1
|
Agraib LM, Al-Shami I, Alkhatib B, Hasan H. The impact of energy releasing B-vitamin intake on indices of obesity and cardiac function: a cross-sectional study. F1000Res 2024; 12:1382. [PMID: 39140087 PMCID: PMC11319906 DOI: 10.12688/f1000research.139672.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Background B vitamins play a crucial role in the balance and metabolism of energy. Energy metabolism mainly benefits from the B-complex vitamins. Specifically, decarboxylation, transamination, acylation, oxidation, and reduction of substrates that are ultimately employed in energy intake require thiamin, riboflavin, niacin, and vitamin B6. Vitamin deficiency could lead to chronic disease occurrence. Objectives To assess the impact of energy-releasing B-vitamins intake (B1, B2, B3, and B6) on selected indices of obesity and cardiac function. Methods A cross-sectional study was performed on 491 apparently healthy adults (18-64 years old) between January and May 2019 at Hashemite University, Jordan. Anthropometric measurements were taken, lipid profiles were analyzed, and indices of obesity and cardiac function were calculated. The typical dietary intake of B1, B2, B3, and B6 vitamins was calculated. Results Conicity index (CI) and abdominal volume index (AVI) scores significantly decreased with the increased adjusted vitamin B1 and B6 intake. Also, body roundness index (BRI), weight-adjusted-waist index (WWI), lipid accumulation product (LAP), and atherogenic index of plasma (AIP) scores were decreased with the increase of adjusted B6 intake ( p<0.05). The total sample showed a significant inverse weak correlation between energy-adjusted intake of B1 and AVI (r= -0.156, p=0.001) and BRI (r= 0.111, p=0.014). Similar correlations were detected among male participants between energy-adjusted B1 intake and BAI, AVI, and BRI. Female participants had a significant weak inverse correlation between BAI and energy-adjusted B2 (r= -0.180, p=0.029) and B6 intake (r= -0.212, p=0.010). Only B1, the vitamin, significantly explained 2.43 and 1.24% of changes observed in the AVI and BRI scores, respectively ( p<0.05). Conclusions Increasing the consumption of B1, B2, and B6 may significantly lower values of indices of obesity and cardiac function regardless of sex differences. Thus reducing the occurrence of obesity and related coronary heart diseases.
Collapse
Affiliation(s)
- Lana M. Agraib
- Department of Food Technology and Nutrition, Faculty of Agriculture, Jerash University, Jerash, Jerash Governorate, Jordan
| | - Islam Al-Shami
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Buthaina Alkhatib
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | | |
Collapse
|
2
|
Zhang Y, Ren E, Zhang C, Wang Y, Chen X, Li L. The protective role of oily fish intake against type 2 diabetes: insights from a genetic correlation and Mendelian randomization study. Front Nutr 2024; 11:1288886. [PMID: 38567249 PMCID: PMC10986736 DOI: 10.3389/fnut.2024.1288886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Background and aims Previous research has underscored the association between oily fish intake and type 2 diabetes (T2DM), yet the causality remains elusive. Methods A bidirectional univariable Mendelian Randomization (MR) analysis was employed to evaluate the causal effects of oily fish and non-oily fish intake on T2DM. Replication analysis and meta-analysis were conducted to ensure robust results. Multivariable MR analysis was utilized to assess confounders, and further mediation MR analysis discerned mediating effects. Linkage Disequilibrium Score (LDSC) analysis was undertaken to compute genetic correlations. Inverse variance weighted (IVW) was the primary method, complemented by a series of sensitivity analyses. Results The LDSC analysis unveiled a significant genetic correlation between oily fish intake and T2DM (Genetic correlation: -0.102, p = 4.43 × 10-4). For each standard deviation (SD) increase in genetically predicted oily fish intake, the risk of T2DM was reduced by 38.6% (OR = 0.614, 95% CI 0.504 ~ 0.748, p = 1.24 × 10-6, False Discovery Rate (FDR) = 3.72 × 10-6). The meta-analysis across three data sources highlighted a persistent causal association (OR = 0.728, 95% CI 0.593 ~ 0.895, p = 0.003). No other causal effects were identified (all p > 0.5, FDR > 0.5). The main outcomes remained consistent in most sensitivity analyses. Both MVMR and mediation MR analyses emphasized the mediating roles of triglycerides (TG), body mass index (BMI), and 25-hydroxyvitamin D (25OHD) levels. Conclusion To encapsulate, there's an inverse association between oily fish intake and T2DM risk, suggesting potential benefits of oily fish intake in T2DM prevention.
Collapse
Affiliation(s)
- Youqian Zhang
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Entong Ren
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Southern Theater General Hospital, Guangzhou, Guangdong, China
| | - Chunlong Zhang
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
- Department of Nursing, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yang Wang
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaohe Chen
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Lin Li
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
3
|
Kaput J, Monteiro JP. Human Nutrition Research in the Data Era: Results of 11 Reports on the Effects of a Multiple-Micronutrient-Intervention Study. Nutrients 2024; 16:188. [PMID: 38257081 PMCID: PMC10819666 DOI: 10.3390/nu16020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Large datasets have been used in molecular and genetic research for decades, but only a few studies have included nutrition and lifestyle factors. Our team conducted an n-of-1 intervention with 12 vitamins and five minerals in 9- to 13-year-old Brazilian children and teens with poor healthy-eating indices. A unique feature of the experimental design was the inclusion of a replication arm. Twenty-six types of data were acquired including clinical measures, whole-genome mapping, whole-exome sequencing, and proteomic and a variety of metabolomic measurements over two years. A goal of this study was to use these diverse data sets to discover previously undetected physiological effects associated with a poor diet that include a more complete micronutrient composition. We summarize the key findings of 11 reports from this study that (i) found that LDL and total cholesterol and fasting glucose decreased in the population after the intervention but with inter-individual variation; (ii) associated a polygenic risk score that predicted baseline vitamin B12 levels; (iii) identified metabotypes linking diet intake, genetic makeup, and metabolic physiology; (iv) found multiple biomarkers for nutrient and food groups; and (v) discovered metabolites and proteins that are associated with DNA damage. This summary also highlights the limitations and lessons in analyzing diverse omic data.
Collapse
Affiliation(s)
| | - Jacqueline Pontes Monteiro
- Faculty of Medicine of Ribeirão Preto, Department of Pediatrics, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil;
| |
Collapse
|
4
|
Wang J, Yu Q, Liu N, Nie K, Sun X, Xia L. Trends in research on dietary behavior and cardiovascular disease from 2002 to 2022: a bibliometric analysis. Front Nutr 2023; 10:1147994. [PMID: 37342553 PMCID: PMC10278991 DOI: 10.3389/fnut.2023.1147994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/22/2023] [Indexed: 06/23/2023] Open
Abstract
Background Dietary behaviors and cardiovascular disease are two major health issues that have attracted a lot of attention from researchers worldwide. In this study, we aimed to provide a comprehensive analysis of the publication trends, authorship patterns, institutional affiliations, country/region contributions, journal outlets, highly cited documents, and keyword clusters in the field of dietary behaviors and cardiovascular disease research over the past two decades. Methods We conducted a systematic literature review of peer-reviewed articles published from 2002 to 2022 in the Web of Science Core Collection database. We extracted and analyzed data on the annual publication volume, authorship patterns, institutional affiliations, country/region contributions, journal outlets, highly cited documents, and keyword clusters using bibliometric methods and visualization tools. Results Our study analyzed 3,904 articles, including 702 reviews and 3,202 research articles. The results revealed a continuous increase in the number of publications in this field over the past two decades. The top 10 authors, institutions, and countries/regions with the highest publication output were identified, indicating the leading contributors to this field. Moreover, the most frequently cited documents and highly clustered keywords were identified, providing insights into the research themes and topics in this field. Conclusion Our study provides a comprehensive analysis of the publication trends, authorship patterns, institutional affiliations, country/region contributions, journal outlets, highly cited documents, and keyword clusters in the field of dietary behaviors and cardiovascular disease research over the past two decades. The findings provide valuable information for researchers, policymakers, and stakeholders to understand the research landscape, identify research gaps, and develop future research directions in this field.
Collapse
|
5
|
Wang Q, Duan Y, Jing H, Wu Z, Tian Y, Gong K, Guo Q, Zhang J, Sun Y, Li Z, Duan Y. Inhibition of atherosclerosis progression by modular micelles. J Control Release 2023; 354:294-304. [PMID: 36638843 DOI: 10.1016/j.jconrel.2023.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Atherosclerosis is a chronic disease initiated by lipid-mediated vascular inflammation. From the perspective of conventional treatment, it is difficult to achieve good therapeutic effects via regulation of a single lipid or anti-inflammatory effects. Herein, we designed an amphiphilic low molecular weight heparin-unsaturated fatty acid conjugate (LMWH-uFA) that acted as both an antiatherosclerotic agent and a nanocarrier with self-delivery properties. Structurally, LMWH-uFA self-assembled to form micelles with LMWH as the shell and uFA as the core, without any additives, which guaranteed their biosafety. Functionally, the hydrophilic segment, LMWH, prevented monocyte adhesion to inhibit early vascular inflammation, and the hydrophobic segment, uFA, could participate in the regulation of blood lipids. The anti-inflammatory drug rapamycin (RAP) was encapsulated in the micellar core, which improved its water solubility, and cooperated with LMWH to achieve targeted blockade of the vascular inflammation cascade at P-selectin. The three treatment modules, LMWH, uFA and RAP, were integrated into one system for different therapeutic targets in anticipation of better efficacy. In an atherosclerosis mouse model, RAP-loaded NPs significantly reduced the plaque area and showed satisfactory curative effects, which were related to the targeting of lipid regulation and inflammation. Thus, these modular micellar nanoparticles offer a promising approach for the clinical treatment of atherosclerosis.
Collapse
Affiliation(s)
- Quan Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Yi Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hongshu Jing
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhihua Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yu Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ke Gong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qianqian Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Jiali Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Zhaojun Li
- Department of Ultrasound, Shanghai General Hospital, Shanghai General Hospital Jiading Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200032, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|