1
|
Schwarztrauber M, Edwards N, Hiryak J, Chandrasekaran R, Wild J, Bommareddy A. Antitumor and chemopreventive role of major phytochemicals against breast cancer development. Nat Prod Res 2024; 38:3623-3643. [PMID: 37646820 DOI: 10.1080/14786419.2023.2251167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/20/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Breast cancer continues to be one of the most commonly diagnosed cancers around the world. Despite the decrease in mortality, there has been a steady increase in its incidence. There is much evidence that naturally occurring phytochemicals could prove to be safer alternatives aimed at prevention and development of breast cancer. In the present review, we discuss important phytochemicals, namely capsaicin, alpha-santalol and diallyl trisulphide that are shown to have chemopreventive and anti-tumour properties against breast cancer development. We examined current knowledge of their bioavailability, safety and modulation of molecular mechanisms including their ability to induce apoptotic cell death, promote cell cycle arrest, and inhibit cellular proliferation in different breast cancer cell lines and in vivo models. This review emphasises the importance of these naturally occurring phytochemicals and their potential of becoming therapeutic options in the arsenal against breast cancer development provided further scientific and clinical validation.
Collapse
Affiliation(s)
| | - Nathaniel Edwards
- Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA, USA
| | - James Hiryak
- Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA, USA
| | - Ritesh Chandrasekaran
- Department of Biomedical Science, Charles E Schmidt College of Medicine, FL Atlantic University, Boca Raton, FL, USA
| | - Jayson Wild
- Department of Biomedical Science, Charles E Schmidt College of Medicine, FL Atlantic University, Boca Raton, FL, USA
| | - Ajay Bommareddy
- Department of Biomedical Science, Charles E Schmidt College of Medicine, FL Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
2
|
Qian J, Zhao L, Xu L, Zhao J, Tang Y, Yu M, Lin J, Ding L, Cui Q. Cell Death: Mechanisms and Potential Targets in Breast Cancer Therapy. Int J Mol Sci 2024; 25:9703. [PMID: 39273650 PMCID: PMC11395276 DOI: 10.3390/ijms25179703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer (BC) has become the most life-threatening cancer to women worldwide, with multiple subtypes, poor prognosis, and rising mortality. The molecular heterogeneity of BC limits the efficacy and represents challenges for existing therapies, mainly due to the unpredictable clinical response, the reason for which probably lies in the interactions and alterations of diverse cell death pathways. However, most studies and drugs have focused on a single type of cell death, while the therapeutic opportunities related to other cell death pathways are often neglected. Therefore, it is critical to identify the predominant type of cell death, the transition to different cell death patterns during treatment, and the underlying regulatory mechanisms in BC. In this review, we summarize the characteristics of various forms of cell death, including PANoptosis (pyroptosis, apoptosis, necroptosis), autophagy, ferroptosis, and cuproptosis, and discuss their triggers and signaling cascades in BC, which may provide a reference for future pathogenesis research and allow for the development of novel targeted therapeutics in BC.
Collapse
Affiliation(s)
- Jiangying Qian
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Linna Zhao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ling Xu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jin Zhao
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yongxu Tang
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Min Yu
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jie Lin
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Lei Ding
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qinghua Cui
- Lab of Biochemistry & Molecular Biology, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
3
|
Xie C, Zhou X, Chen W, Ren D, Li X, Jiang R, Zhong C, Zhu J. Diallyl trisulfide induces pyroptosis and impairs lung CSC-like properties by activating the ROS/Caspase 1 signaling pathway. Chem Biol Interact 2024; 397:111083. [PMID: 38821455 DOI: 10.1016/j.cbi.2024.111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Lung cancer stem cells (CSCs) drive continuous cancer growth and metastatic dissemination; thus, there is an urgent requirement to acquire effective therapeutic strategies for targeting lung CSCs. Diallyl trisulfide (DATS), a garlic organosulfide, possesses suppressive potential in lung cancer; however, its underlying mechanism is still unclear. In this study, we identified DATS as a pyroptosis inducer in lung cancer cells. DATS-treated A549 and H460 cells exhibited pyroptotic cell death, with characteristic large bubbles appearing on their plasma membrane and LDH release. DATS induced cell death, arrested the cell cycle at the G2/M phase, and inhibited colony formation in lung cancer cells. Meanwhile, we found that DATS significantly suppressed the malignant features by impairing lung CSC-like properties, including sphere formation ability, CD133 positive cell number, and lung CSCs marker expression. Mechanistically, DATS induced cell pyroptosis via increasing the expression of NLRP3, ASC, Pro Caspase 1, Cleaved Caspase 1, GSDMD, GSDMD-N, and IL-1β. The verification experiments showed that the effects of DATS on pyroptosis and lung CSC-like properties were weakened after Caspase 1 inhibitor VX-765 treatment, indicating that DATS activated NLRP3 inflammasome-mediated pyroptosis by targeting Caspase 1 in lung cancer cells. Moreover, DATS increased ROS overproduction and mitochondrial dysfunction, which contributed to DATS-induced pyroptosis of lung cancer cells. NAC treatment reversed the effects of DATS on pyroptosis and CSC-like properties. In vivo experiment further confirmed that DATS restrained tumor growth. Together, our results suggest that DATS promotes pyroptosis and impairs lung CSC-like properties by activating ROS/Caspase 1 signaling pathway, thereby retarding lung cancer progression.
Collapse
Affiliation(s)
- Chunfeng Xie
- Medical School, Nanjing University, Nanjing, 210093, China; Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xu Zhou
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Weiyi Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dongxue Ren
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Runqiu Jiang
- Medical School, Nanjing University, Nanjing, 210093, China.
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215008, China.
| |
Collapse
|
4
|
Liu X, Wang N, He Z, Chen C, Ma J, Liu X, Deng S, Xie L. Diallyl trisulfide inhibits osteosarcoma 143B cell migration, invasion and EMT by inducing autophagy. Heliyon 2024; 10:e26681. [PMID: 38434350 PMCID: PMC10907726 DOI: 10.1016/j.heliyon.2024.e26681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
Background Diallyl trisulfide (DATS), a compound derived from garlic, has been demonstrated its anti-cancer properties. While it has been shown to inhibit the expression of epidermal growth factor receptor (EGFR) in various cancers, its effects on osteosarcoma (OS) cells remain unclear. This study aimed to investigate the impacts of DATS on OS cells growth, migration, invasion, epithelial-mesenchymal transition (EMT) and autophagy, as well as its underlying mechanisms which was involving in the EGFR/PI3K/AKT/mTOR pathway. Methods In this study, human osteosarcoma cells (143B) were treated with different concentrations of DATS (10, 50, 100 and 200 μM) for 24 and 48 h, respectively. Cell viability was measured using CCK8, the half lethal concentration was selected for the following experiments. Wound healing and transwell assays were performed to evaluate migration and invasion abilities, while flow cytometry was used to measure apoptosis. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting, and confocal imaging were employed to analyze the related mRNA and protein expression levels of epithelial-mesenchymal transition (EMT), EGFR/Phosphoinositide 3 kinase (PI3K)/AKT/Mammalian target of rapamycin (mTOR) signaling pathway and autophagy-related markers. Results DATS significantly inhibited proliferation, migration and EMT in osteosarcoma cells. Additionally, DATS promoted cell apoptosis and induced autophagy, which could be rescued by the autophagy inhibitor 3-methyladenine (3-MA). Moreover, DATS treatment led to the inactivation of the EGFR/PI3K/AKT/mTOR pathway in osteosarcoma cells. Conclusions This study demonstrated that DATS inhibited osteosarcoma cell growth, migration and EMT, but inducing apoptosis and autophagy. These effects were mediated by the inactivation of the EGFR/PI3K/AKT/mTOR signaling pathway. These findings suggested that DATS could serve as a potential therapeutic agent for osteosarcoma treatment.
Collapse
Affiliation(s)
- Xiyu Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nan Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiwei He
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Chen
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng City, China
| | - Jun Ma
- Huai’an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai’an, China
| | - Xin Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shan Deng
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Xie
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Ferguson DT, Taka E, Messeha S, Flores-Rozas H, Reed SL, Redmond BV, Soliman KFA, Kanga KJW, Darling-Reed SF. The Garlic Compound, Diallyl Trisulfide, Attenuates Benzo[a]Pyrene-Induced Precancerous Effect through Its Antioxidant Effect, AhR Inhibition, and Increased DNA Repair in Human Breast Epithelial Cells. Nutrients 2024; 16:300. [PMID: 38276538 PMCID: PMC10819007 DOI: 10.3390/nu16020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Exposure to B[a]P, the most characterized polycyclic aromatic hydrocarbon, significantly increases breast cancer risk. Our lab has previously reported that diallyl trisulfide (DATS), a garlic organosulfur compound (OSC) with chemopreventive and cell cycle arrest properties, reduces lipid peroxides and DNA damage in normal breast epithelial (MCF-10A) cells. In this study, we evaluated the ability of DATS to block the B[a]P-induced initiation of carcinogenesis in MCF-10A cells by examining changes in proliferation, clonogenic formation, reactive oxygen species (ROS) formation, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, and protein expression of ARNT/HIF-1β, CYP1A1, and DNA POLβ. The study results indicate that B[a]P increased proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing the protein expression of ARNT/HIF-1β and CYP1A1 compared to the control. Conversely, DATS/B[a]P co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS formation, and 8-OHdG levels compared to B[a]P alone. Treatment with DATS significantly inhibited (p < 0.0001) AhR expression, implicated in the development and progression of breast cancer. The CoTx also attenuated all the above-mentioned B[a]P-induced changes in protein expression. At the same time, it increased DNA POLβ protein expression, which indicates increased DNA repair, thus causing a chemopreventive effect. These results provide evidence for the chemopreventive effects of DATS in breast cancer prevention.
Collapse
Affiliation(s)
- Dominique T. Ferguson
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Equar Taka
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Samia Messeha
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Hernan Flores-Rozas
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Sarah L. Reed
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Bryan V. Redmond
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Karam F. A. Soliman
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Konan J. W. Kanga
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA;
| | - Selina F. Darling-Reed
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.M.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| |
Collapse
|
6
|
Ferguson DT, Taka E, Tilghman SL, Womble T, Redmond BV, Gedeon S, Flores-Rozas H, Reed SL, Soliman KFA, Kanga KJW, Darling-Reed SF. The Anticancer Effects of the Garlic Organosulfide Diallyl Trisulfide through the Attenuation of B[a]P-Induced Oxidative Stress, AhR Expression, and DNA Damage in Human Premalignant Breast Epithelial (MCF-10AT1) Cells. Int J Mol Sci 2024; 25:923. [PMID: 38255999 PMCID: PMC10815401 DOI: 10.3390/ijms25020923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Benzo[a]pyrene (B[a]P) is the most characterized polycyclic aromatic hydrocarbon associated with breast cancer. Our lab previously reported that the organosulfur compound (OSC), diallyl trisulfide (DATS), chemoprevention mechanism works through the induction of cell cycle arrest and a reduction in oxidative stress and DNA damage in normal breast epithelial cells. We hypothesize that DATS will inhibit B[a]P-induced cancer initiation in premalignant breast epithelial (MCF-10AT1) cells. In this study, we evaluated the ability of DATS to attenuate B[a]P-induced neoplastic transformation in MCF-10AT1 cells by measuring biological endpoints such as proliferation, clonogenicity, reactive oxygen species (ROS) formation, and 8-hydroxy-2-deoxyguanosine (8-OHdG) DNA damage levels, as well as DNA repair and antioxidant proteins. The results indicate that B[a]P induced proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing AhR, ARNT/HIF-1β, and CYP1A1 protein expression compared with the control in MCF-10AT1 cells. B[a]P/DATS's co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS formation, AhR protein expression, and 8-OHdG levels compared with B[a]P alone and attenuated all the above-mentioned B[a]P-induced changes in protein expression, causing a chemopreventive effect. This study demonstrates, for the first time, that DATS prevents premalignant breast cells from undergoing B[a]P-induced neoplastic transformation, thus providing more evidence for its chemopreventive effects in breast cancer.
Collapse
Affiliation(s)
- Dominique T. Ferguson
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Equar Taka
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Syreeta L. Tilghman
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Tracy Womble
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Bryan V. Redmond
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Shasline Gedeon
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Hernan Flores-Rozas
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Sarah L. Reed
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Karam F. A. Soliman
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Konan J. W. Kanga
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA;
| | - Selina F. Darling-Reed
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| |
Collapse
|