier microbiota maturation. CONCLUSIONS These results support rice bran as a functional food ingredient targeting gut mucosa in children at high-risk of malnutrition.
Collapse
Affiliation(s)
- Allison C Vilander
- Department of Microbiology, Immunology, and Pathology; College of Veterinary Medicine and Veterinary Science; Colorado State University, Fort Collins, CO, USA
| | - Ann Hess
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology, and Pathology; College of Veterinary Medicine and Veterinary Science; Colorado State University, Fort Collins, CO, USA
| | - Hend Ibrahim
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA,Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Lassina Doumbia
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Seydou Douyon
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Karim Koné
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Abdoulaye Boré
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Luis E Zambrana
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medicine Sciences, National Autonomous University of Nicaragua, Leόn, Nicaragua
| | - Samuel Vilchez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medicine Sciences, National Autonomous University of Nicaragua, Leόn, Nicaragua
| | - Ousmane Koita
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | | |
Collapse
|