1
|
张 先, 刘 健, 韩 琦, 陈 一, 丁 香, 陈 晓. [ Huangqin Qingrechubi Capsule alleviates inflammation and uric acid and lipid metabolism imbalance in rats with gouty arthritis by inhibiting the PTEN/PI3K/AKT signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1450-1458. [PMID: 39276040 PMCID: PMC11378038 DOI: 10.12122/j.issn.1673-4254.2024.08.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Indexed: 09/16/2024]
Abstract
OBJECTIVE To investigate the effects of Huangqin Qingrechubi Capsule (HQC) on inflammation and uric acid and lipid metabolism in rats with gouty arthritis (GA) and its mechanism. METHODS SD rat models of GA established by injecting monosodium urate into the right ankle joint were treated with saline, colchicine and HQC at low, medium and high doses (n=10) by gavage for 7 days. Toe swelling of the rats was detected at 4, 8, 24, 48 and 72 h after modeling, and synovial histological changes were observed with HE staining. Serum levels of interleukin-10 (IL-10), IL-18, tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), adiponectin, leptin, resistin and visfatin were measured by ELISA, and the levels of high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), total cholesterol (TC), and uric acid (BUA) were detected. RTqPCR and Western blotting were used to detect the mRNA expressions of phosphatase and tensin homolog (PTEN), phosphatidylinositol-3-kinase (PI3K) and protein kinase B (AKT) and the protein expressions of PTEN, PI3K, p-PI3K, AKT and p-AKT. RESULTS The rat models of GA showed obvious toe swelling, which reached the peak level at 48 h. HE staining revealed massive inflammatory cell infiltration and synovial tissue hyperplasia. The rat models showed significantly increased expressions of TNF-α, TGF-β1, IL-18, TC, TG, leptin, resistin and visfatin, BUA, p-PI3K, and p-AKT and lowered levels of IL-10, APN, HDL-C, and PTEN. Treatment with HQC and colchicine obviously improved these changes and alleviated synovial pathologies and toe swelling in the rat models. CONCLUSION HQC can improve inflammation and correct the imbalance of uric acid and lipid metabolism in GA rats possibly by inhibiting the PTEN/PI3K/AKT signaling pathway.
Collapse
|
2
|
Benucci I, Lombardelli C, Esti M. A comprehensive review on natural sweeteners: impact on sensory properties, food structure, and new frontiers for their application. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39154209 DOI: 10.1080/10408398.2024.2393204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
In recent years, the worldwide increase in lifestyle diseases and metabolic disorders has been ascribed to the excessive consumption of sucrose and added sugars. For this reason, many approaches have been developed in order to replace sucrose in food and beverage formulations with alternative sweetening compounds. The raising awareness concerning the synthetic sweeteners due to their negative impact on health, triggered the need to search for alternative substances. Natural sweeteners may be classified in: (i) non-nutritive (e.g., neohesperidine dihydrochalcone, thaumatin, glycyrrhizin mogroside and stevia) and (ii) bulk sweeteners, including both polyols (e.g., maltitol, mannitol, erythritol) and rare sugars (e.g., tagatose and allulose). In this review we discuss the most popular natural sweeteners and their application in the main food sectors (e.g., bakery, dairy, confectionary and beverage), providing a full understanding of their impact on the textural and sensory properties in comparison to sucrose. Furthermore, we analyze the use of natural sweeteners in blends, which in addition to enabling an effective replacement of sugar, in order to complement the merits and limits of individual compounds. Finally, microencapsulation technology is presented as an alternative strategy to solving some issues such as aftertaste, bitterness, unpleasant flavors, but also to enhance their stability and ease of use.
Collapse
Affiliation(s)
- Ilaria Benucci
- Department of Agriculture and Forestry Science (DAFNE), Tuscia University, via S. Camillo de Lellis snc, Viterbo, Italy
| | - Claudio Lombardelli
- Department of Agriculture and Forestry Science (DAFNE), Tuscia University, via S. Camillo de Lellis snc, Viterbo, Italy
| | - Marco Esti
- Department of Agriculture and Forestry Science (DAFNE), Tuscia University, via S. Camillo de Lellis snc, Viterbo, Italy
| |
Collapse
|
3
|
Erdem I, Aktas S, Ogut S. Neohesperidin Dihydrochalcone Ameliorates Experimental Colitis via Anti-Inflammatory, Antioxidative, and Antiapoptosis Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15715-15724. [PMID: 38961631 DOI: 10.1021/acs.jafc.4c02731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Neohesperidin dihydrochalcone (NHDC) is a citrus-originated, seminatural sweetener. There is no investigation concerning the effect of NHDC on ulcerative colitis. The purpose of this study was to determine the therapeutic and protective effects of NHDC in Wistar Albino rats. NHDC was given for 7 days after or before colitis induction. The results showed that NHDC significantly reduced the interleukin-6 (IL-6), interleukin-10 (IL-10), transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) levels. Catalase levels did not show a significant difference between the groups. NHDC provided a remarkable decrease in the expression levels of cyclooxygenase-2 (COX-2), myeloperoxidase (MPO), malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and nuclear factor kappa B (NF-κB). Total antioxidant status (TAS) levels were significantly elevated in NHDC treatment groups, while total oxidant status (TOS) and oxidative stress index (OSI) levels were significantly decreased. NHDC provided remarkable improvement in histological symptoms such as epithelial erosion, edema, mucosal necrosis, inflammatory cell infiltration, and hemorrhage. Also, caspase-3 expression levels were statistically decreased in NHDC treatment groups. The results indicated that NHDC might be a protection or alternative treatment for ulcerative colitis.
Collapse
Affiliation(s)
- Ilayda Erdem
- Department of Nutrition and Dietetics, Aydin Adnan Menderes University, Aydin 09010, Turkey
| | - Serdar Aktas
- Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin 09010, Turkey
| | - Serdal Ogut
- Department of Nutrition and Dietetics, Aydin Adnan Menderes University, Aydin 09010, Turkey
| |
Collapse
|
4
|
Niu W, Feng Y, Peng M, Cai J. A narrative review on the mechanism of natural flavonoids in improving glucolipid metabolism disorders. Phytother Res 2024. [PMID: 38924256 DOI: 10.1002/ptr.8276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Glucolipid metabolism disorder (GLMD) is a complex chronic disease characterized by glucose and lipid metabolism disorders with a complex and diverse etiology and rapidly increasing incidence. Many studies have identified the role of flavonoids in ameliorating GLMD, with mechanisms related to peroxisome proliferator-activated receptors, nuclear factor kappa-B, AMP-activated protein kinase, nuclear factor (erythroid-derived 2)-like 2, glucose transporter type 4, and phosphatidylinositol-3-kinase/protein kinase B pathway. However, a comprehensive summary of the flavonoid effects on GLMD is lacking. This study reviewed the roles and mechanisms of natural flavonoids with different structures in the treatment of GLMD reported globally in the past 5 years and provides a reference for developing flavonoids as drugs for treating GLMD.
Collapse
Affiliation(s)
- Wenjing Niu
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Yongshi Feng
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Minwen Peng
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| | - Jinyan Cai
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial TCM Key Laboratory for Metabolic Diseases, Guangzhou, China
| |
Collapse
|
5
|
Ohtsuka H, Shimasaki T, Aiba H. Low-Molecular Weight Compounds that Extend the Chronological Lifespan of Yeasts, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Adv Biol (Weinh) 2024; 8:e2400138. [PMID: 38616173 DOI: 10.1002/adbi.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Yeast is an excellent model organism for research for regulating aging and lifespan, and the studies have made many contributions to date, including identifying various factors and signaling pathways related to aging and lifespan. More than 20 years have passed since molecular biological perspectives are adopted in this research field, and intracellular factors and signal pathways that control aging and lifespan have evolutionarily conserved from yeast to mammals. Furthermore, these findings have been applied to control the aging and lifespan of various model organisms by adjustment of the nutritional environment, genetic manipulation, and drug treatment using low-molecular weight compounds. Among these, drug treatment is easier than the other methods, and research into drugs that regulate aging and lifespan is consequently expected to become more active. Chronological lifespan, a definition of yeast lifespan, refers to the survival period of a cell population under nondividing conditions. Herein, low-molecular weight compounds are summarized that extend the chronological lifespan of Saccharomyces cerevisiae and Schizosaccharomyces pombe, along with their intracellular functions. The low-molecular weight compounds are also discussed that extend the lifespan of other model organisms. Compounds that have so far only been studied in yeast may soon extend lifespan in other organisms.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
6
|
Kim Y, Han H, Oh Y, Shin H, Park G, Park S, Manthey JA, Kim Y, Kim Y. A combination of rebaudioside A and neohesperidin dihydrochalcone suppressed weight gain by regulating visceral fat and hepatic lipid metabolism in ob/ob mice. Food Sci Biotechnol 2024; 33:913-923. [PMID: 38371686 PMCID: PMC10866850 DOI: 10.1007/s10068-023-01391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 02/20/2024] Open
Abstract
Rebaudioside A (Reb A) and neohesperidin dihydrochalcone (NHDC) are known as intense sweeteners. This study aimed to examine the anti-obesity effects of Reb A and NHDC. C57BL/6 J-ob/ob mice were supplemented with Reb A (50 mg/kg body weight [b.w.]), NHDC (100 mg/kg b.w.), or their combination (COMB) for 4 weeks. COMB-supplemented mice showed significant reduction in b.w. gain, food efficiency ratio, and fat mass. Additionally, mice in the COMB group showed suppressed levels of genes related to adipogenesis, lipogenesis, and lipolysis in the perirenal fat and the levels of hepatic triglyceride, glutamic oxaloacetic transaminase, and glutamic pyruvic transaminase. The lipogenesis and pro-inflammatory gene expressions were also downregulated in the liver, whereas β-oxidation related genes were upregulated in the COMB group. In addition, mice that received COMB showed distinct gut microbiota structure, enriched in Blautia and Parabacteroides, and depleted in Faecalibaculum and Mucispirillum, in relation to the control group. These results suggest that supplementation with Reb A and NHDC may be an effective treatment for obesity-related metabolic disorders. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01391-1.
Collapse
Affiliation(s)
- Yeri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Hyejin Han
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Yeonsoo Oh
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | - Hakdong Shin
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Gwoncheol Park
- Department of Food Science & Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, 05006 Republic of Korea
| | - Sunghee Park
- CJ CheilJedang Blossom Park, Suwon, 16495 Republic of Korea
| | - John A. Manthey
- U.S. Horticultural Research Lab., U. S. Department of Agriculture, Agricultural Research Service, 2001 South Rock Road, Fort Pierce, FL 34945 USA
| | - Yang Kim
- Center for Food & Bioconvergence, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760 Republic of Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Zhang X, Liu J, Sun Y, Zhou Q, Ding X, Chen X. Chinese herbal compound Huangqin Qingrechubi capsule reduces lipid metabolism disorder and inflammatory response in gouty arthritis via the LncRNA H19/APN/PI3K/AKT cascade. PHARMACEUTICAL BIOLOGY 2023; 61:541-555. [PMID: 36994890 PMCID: PMC10064824 DOI: 10.1080/13880209.2023.2191641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/30/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
CONTEXT Gouty arthritis (GA) is a characteristically inflammatory disease often associated with lipid metabolism disorder. Huangqin Qingrechubi capsule (HQC) has been used for the treatment of GA. OBJECTIVE To explore the mechanism of HQC in the treatment of GA. MATERIALS AND METHODS A total of 30 GA patients (GA group) and 30 healthy subjects [normal control (NC) group] were recruited. The GA group was treated with HQC (3.6 g/d) for 10 days. Lipid metabolism and inflammation indexes were detected. Five herbal names of HQC, or 'gouty arthritis', 'hyperlipidemia' and 'inflammation' were used as key words to search related databases for network pharmacological analysis. Subsequently, GA-fibroblast-like synoviocytes (FLSs) were stimulated with GA-peripheral blood mononuclear cells (PBMCs) (3:1) and treated with HQC drug-containing serum (20%). RT-qPCR, Western blot, and ELISA were conducted to further explore the mechanism of HQC in improving GA. RESULTS In clinical observation, HQC decreased the expression of lncRNA H19 and IL-1β, and increased the expression of adiponectin (APN) and IL-4 in the GA group (about half). Through network pharmacology, the PI3K/AKT signaling pathway was identified. Cell experiments showed that HQC treatment reduced the viability of GA-FLSs (49.61%), up-regulated the expression of IL-4 (155.18%), IL-10 (165.13%), and APN (31.24%), and down-regulated the expression of lncRNA H19 (33.70%), IL-1β (64.70%), TNF-α (78.32%), p-PI3K (48.80%), and p-AKT (53.48%). DISCUSSION AND CONCLUSIONS HQC improved lipid metabolism disorder and inflammatory response of GA by regulating the lncRNA H19/APN/PI3K/AKT. Maintaining the stability of lipid metabolism may be an effective way to alleviate GA.
Collapse
Affiliation(s)
- Xianheng Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
| | - Yanqiu Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Qin Zhou
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xiang Ding
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xiaolu Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui, University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
8
|
Xiong S, Yu S, Wang K, Xiong X, Xia M, Zeng G, Huang Q. Dietary Apigenin Relieves Body Weight and Glycolipid Metabolic Disturbance via Pro-Browning of White Adipose Mediated by Autophagy Inhibition. Mol Nutr Food Res 2023; 67:e2200763. [PMID: 37436078 DOI: 10.1002/mnfr.202200763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/05/2023] [Indexed: 07/13/2023]
Abstract
SCOPE Apigenin (AP) has many pharmacological activities, including anti-inflammation, hyperlipidemia-lowering, and so on. Previous studies show that AP can reduce lipid accumulation in adipocytes in vitro. However, it remains unclear whether and how AP can promote fat-browning. Therefore, mouse obesity model and preadipocyte induction model in vitro are used to investigate the effects of AP on glycolipid metabolism, browning and autophagy as well as the possible mechanisms. METHODS AND RESULTS The obese mice are intragastrically administrated with AP (0.1 mg g-1 d-1 ) for 4 weeks; meanwhile, the differentiating preadipocytes are respectively treated with the indicated concentrations of AP for 48 h. Metabolic phenotype, lipid accumulation, and fat-browning are respectively evaluated by morphological, functional, and specific markers analysis. The results show that AP treatment alleviates the body weight, glycolipid metabolic disorder, and insulin resistance in the obese mice , which is contributed to the pro-browning effects of AP in vivo and in vitro. Moreover, the study finds that the pro-browning effect of AP is accomplished through autophagy inhibition mediated by the activation of PI3K-Akt-mTOR pathway. CONCLUSIONS The findings highlight that autophagy inhibition promotes the browning of white adipocytes and suggest that AP would prevent and treat obesity and the associated metabolic disorders.
Collapse
Affiliation(s)
- Shaofeng Xiong
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Shumin Yu
- Nanchang Joint Programme, Queen Mary University of London, Nanchang, Jiangxi, 330006, P. R. China
- 302 Clinical Medical School, Peking University, Beijing, 100039, P. R. China
| | - Kun Wang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Xiaowei Xiong
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Min Xia
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Guohua Zeng
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| | - Qiren Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
| |
Collapse
|
9
|
AL-Ishaq RK, Kubatka P, Büsselberg D. Sweeteners and the Gut Microbiome: Effects on Gastrointestinal Cancers. Nutrients 2023; 15:3675. [PMID: 37686707 PMCID: PMC10489909 DOI: 10.3390/nu15173675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Worldwide, the demand for natural and synthetic sweeteners in the food industry as an alternative to refined sugar is increasing. This has prompted more research to be conducted to estimate its safety and effects on health. The gut microbiome is critical in metabolizing selected sweeteners which might affect overall health. Recently, more studies have evaluated the relationship between sweeteners and the gut microbiome. This review summarizes the current knowledge regarding the role played by the gut microbiome in metabolizing selected sweeteners. It also addresses the influence of the five selected sweeteners and their metabolites on GI cancer-related pathways. Overall, the observed positive effects of sweetener consumption on GI cancer pathways, such as apoptosis and cell cycle arrest, require further investigation in order to understand the underlying mechanism.
Collapse
Affiliation(s)
- Raghad Khalid AL-Ishaq
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| |
Collapse
|
10
|
Akhter S, Arman MSI, Tayab MA, Islam MN, Xiao J. Recent advances in the biosynthesis, bioavailability, toxicology, pharmacology, and controlled release of citrus neohesperidin. Crit Rev Food Sci Nutr 2022; 64:5073-5092. [PMID: 36416093 DOI: 10.1080/10408398.2022.2149466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neohesperidin (hesperetin 7-O-neohesperidoside), a well-known flavanone glycoside widely found in citrus fruits, exhibits a variety of biological activities, with potential applications ranging from food ingredients to therapeutics. The purpose of this manuscript is to provide a comprehensive overview of the chemical, biosynthesis, and pharmacokinetics profiles of neohesperidin, as well as the therapeutic effects and mechanisms of neohesperidin against potential diseases. This literature review covers a wide range of pharmacological responses elicited by Neohesperidin, including neuroprotective, anti-inflammatory, antidiabetic, antimicrobial, and anticancer activities, with a focus on the mechanisms of those pharmacological responses. Additionally, the mechanistic pathways underlying the compound's osteoporosis, antiulcer, cardioprotective, and hepatoprotective effects have been outlined. This review includes detailed illustrations of the biosynthesis, biopharmacokinetics, toxicology, and controlled release of neohesperidine. Neohesperidin demonstrated a broad range of therapeutic and biological activities in the treatment of a variety of complex disorders, including neurodegenerative, hepato-cardiac, cancer, diabetes, obesity, infectious, allergic, and inflammatory diseases. Neohesperidin is a promising therapeutic candidate for the management of various etiologically complex diseases. However, further in vivo and in vitro studies on mechanistic potential are required before clinical trials to confirm the safety, bioavailability, and toxicity profiles of neohesperidin.
Collapse
Affiliation(s)
- Saima Akhter
- Department of Pharmacy, International Islamic University, Chittagong, Bangladesh
| | | | - Mohammed Abu Tayab
- Department of Pharmacy, International Islamic University, Chittagong, Bangladesh
| | | | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
11
|
Zhao Y, Qin R. Vitamin D3 affects browning of white adipocytes by regulating autophagy via PI3K/Akt/mTOR/p53 signaling in vitro and in vivo. Apoptosis 2022; 27:992-1003. [DOI: 10.1007/s10495-022-01765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
|
12
|
Xiao Y, Su D, Hu X, Yang G, Shan Y. Neohesperidin Dihydrochalcone Ameliorates High-Fat Diet-Induced Glycolipid Metabolism Disorder in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9421-9431. [PMID: 35862634 DOI: 10.1021/acs.jafc.2c03574] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-fat diet (HFD) is closely related to the formation of metabolic diseases. Studies have confirmed that neohesperidin dihydrochalcone (NHDC) possesses the biological activity of preventing glycolipid metabolism disorder. To explore the mechanism of its preventive activity against glucolipid metabolism disorder, HFD-treated rats were orally administered with NHDC for 12 weeks continuously. The results showed that, compared with the HFD group, the intervention of 40-80 mg/kg body weight of NHDC effectively downregulated the level of fasting blood glucose. Western blot analysis revealed that the treatment of NHDC alleviated the inhibitory effect of HFD on the expression of hepatic GLUT-4 and IRS-1. Further studies confirmed that NHDC reduced the degree of HFD-stimulated inflammation of ileum through the TLR4/MyD88/NF-κB signaling pathway. Moreover, ileum intestinal flora analysis showed that intragastric administration of NHDC reversed the change of Proteobacteria abundance and the Firmicutes/Bacteroidetes (F/B) ratio caused by HFD. At the generic level, NHDC promoted the relative abundance of Coprococcus, Bifidobacterium, Clostridium, Oscillospira, and [Eubacterium], while reducing the relative abundance of Defluviitalea and Prevotella. Taken together, these findings suggest that NHDC possesses the biological activity of improving HFD-induced glycolipid metabolism disorder.
Collapse
Affiliation(s)
- Yecheng Xiao
- Longping Branch Graduate School, Hunan University, Changsha, Hunan 410125, China
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
| | - Donglin Su
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
| | - Xing Hu
- Lianyuan Kanglu Biotech Co., Ltd., Lianyuan, Hunan 417100, China
| | - Guliang Yang
- National Engineering Laboratory for Rice and By-Products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yang Shan
- Longping Branch Graduate School, Hunan University, Changsha, Hunan 410125, China
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
| |
Collapse
|
13
|
Łużny M, Kaczanowska D, Gawdzik B, Wzorek A, Pawlak A, Obmińska-Mrukowicz B, Dymarska M, Kozłowska E, Kostrzewa-Susłow E, Janeczko T. Regiospecific Hydrogenation of Bromochalcone by Unconventional Yeast Strains. Molecules 2022; 27:molecules27123681. [PMID: 35744806 PMCID: PMC9228445 DOI: 10.3390/molecules27123681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 02/01/2023] Open
Abstract
This research aimed to select yeast strains capable of the biotransformation of selected 2′-hydroxybromochalcones. Small-scale biotransformations were carried out using four substrates obtained by chemical synthesis (2′-hydroxy-2″-bromochalcone, 2′-hydroxy-3″-bromochalcone, 2′-hydroxy-4″-bromochalcone and 2′-hydroxy-5′-bromochalcone) and eight strains of non-conventional yeasts. Screening allowed for the determination of the substrate specificity of selected microorganisms and the selection of biocatalysts that carried out the hydrogenation of tested compounds in the most effective way. It was found that the position of the bromine atom has a crucial influence on the degree of substrate conversion by the tested yeast strains. As a result of the biotransformation of the 2′-hydroxybromochalcones, the corresponding 2′-hydroxybromodihydrochalcones were obtained. The products obtained belong to the group of compounds with high potential as precursors of sweet substances.
Collapse
Affiliation(s)
- Mateusz Łużny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Dagmara Kaczanowska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland; (B.G.); (A.W.)
| | - Alicja Wzorek
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland; (B.G.); (A.W.)
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
| | - Monika Dymarska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Ewa Kozłowska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Edyta Kostrzewa-Susłow
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.Ł.); (D.K.); (M.D.); (E.K.); (E.K.-S.)
- Correspondence: ; Tel.: +48-713-205-195
| |
Collapse
|