1
|
Xu X, Zhang Z, Lin Y, Xie H. Risk of Excess Maternal Folic Acid Supplementation in Offspring. Nutrients 2024; 16:755. [PMID: 38474883 DOI: 10.3390/nu16050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
Folate, also known as vitamin B9, facilitates the transfer of methyl groups among molecules, which is crucial for amino acid metabolism and nucleotide synthesis. Adequate maternal folate supplementation has been widely acknowledged for its pivotal role in promoting cell proliferation and preventing neural tube defects. However, in the post-fortification era, there has been a rising concern regarding an excess maternal intake of folic acid (FA), the synthetic form of folate. In this review, we focused on recent advancements in understanding the influence of excess maternal FA intake on offspring. For human studies, we summarized findings from clinical trials investigating the effects of periconceptional FA intake on neurodevelopment and molecular-level changes in offspring. For studies using mouse models, we compiled the impact of high maternal FA supplementation on gene expression and behavioral changes in offspring. In summary, excessive maternal folate intake could potentially have adverse effects on offspring. Overall, we highlighted concerns regarding elevated maternal folate status in the population, providing a comprehensive perspective on the potential adverse effects of excessive maternal FA supplementation on offspring.
Collapse
Affiliation(s)
- Xiguang Xu
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ziyu Zhang
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Human Development and Family Science, College of Liberal Arts and Human Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yu Lin
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA
| | - Hehuang Xie
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA
- Translational Biology, Medicine, and Health Program, Virginia Tech, Blacksburg, VA 24061, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Fardous AM, Heydari AR. Uncovering the Hidden Dangers and Molecular Mechanisms of Excess Folate: A Narrative Review. Nutrients 2023; 15:4699. [PMID: 37960352 PMCID: PMC10648405 DOI: 10.3390/nu15214699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
This review delves into the intricate relationship between excess folate (vitamin B9) intake, especially its synthetic form, namely, folic acid, and its implications on health and disease. While folate plays a pivotal role in the one-carbon cycle, which is essential for DNA synthesis, repair, and methylation, concerns arise about its excessive intake. The literature underscores potential deleterious effects, such as an increased risk of carcinogenesis; disruption in DNA methylation; and impacts on embryogenesis, pregnancy outcomes, neurodevelopment, and disease risk. Notably, these consequences stretch beyond the immediate effects, potentially influencing future generations through epigenetic reprogramming. The molecular mechanisms underlying these effects were examined, including altered one-carbon metabolism, the accumulation of unmetabolized folic acid, vitamin-B12-dependent mechanisms, altered methylation patterns, and interactions with critical receptors and signaling pathways. Furthermore, differences in the effects and mechanisms mediated by folic acid compared with natural folate are highlighted. Given the widespread folic acid supplementation, it is imperative to further research its optimal intake levels and the molecular pathways impacted by its excessive intake, ensuring the health and well-being of the global population.
Collapse
Affiliation(s)
- Ali M. Fardous
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA;
| | - Ahmad R. Heydari
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA;
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
3
|
Zhang H, Zhang X, Wang Y, Zhao X, Zhang L, Li J, Zhang Y, Wang P, Liang H. Dietary Folic Acid Supplementation Attenuates Maternal High-Fat Diet-Induced Fetal Intrauterine Growth Retarded via Ameliorating Placental Inflammation and Oxidative Stress in Rats. Nutrients 2023; 15:3263. [PMID: 37513681 PMCID: PMC10385450 DOI: 10.3390/nu15143263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The placenta is particularly susceptible to inflammation and oxidative stress, leading to placental vascular dysfunction and placental insufficiency, which is associated with fetal intrauterine growth restriction (IUGR). It is unknown whether folic acid (FA) supplementation can alleviate high-fat diet-induced IUGR in rats by improving placental function. In this study, pregnant rats were randomized into one of four diet-based groups: (1) control diet (CON), (2) control diet supplemented with FA, (3) high-fat diet (HFD), and (4) high-fat diet supplemented with FA (HFD + FA). Dams were sacrificed at gestation day 18.5 (GD18.5). The results indicated that dietary FA supplementation normalized a maternal HFD-induced decrease in fetal weight. The decrease in placental efficiency, labyrinth zone (LZ) area, blood sinusoid area, vascular density, and the levels of angiogenesis factors induced by a maternal HFD were alleviated by the addition of FA, suggesting that FA supplementation can alleviate placental vascular dysplasia. Furthermore, FA supplementation increased the protein expressions of SIRT1, inhibited NF-κB transcriptional activation, attenuated the levels of NF-κB/downstream pro-inflammatory cytokines, induced Nrf2 activation, and increased downstream target protein expression. In conclusion, we found that dietary FA supplementation during pregnancy could improve maternal HFD-induced IUGR by alleviating placental inflammation and oxidative stress, which may be associated with the regulation of SIRT1 and its mediated NF-κB and Nrf2 signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.Z.); (X.Z.); (Y.W.); (X.Z.); (L.Z.); (J.L.); (Y.Z.); (P.W.)
| |
Collapse
|
4
|
Quadros EV. Folate and Other B Vitamins in Brain Health and Disease. Nutrients 2023; 15:nu15112525. [PMID: 37299487 DOI: 10.3390/nu15112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
B vitamins as a group play essential roles in a multitude of metabolic reactions involved in cellular replication, energy production, the synthesis of intermediary compounds, and neurotransmitters [...].
Collapse
Affiliation(s)
- Edward V Quadros
- Department of Medicine, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11209, USA
| |
Collapse
|
5
|
Steane SE, Cuffe JSM, Moritz KM. The role of maternal choline, folate and one-carbon metabolism in mediating the impact of prenatal alcohol exposure on placental and fetal development. J Physiol 2023; 601:1061-1075. [PMID: 36755527 PMCID: PMC10952912 DOI: 10.1113/jp283556] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Prenatal alcohol consumption (PAE) may be associated with a broad spectrum of impacts, ranging from no overt effects, to miscarriage, fetal growth restriction and fetal alcohol spectrum disorder. A major mechanism underlying the effects of PAE is considered to be altered DNA methylation and gene expression. Maternal nutritional status may be an important factor in determining the extent to which PAE impacts pregnancy outcomes, particularly the dietary micronutrients folate and choline because they provide methyl groups for DNA methylation via one carbon metabolism. This review summarises the roles of folate and choline in development of the blastocyst, the placenta and the fetal brain, and examines the evidence that maternal intake of these micronutrients can modify the effects of PAE on development. Studies of folate or choline deficiency have found reduced blastocyst development and implantation, reduced placental invasion, vascularisation and nutrient transport capability, impaired fetal brain development, and abnormal neurodevelopmental outcomes. PAE has been shown to reduce absorption and/or metabolism of folate and choline and to produce similar outcomes to maternal choline/folate deficiency. A few studies have demonstrated that the effects of PAE on brain development can be ameliorated by folate or choline supplementation; however, there is very limited evidence on the effects of supplementation in early pregnancy on the blastocyst and placenta. Further studies are required to support these findings and to determine optimal supplementation parameters.
Collapse
Affiliation(s)
- Sarah E. Steane
- School of Biomedical SciencesThe University of QueenslandSt LuciaQLDAustralia
| | - James S. M. Cuffe
- School of Biomedical SciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Karen M. Moritz
- School of Biomedical SciencesThe University of QueenslandSt LuciaQLDAustralia
| |
Collapse
|
6
|
Bobrowski-Khoury N, Sequeira JM, Quadros EV. Brain Uptake of Folate Forms in the Presence of Folate Receptor Alpha Antibodies in Young Rats: Folate and Antibody Distribution. Nutrients 2023; 15:nu15051167. [PMID: 36904166 PMCID: PMC10005127 DOI: 10.3390/nu15051167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
In a rat model, following exposure to rat folate receptor alpha antibodies (FRαAb) during gestation, FRαAb accumulates in the placenta and the fetus and blocks folate transport to the fetal brain and produces behavioral deficits in the offspring. These deficits could be prevented with folinic acid. Therefore, we sought to evaluate folate transport to the brain in young rat pups and determine what effect FRαAb has on this process, to better understand the folate receptor autoimmune disorder associated with cerebral folate deficiency (CFD) in autism spectrum disorders (ASD). When injected intraperitoneally (IP), FRαAb localizes to the choroid plexus and blood vessels including the capillaries throughout the brain parenchyma. Biotin-tagged folic acid shows distribution in the white matter tracts in the cerebrum and cerebellum. Since these antibodies can block folate transport to the brain, we orally administered various folate forms to identify the form that is better-absorbed and transported to the brain and is most effective in restoring cerebral folate status in the presence of FRαAb. The three forms of folate, namely folic acid, D,L-folinic acid and levofolinate, are converted to methylfolate while L-methylfolate is absorbed as such and all are efficiently distributed to the brain. However, significantly higher folate concentration is seen in the cerebrum and cerebellum with levofolinate in the presence or absence of FRαAb. Our results in the rat model support testing levofolinate to treat CFD in children with ASD.
Collapse
Affiliation(s)
| | - Jeffrey M. Sequeira
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Edward V. Quadros
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
- Correspondence:
| |
Collapse
|
7
|
Mishra NK, Shrinath P, Rao R, Shukla PK. Sex-Specific Whole-Transcriptome Analysis in the Cerebral Cortex of FAE Offspring. Cells 2023; 12:328. [PMID: 36672262 PMCID: PMC9856965 DOI: 10.3390/cells12020328] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Fetal alcohol spectrum disorders (FASDs) are associated with systemic inflammation and neurodevelopmental abnormalities. Several candidate genes were found to be associated with fetal alcohol exposure (FAE)-associated behaviors, but a sex-specific complete transcriptomic analysis was not performed at the adult stage. Recent studies have shown that they are regulated at the developmental stage. However, the sex-specific role of RNA in FAE offspring brain development and function has not been studied yet. Here, we carried out the first systematic RNA profiling by utilizing a high-throughput transcriptomic (RNA-seq) approach in response to FAE in the brain cortex of male and female offspring at adulthood (P60). Our RNA-seq data analysis suggests that the changes in RNA expression in response to FAE are marked sex-specific. We show that the genes Muc3a, Pttg1, Rec8, Clcnka, Capn11, and pnp2 exhibit significantly higher expression in the male offspring than in the female offspring at P60. FAE female mouse brain sequencing data also show an increased expression of Eno1, Tpm3, and Pcdhb2 compared to male offspring. We performed a pathway analysis using a commercial software package (Ingenuity Pathway Analysis). We found that the sex-specific top regulator genes (Rictor, Gaba, Fmri, Mlxipl) are highly associated with eIF2 (translation initiation), synaptogenesis (the formation of synapses between neurons in the nervous system), sirtuin (metabolic regulation), and estrogen receptor (involved in obesity, aging, and cancer) signaling. Taken together, our transcriptomic results demonstrate that FAE differentially alters RNA expression in the adult brain in a sex-specific manner.
Collapse
Affiliation(s)
- Nitish K. Mishra
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Pulastya Shrinath
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Radhakrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Pradeep K. Shukla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
8
|
Ihirwe RG, Martel J, Rahimi S, Trasler J. Protective and sex-specific effects of moderate dose folic acid supplementation on the placenta following assisted reproduction in mice. FASEB J 2023; 37:e22677. [PMID: 36515682 PMCID: PMC10108070 DOI: 10.1096/fj.202201428r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Epigenetic defects induced by assisted reproductive technologies (ART) have been suggested as a potential mechanism contributing to suboptimal placentation. Here, we hypothesize that ART perturbs DNA methylation (DNAme) and gene expression during early placenta development, leading to abnormal placental phenotypes observed at term. Since folic acid (FA) plays a crucial role in epigenetic regulation, we propose that FA supplementation can rescue ART-induced placental defects. Female mice were placed on a control diet (CD), a moderate 4-fold (FAS4) or high dose 10-fold (FAS10) FA-supplemented diet prior to ART and compared to a natural mating group. ART resulted in 41 and 28 differentially expressed genes (DEGs) in E10.5 female and male placentas, respectively. Many DEGs were implicated in early placenta development and associated with DNAme changes; a number clustered at known imprinting control regions (ICR). In females, FAS4 partially corrected alterations in gene expression while FAS10 showed evidence of male-biased adverse effects. DNAme and gene expression for five genes involved in early placentation (Phlda2, EphB2, Igf2, Peg3, L3mbtl1) were followed up in placentas from normal as well as delayed and abnormal embryos. Phlda2 and Igf2 expression levels were lowest after ART in placentas of female delayed embryos. Moreover, ART concomitantly reduced DNAme at the Kcnq1ot1 ICR which regulates Phlda2 expression; FAS4 partially improved DNAme in a sex-specific manner. In conclusion, ART-associated placental DNAme and transcriptome alterations observed at mid-gestation are sex-specific; they may help explain adverse placental phenotypes detected at term and are partially corrected by maternal moderate dose FA supplementation.
Collapse
Affiliation(s)
- Rita Gloria Ihirwe
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Josée Martel
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sophia Rahimi
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jacquetta Trasler
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.,Department of Pediatrics, McGill University, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|