1
|
Qiu P, Xia A, Yang X, Yi L, Ouyang Y, Yao Y, Liu H, Li L, Zhang Z. Metabolomic analysis reveals the potential of fucosylated chondroitin sulfate from sea cucumber in modulating metabolic homeostasis. J Pharm Biomed Anal 2024; 252:116509. [PMID: 39423606 DOI: 10.1016/j.jpba.2024.116509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/17/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
In this study, we prepared four derivatives of fucosylated chondroitin sulfate (FCS): full-length FCS (flFCS) from Holothuria leucospilota, low molecular weight FCS (lmFCS) derived from flFCS, and their de-branched counterparts, de-branched flFCS (d-flFCS) and de-branched lmFCS (d-lmFCS) via controlled acid treatment. Following structural verification using various analytical techniques, we applied targeted metabolomics to examine the impact of FCS on nutritional efficacy and its structure-activity relationship. Analysis of 225 plasma and feces samples from 75 mice revealed a positive correlation between metabolomic shifts and increased weight gain, underscoring FCS's potential to enhance nutrient absorption and promote growth. The observed linear relationship between the levels of short-chain fatty acids in plasma and feces suggests that FCS may facilitate catabolic activities in the gastrointestinal tract. The comparative study of different FCS derivatives on mouse growth and metabolic homeostasis regulation led to the conclusion that FCS exhibits greater biological activity with a higher degree of branching and larger molecular weight.
Collapse
Affiliation(s)
- Piaopiao Qiu
- Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Aihua Xia
- Shanghai InnoiHealth Biopharmaceutical Co., Ltd., Shanghai 201203, China
| | - Xinying Yang
- Shanghai InnoiHealth Biopharmaceutical Co., Ltd., Shanghai 201203, China
| | - Lin Yi
- Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yilan Ouyang
- Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yiming Yao
- Suzhou Ronnsi Pharma Co., Ltd, Suzhou, Jiangsu 215125, China
| | - Haiying Liu
- Haihe Biopharma Co., Ltd., Pudong, Shanghai 201203, China.
| | - Liang Li
- Shanghai InnoiHealth Biopharmaceutical Co., Ltd., Shanghai 201203, China.
| | - Zhenqing Zhang
- Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China.
| |
Collapse
|
2
|
Seo HD, Lee JY, Park SH, Lee E, Hahm JH, Ahn J, Jang AR, An SH, Ha JH, No KT, Jung CH. Identification of novel anti-obesity saponins from the ovary of sea cucumber ( Stichopus japonicus). Heliyon 2024; 10:e36943. [PMID: 39281516 PMCID: PMC11401225 DOI: 10.1016/j.heliyon.2024.e36943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/18/2024] Open
Abstract
The potential anti-obesity effects of sea cucumber extract have been reported. However, the individual saponins responsible for these effects are yet to be isolated and characterized. This study aimed to identify the most effective sea cucumber body part for inhibiting lipid accumulation in adipocytes and to elucidate the compounds responsible for this effect using nuclear magnetic resonance (NMR) techniques. Sea cucumber ovary 80 % ethanol extract (SCOE) demonstrated remarkable efficacy in inhibiting adipocyte differentiation compared to other sea cucumber body parts with 50 % or 80 % ethanol extracts. SCOE anti-obesity effect was evaluated in C57BL/6 mice fed a high-fat diet, which revealed significant reductions in body weight, serum lipids, adipose tissue, and liver weight. Using column chromatography, eight saponins were isolated from the SCOE, four of which exhibited potent inhibitory effects on adipocyte differentiation. Of these, three active saponins, holotoxins A, B, and D1, were newly identified. These findings highlight the potential of SCOE and its saponins as effective anti-obesity agents.
Collapse
Affiliation(s)
- Hyo-Deok Seo
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Ji-Young Lee
- Bioinformatics and Molecular Design Research Center, Yonsei University, Incheon, 21983, Republic of Korea
| | - So-Hyun Park
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Jeollabuk-do, 55365, Republic of Korea
| | - Eunyoung Lee
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Jeong-Hoon Hahm
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Jiyun Ahn
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Jeollabuk-do, 55365, Republic of Korea
| | - A Ra Jang
- Bioinformatics and Molecular Design Research Center, Yonsei University, Incheon, 21983, Republic of Korea
| | - So Hee An
- Bioinformatics and Molecular Design Research Center, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jang Ho Ha
- Bioinformatics and Molecular Design Research Center, Yonsei University, Incheon, 21983, Republic of Korea
| | - Kyoung Tai No
- Bioinformatics and Molecular Design Research Center, Yonsei University, Incheon, 21983, Republic of Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Jeollabuk-do, 55365, Republic of Korea
| |
Collapse
|
3
|
Guan L, Liao YH, Cao MX, Liu LY, Xue HT, Zhu HR, Bian CH, Yang F, Lin HW, Liao HZ, Sun F. Sponge-derived alkaloid AP-7 as a sensitizer to cisplatin in the treatment of multidrug-resistant NSCLC via Chk1-dependent mechanisms. Front Pharmacol 2024; 15:1423684. [PMID: 39045048 PMCID: PMC11263074 DOI: 10.3389/fphar.2024.1423684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Multidrug resistance is a substantial obstacle in treating non-small cell lung cancer (NSCLC) with therapies like cisplatin (DDP)-based adjuvant chemotherapy and EGFR-tyrosine kinase inhibitors (TKIs). Aaptamine-7 (AP-7), a benzonaphthyridine alkaloid extracted from Aaptos aaptos sponge, has been shown to exhibit a broad spectrum of anti-tumor activity. However, the anti-cancer activity of AP-7 in combination with DDP and its molecular mechanisms in multidrug-resistant NSCLC are not yet clear. Our research indicates that AP-7 bolsters the growth inhibition activity of DDP on multidrug-resistant NSCLC cells. AP-7 notably disrupts DDP-induced cell cycle arrest and amplifies DDP-induced DNA damage effects in these cells. Furthermore, the combination of AP-7 and DDP downregulates Chk1 activation, interrupts the DNA damage repair-dependent Chk1/CDK1 pathway, and helps to overcome drug resistance and boost apoptosis in multidrug-resistant NSCLC cells and a gefitinib-resistant xenograft mice model. In summary, AP-7 appears to enhance DDP-induced DNA damage by impeding the Chk1 signaling pathway in multidrug-resistant NSCLC, thereby augmenting growth inhibition, both in vitro and in vivo. These results indicate the potential use of AP-7 as a DDP sensitizer in the treatment of multidrug-resistant NSCLC.
Collapse
Affiliation(s)
- Li Guan
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Ya-Hui Liao
- Department of Pharmacy, Huangpu Branch, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng-Xue Cao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Li-Yun Liu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Hai-Tao Xue
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Hong-Rui Zhu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Chang-Hao Bian
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Fan Yang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Hong-Ze Liao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Fan Sun
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
4
|
Harini R, Natarajan V, Sunil CK. Sea cucumber significance: Drying techniques and India's comprehensive status. J Food Sci 2024; 89:3995-4018. [PMID: 38847764 DOI: 10.1111/1750-3841.17153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 07/04/2024]
Abstract
Sea cucumbers, members of the echinoderm class Holothuroidea, are marine invertebrates with ecological significance and substantial commercial value. With approximately 1700 species, these organisms contribute to marine ecosystems through nutrient cycling and face various threats, including overfishing and habitat loss. Despite their importance, they are extensively exploited for diverse applications, from seafood to pharmaceuticals. This study investigates sea cucumbers' nutritional profile and bioactive elements, emphasizing their role as sources of essential compounds with potential health benefits. The demand for sea cucumbers, especially in dried form, is significant, prompting exploration into various drying techniques. Examining the global trade in sea cucumbers highlights their economic importance and the conservation challenges they face. Conservation efforts, such as awareness campaigns and international collaboration, are evaluated as essential steps in combating illicit trade and promoting the sustainable stewardship of sea cucumber populations. PRACTICAL APPLICATION: Around 1700 species of sea cucumbers were identified as vital ecological scavengers in the Holothuroidea class. High commercial value due to their health benefits, particularly their demonstrated inhibitory effect against various types of cancer. "Beche-de-mer" holds a 90% market share and is regarded as a luxury food item in Southeast Asian countries. Due to overexploitation, the species is classified as Schedule I under the Wildlife Protection Act (WPA) in India, prompting the implementation of a blanket ban on their harvesting to ensure its conservation.
Collapse
Affiliation(s)
- Ravi Harini
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - Venkatachalapathy Natarajan
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - C K Sunil
- Department of Food Engineering, National Institute of Food Technology, Entrepreneurship and Management-Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| |
Collapse
|
5
|
Liu Y, Fang C, Luo J, Gong C, Wang L, Zhu S. Traditional Chinese Medicine for Cancer Treatment. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:583-604. [PMID: 38716616 DOI: 10.1142/s0192415x24500253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In recent years, due to advancements in medical conditions and the development of scientific research, the fundamental research of TCM antitumor treatments has progressed from the cellular level to the molecular and genetic levels. Previous studies have demonstrated the significant role of traditional Chinese medicine (TCM) in antitumor therapy through various mechanisms and pathways. Its mechanism of action is closely associated with cancer biology across different stages. This includes inhibiting tumor cell proliferation, blocking invasion and metastasis to surrounding tissues, inducing tumor cell apoptosis, inhibiting tumor angiogenesis, regulating immune function, maintaining genome stability, preventing mutation, and regulating cell energy metabolism. The use of TCM for eliciting antitumor effects not only has a good therapeutic effect and low side effects, it also provides a solid theoretical basis for clinical treatment and medication. This paper reviews the mechanism of the antitumor effects of TCM based on tumor characteristics. Through our review, we found that TCM not only directly inhibits tumors, but also enhances the body's immunity, thereby indirectly inducing an antitumor effect. This function aligns with the TCM theory of "strengthening the body's resistance to eliminate pathogenic factors". Furthermore, TCM will play a significant role in tumor treatment in clinical settings.
Collapse
Affiliation(s)
- Yangli Liu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Cheng Fang
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Jiaojiao Luo
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Chenyuan Gong
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Lixin Wang
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| | - Shiguo Zhu
- Department of Immunology and Pathogenic Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China
| |
Collapse
|
6
|
Minami Y, B Gowda SG, Gowda D, Chiba H, Hui SP. Regio-specific lipid fingerprinting of edible sea cucumbers using LC/MS. Food Res Int 2024; 184:114253. [PMID: 38609231 DOI: 10.1016/j.foodres.2024.114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Sea cucumbers are a rich source of bioactive compounds and are gaining popularity as nutrient-rich seafood. They are consumed as a whole organism in Pacific regions. However, limited data are available on the comparison of their lipid composition and nutritional value. In this study, untargeted liquid chromatography/mass spectrometry was applied to comprehensively profile lipids in the skin, meat, and intestinal contents of three color-distinct edible sea cucumbers. Multivariate principal component analysis revealed that the lipid composition of the intestinal contents of red, black, and blue sea cucumbers differs from that of skin, and meats. Polyunsaturated fatty acids (PUFAs) are abundant in the intestinal contents, followed by meats of sea cucumber. Lipid nutritional quality assessments based on fatty acid composition revealed a high P:S ratio, low index of atherogenicity, and high health promotion indices for the intestinal contents of red sea cucumber, suggesting its potential health benefits. In addition, hierarchical cluster analysis revealed that the intestinal contents of sea cucumbers were relatively high in PUFA-enriched phospholipids and lysophospholipids. Ceramides are abundant in black skin, blue meat, and red intestinal content samples. Overall, this study provides the first insights into a comprehensive regio-specific profile of the lipid content of sea cucumbers and their potential use as a source of lipid nutrients in food and nutraceuticals.
Collapse
Affiliation(s)
- Yusuke Minami
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo 060-0809, Japan.
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma, Nishi-4-3-1-15, Higashi-ku, Sapporo 007-0894, Japan.
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
7
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
8
|
Zare A, Izanloo S, Khaledi S, Maratovich MN, Kaliyev AA, Abenova NA, Rahmanifar F, Mahdipour M, Bakhshalizadeh S, Shirazi R, Tanideh N, Tamadon A. A Bibliometric and In Silico-Based Analysis of Anti-Lung Cancer Compounds from Sea Cucumber. Mar Drugs 2023; 21:md21050283. [PMID: 37233477 DOI: 10.3390/md21050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Lung cancer is one of the most lethal malignancies in the world. However, current curative approaches for treating this type of cancer have some weaknesses. Therefore, scientists are attempting to discover new anti-lung cancer agents. Sea cucumber is a marine-derived source for discovering biologically active compounds with anti-lung cancer properties. To explore the anti-lung cancer properties of sea cucumber, we analyzed surveys using VOSviewer software and identified the most frequently used keywords. We then searched the Google Scholar database for compounds with anti-lung cancer properties within that keyword family. Finally, we used AutoDock 4 to identify the compounds with the highest affinity for apoptotic receptors in lung cancer cells. The results showed that triterpene glucosides were the most frequently identified compounds in studies examining the anti-cancer properties of sea cucumbers. Intercedenside C, Scabraside A, and Scabraside B were the three triterpene glycosides with the highest affinity for apoptotic receptors in lung cancer cells. To the best of our knowledge, this is the first time that anti-lung cancer properties of sea cucumber-derived compounds have been examined in in silico conditions. Ultimately, these three components displayed anti-lung cancer properties in in silico conditions and may be used for the manufacture of anti-lung cancer agents in the near future.
Collapse
Affiliation(s)
- Afshin Zare
- The PerciaVista Biotechnology Company, Shiraz 71676-83745, Iran
| | - Safoura Izanloo
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- School of Nursing, North Khorasan University of Medical Sciences, Bojnurd 94149-74877, Iran
| | - Sajed Khaledi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | | | | | - Nurgul Abdullayevna Abenova
- Department of Internal Diseases, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan
| | - Farhad Rahmanifar
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz 71348-14336, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 51666-53431, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-53431, Iran
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Biomedical & Health, UNSW Sydney, Sydney, NSW 1466, Australia
| | - Nader Tanideh
- The PerciaVista Biotechnology Company, Shiraz 71676-83745, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Department of Pharmacology, Medical School, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Amin Tamadon
- The PerciaVista Biotechnology Company, Shiraz 71676-83745, Iran
- Department for Scientific Work, West Kazakhstan Marat Ospanov Medical University, Aktobe 030010, Kazakhstan
| |
Collapse
|
9
|
Wargasetia TL, Ratnawati H, Widodo N, Widyananda MH. Antioxidant and Anti-inflammatory Activity of Sea Cucumber ( Holothuria scabra) Active Compounds against KEAP1 and iNOS Protein. Bioinform Biol Insights 2023; 17:11779322221149613. [PMID: 36688185 PMCID: PMC9850421 DOI: 10.1177/11779322221149613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/18/2022] [Indexed: 01/18/2023] Open
Abstract
Oxidative stress and inflammation have a role in the development of various diseases. Oxidative stress and inflammation are associated with many proteins, including Kelch ECH associating protein 1 (KEAP1) and inducible nitric oxide synthase (iNOS) proteins. The active compounds contained in Holothuria scabra have antioxidant and anti-inflammatory properties. This study aimed to evaluate the antioxidant and anti-inflammatory activity of sea cucumber's active compounds by targeting KEAP1 and iNOS proteins. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) scavenging activity of H. scabra extract were measured spectrophotometrically. The 3-dimensional (3D) structures of sea cucumber's active compounds and proteins were obtained from the PubChem and Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) databases. Molecular docking was performed using AutoDock Vina software. Molecular dynamics simulations were carried out using Yet Another Scientific Artificial Reality Application (YASARA) software with environmental parameters according to the cell's physiological conditions. The membrane permeability test was performed using the PerMM web server. The methanol extract of H. scabra had a weak antioxidant activity against DPPH and strong activity against NO radical. Scabraside and holothurinoside G had the most negative binding affinity values when interacting with the active site of KEAP1 and iNOS proteins. Molecular dynamics simulations also showed that both compounds were stable when interacting with KEAP1 and iNOS. However, scabraside and holothurinoside G were difficult to penetrate the cell plasma membrane, which is seen from the high energy transfer value in the lipid acyl chain region of phospholipids. Scabraside and holothurinoside G are predicted to act as antioxidants and anti-inflammations, but in their implementation to in vitro and in vivo study, it is necessary to have liposomes or nanoparticles, or other delivery methods to help these 2 compounds enter the cell.
Collapse
Affiliation(s)
- Teresa Liliana Wargasetia
- Faculty of Medicine, Universitas
Kristen Maranatha (Maranatha Christian University), Bandung, Indonesia,Teresa Liliana Wargasetia, Faculty of
Medicine, Universitas Kristen Maranatha (Maranatha Christian University),
Bandung, Indonesia.
| | - Hana Ratnawati
- Faculty of Medicine, Universitas
Kristen Maranatha (Maranatha Christian University), Bandung, Indonesia
| | - Nashi Widodo
- Biology Department, Faculty of
Mathematics and Natural Sciences, University of Brawijaya, Malang, Indonesia
| | | |
Collapse
|
10
|
Man J, Abd El‐Aty AM, Wang Z, Tan M. Recent advances in sea cucumber peptide: Production, bioactive properties, and prospects. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Jiacong Man
- School of Mechanical Engineering and Automation Dalian Polytechnic University Dalian Liaoning China
| | - A. M. Abd El‐Aty
- Department of Pharmacology, Faculty of Veterinary Medicine Cairo University Giza Egypt
- Department of Medical Pharmacology, Medical Faculty Ataturk University Erzurum Turkey
| | - Zuzhe Wang
- Dalian Blue Peptide Technology Research & Development Co., Ltd. Liaoning China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood, School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
| |
Collapse
|
11
|
Salindeho N, Nurkolis F, Gunawan WB, Handoko MN, Samtiya M, Muliadi RD. Anticancer and anticholesterol attributes of sea cucumbers: An opinion in terms of functional food applications. Front Nutr 2022; 9:986986. [PMID: 35990338 PMCID: PMC9386276 DOI: 10.3389/fnut.2022.986986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Netty Salindeho
- Fishery Products Technology Study Program, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University, Manado, Indonesia
| | - Fahrul Nurkolis
- Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | - William Ben Gunawan
- Nutrition Science Department, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | | | - Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh, India
| | - Rendy Dijaya Muliadi
- Health and Nutrition Science Executive, Nutrifood Research Center, PT Nutrifood Indonesia, Kawasan Industri Pulogadung, Jakarta, Indonesia
| |
Collapse
|
12
|
Vasarri M, Barletta E, Degl’Innocenti D. Marine Migrastatics: A Comprehensive 2022 Update. Mar Drugs 2022; 20:273. [PMID: 35621924 PMCID: PMC9145002 DOI: 10.3390/md20050273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Metastasis is responsible for the bad prognosis in cancer patients. Advances in research on metastasis prevention focus attention on the molecular mechanisms underlying cancer cell motility and invasion to improve therapies for long-term survival in cancer patients. The so-called "migrastatics" could help block cancer cell invasion and lead to the rapid development of antimetastatic therapies, improving conventional cancer therapies. In the relentless search for migrastatics, the marine environment represents an important source of natural compounds due to its enormous biodiversity. Thus, this review is a selection of scientific research that has pointed out in a broad spectrum of in vitro and in vivo models the anti-cancer power of marine-derived products against cancer cell migration and invasion over the past five years. Overall, this review might provide a useful up-to-date guide about marine-derived compounds with potential interest for pharmaceutical and scientific research on antimetastatic drug endpoints.
Collapse
Affiliation(s)
- Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.B.); (D.D.)
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.B.); (D.D.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (E.B.); (D.D.)
- Interuniversity Center of Marine Biology and Applied Ecology “G. Bacci” (CIBM), Viale N. Sauro 4, 57128 Livorno, Italy
| |
Collapse
|