1
|
da Silva RS, de Paiva IHR, Mendonça IP, de Souza JRB, Lucena-Silva N, Peixoto CA. Anorexigenic and anti-inflammatory signaling pathways of semaglutide via the microbiota-gut--brain axis in obese mice. Inflammopharmacology 2024:10.1007/s10787-024-01603-y. [PMID: 39586940 DOI: 10.1007/s10787-024-01603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/27/2024]
Abstract
Our study focused on a mouse model of obesity induced by a high-fat diet (HFD). We administered Semaglutide intraperitoneally (Ozempic ®-0.05 mg/Kg-translational dose) every seven days for six weeks. HFD-fed mice had higher blood glucose, lipid profile, and insulin resistance. Moreover, mice fed HFD showed high gut levels of TLR4, NF-kB, TNF-α, IL-1β, and nitrotyrosine and low levels of occludin, indicating intestinal inflammation and permeability, culminating in higher serum levels of IL-1β and LPS. Treatment with semaglutide counteracted the dyslipidemia and insulin resistance, reducing gut and serum inflammatory markers. Structural changes in gut microbiome were determined by 16S rRNA sequencing. Semaglutide reduced the relative abundance of Firmicutes and augmented that of Bacteroidetes. Meanwhile, semaglutide dramatically changed the overall composition and promoted the growth of acetate-producing bacteria (Bacteroides acidifaciens and Blautia coccoides), increasing hypothalamic acetate levels. Semaglutide intervention increased the number of hypothalamic GLP-1R+ neurons that mediate endogenous action on feeding and energy. In addition, semaglutide treatment reversed the hypothalamic neuroinflammation HDF-induced decreasing TLR4/MyD88/NF-κB signaling and JNK and AMPK levels, improving the hypothalamic insulin resistance. Also, semaglutide modulated the intestinal microbiota, promoting the growth of acetate-producing bacteria, inducing high levels of hypothalamic acetate, and increasing GPR43+ /POMC+ neurons. In the ARC, acetate activated the GPR43 and its downstream PI3K-Akt pathway, which activates POMC neurons by repressing the FoxO-1. Thus, among the multifactorial effectors of hypothalamic energy homeostasis, possibly higher levels of acetate derived from the intestinal microbiota contribute to reducing food intake.
Collapse
Affiliation(s)
- Rodrigo Soares da Silva
- Laboratory of Ultrastructure, Laboratório de Ultraestrutura, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, CEP 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Igor Henrique Rodrigues de Paiva
- Laboratory of Ultrastructure, Laboratório de Ultraestrutura, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, CEP 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Laboratório de Ultraestrutura, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, CEP 50670-420, Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Norma Lucena-Silva
- Laboratory of Immunogenetics, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Laboratório de Ultraestrutura, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, CEP 50670-420, Brazil.
| |
Collapse
|
2
|
Cosier DJ, Lambert K, Neale EP, Probst Y, Charlton K. The effect of oral synbiotics on the gut microbiota and inflammatory biomarkers in healthy adults: a systematic review and meta-analysis. Nutr Rev 2024:nuae002. [PMID: 38341803 DOI: 10.1093/nutrit/nuae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024] Open
Abstract
CONTEXT Prior research has explored the effect of synbiotics, the combination of probiotics and prebiotics, on the gut microbiota in clinical populations. However, evidence related to the effect of synbiotics on the gut microbiota in healthy adults has not been reviewed to date. OBJECTIVE A systematic review and meta-analysis was conducted to comprehensively investigate the effect of synbiotics on the gut microbiota and inflammatory markers in populations of healthy adults. DATA SOURCES Scopus, PubMed, Web of Science, ScienceDirect, MEDLINE, CINAHL, and The Cochrane Library were systematically searched to retrieve randomized controlled trials examining the primary outcome of gut microbiota or intestinal permeability changes after synbiotic consumption in healthy adults. Secondary outcomes of interest were short-chain fatty acids, inflammatory biomarkers, and gut microbiota diversity. DATA EXTRACTION Weighted (WMD) or standardized mean difference (SMD) outcome data were pooled in restricted maximum likelihood models using random effects. Twenty-seven articles reporting on 26 studies met the eligibility criteria (n = 1319). DATA ANALYSIS Meta-analyses of 16 studies showed synbiotics resulted in a significant increase in Lactobacillus cell count (SMD, 0.74; 95% confidence interval [CI], 0.15, 1.33; P = 0.01) and propionate concentration (SMD, 0.22; 95% CI, 0.02, 0.43; P = 0.03) compared with controls. A trend for an increase in Bifidobacterium relative abundance (WMD, 0.97; 95% CI, 0.42, 2.52; P = 0.10) and cell count (SMD, 0.82; 95% CI, 0.13, 1.88; P = 0.06) was seen. No significant differences in α-diversity, acetate, butyrate, zonulin, IL-6, CRP, or endotoxins were observed. CONCLUSION This review demonstrates that synbiotics modulate the gut microbiota by increasing Lactobacillus and propionate across various healthy adult populations, and may result in increased Bifidobacterium. Significant variations in synbiotic type, dose, and duration should be considered as limitations when applying findings to clinical practice. SYSTEMATIC REVIEW REGISTRATION PROSPERO no. CRD42021284033.
Collapse
Affiliation(s)
- Denelle J Cosier
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Kelly Lambert
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Elizabeth P Neale
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Yasmine Probst
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Karen Charlton
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
3
|
Silva RSD, Mendonça IP, Paiva IHRD, Souza JRBD, Peixoto CA. Fructooligosaccharides and galactooligosaccharides improve hepatic steatosis via gut microbiota-brain axis modulation. Int J Food Sci Nutr 2023; 74:760-780. [PMID: 37771001 DOI: 10.1080/09637486.2023.2262779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
Studies have shown that gut dysbiosis is associated with the steatotic liver disease associated with metabolic dysfunction (MALSD) and its severity. This study evaluated the effects of two commercially available prebiotics fructooligosaccharides (FOS) and galactooligosaccharides(GOS) on hepatic adipogenesis, inflammation, and gut microbiota in high-fat diet-induced MALSD. The results indicated that FOS and GOS effectively reduced insulin resistance, hyperglycaemia, triglyceridemia, cholesterolaemia, and IL-1β serum levels. Moreover, FOS and GOS modulated the lipogenic (SREBP-1c, ACC, and FAS) and lipolytic (ATGL) signalling pathways, and reduced inflammatory markers such as p-NFκB-65, IL-6, iNOS, COX-2, TNF-α, IL-1β, and nitrotyrosine. FOS and GOS also enhanced the abundance of acetate producers' bacteria Bacteroides acidifaciens and Bacteroides dorei. FOS and GOS also induced positive POMC/GPR43 neurons at the arcuate nucleus, indicating hypothalamic signalling modulation. Our results suggest that FOS and GOS attenuated MALSD by reducing the hepatic lipogenic pathways and intestinal permeability through the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Rodrigo Soares da Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Igor Henrique Rodrigues de Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | | | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| |
Collapse
|
4
|
Gonçalves CCRA, Feitosa BM, Cavalcante BV, Lima ALGDSB, de Souza CM, Joventino LB, Cavalcante MB. Obesity and recurrent miscarriage: The interconnections between adipose tissue and the immune system. Am J Reprod Immunol 2023; 90:e13757. [PMID: 37641378 DOI: 10.1111/aji.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 08/31/2023] Open
Abstract
Currently, obesity is considered a global public health problem. It is the main risk factor for noncommunicable diseases and reproductive complications, such as recurrent miscarriage (RM). RM affects approximately 1% of couples of reproductive age, and recent studies suggest that its prevalence is increasing. Immunological abnormalities may be responsible for a significant number of cases of unexplained RM. Obesity is recognized as a chronic low-grade inflammatory condition. The accumulation of fat in obese adipose tissue promotes changes in the local and systemic immune response. Adipokines, exosomes, micro-RNAs, lipids, and other factors released or secreted by adipose tissue are responsible for the interconnection between obesity and the immune system. Obesity-induced dysregulation of the innate and acquired immune response is also involved in the immunopathology of pregnancy loss in patients with unexplained RM. Therefore, understanding the communication pathways between maternal adipose tissue and the immune response in women living with obesity and RM is an important objective. Thus, diagnostic tools and new immunomodulatory therapies may be proposed for the management of patients with concurrent obesity and RM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marcelo Borges Cavalcante
- Medical School, Universidade de Fortaleza (UNIFOR), Fortaleza, CE, Brazil
- Postgraduate Program in Medical Sciences, Universidade de Fortaleza (UNIFOR), Fortaleza, CE, Brazil
- CONCEPTUS - Reproductive Medicine, Fortaleza, Brazil
| |
Collapse
|
5
|
Tamang MK, Ali A, Pertile RN, Cui X, Alexander S, Nitert MD, Palmieri C, Eyles D. Developmental vitamin D-deficiency produces autism-relevant behaviours and gut-health associated alterations in a rat model. Transl Psychiatry 2023; 13:204. [PMID: 37316481 PMCID: PMC10267107 DOI: 10.1038/s41398-023-02513-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/21/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Developmental vitamin D (DVD)-deficiency is an epidemiologically established risk factor for autism. Emerging studies also highlight the involvement of gut microbiome/gut physiology in autism. The current study aims to examine the effect of DVD-deficiency on a broad range of autism-relevant behavioural phenotypes and gut health. Vitamin D deficient rat dams exhibited altered maternal care, DVD-deficient pups showed increased ultrasonic vocalizations and as adolescents, social behaviour impairments and increased repetitive self-grooming behaviour. There were significant impacts of DVD-deficiency on gut health demonstrated by alterations to the microbiome, decreased villi length and increased ileal propionate levels. Overall, our animal model of this epidemiologically validated risk exposure for autism shows an expanded range of autism-related behavioural phenotypes and now alterations in gut microbiome that correlate with social behavioural deficits raising the possibility that DVD-deficiency induced ASD-like behaviours are due to alterations in gut health.
Collapse
Affiliation(s)
- Man Kumar Tamang
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Asad Ali
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Queensland Centre for Mental Health Research, Wacol, Australia
| | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Queensland Centre for Mental Health Research, Wacol, Australia
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Darryl Eyles
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia.
- Queensland Centre for Mental Health Research, Wacol, Australia.
| |
Collapse
|
6
|
Zhu CH, Li YX, Xu YC, Wang NN, Yan QJ, Jiang ZQ. Tamarind Xyloglucan Oligosaccharides Attenuate Metabolic Disorders via the Gut-Liver Axis in Mice with High-Fat-Diet-Induced Obesity. Foods 2023; 12:foods12071382. [PMID: 37048202 PMCID: PMC10093524 DOI: 10.3390/foods12071382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
Functional oligosaccharides exert obesity-reducing effects by acting at various pathological sites responsible for the development of obesity. In this study, tamarind xyloglucan oligosaccharides (TXOS) were used to attenuate metabolic disorders via the gut-liver axis in mice with high-fat-diet (HFD)-induced obesity, as determined through LC/MS-MS and 16S rRNA sequencing technology. A TXOS dose equivalent to 0.39 g/kg/day in humans restored the gut microbiota in obese mice, which was in part supported by the key microflora, particularly Bifidobacterium pseudolongum. Moreover, TXOS reduced the abundance of opportunistic pathogen species, such as Klebsiella variicola and Romboutsia ilealis. The bodyweight and weight gain of TXOS-treated (4.8 g/kg per day) mice began to decrease at the 14th week, decreasing by 12.8% and 23.3%, respectively. Sixteen fatty acids were identified as potential biomarkers in the liver, and B. pseudolongum and caprylic acid were found to tightly regulate each other. This was associated with reduced inflammation in the liver, circulation, and adipose tissue and protection from metabolic disorders. The findings of this study indicate that TXOS can significantly increase the gut microbiota diversity of obese mice and restore the HFD-induced dysbiosis of gut microbiota.
Collapse
Affiliation(s)
- Chun-Hua Zhu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan-Xiao Li
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, Beijing 100083, China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yun-Cong Xu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Nan-Nan Wang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiao-Juan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zheng-Qiang Jiang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
7
|
Ilyés T, Silaghi CN, Crăciun AM. Diet-Related Changes of Short-Chain Fatty Acids in Blood and Feces in Obesity and Metabolic Syndrome. BIOLOGY 2022; 11:1556. [PMID: 36358258 PMCID: PMC9687917 DOI: 10.3390/biology11111556] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 09/13/2023]
Abstract
Obesity-related illnesses are one of the leading causes of death worldwide. Metabolic syndrome has been associated with numerous health issues. Short-chain fatty acids (SCFAs) have been shown to have multiple effects throughout the body, both directly as well as through specific G protein-coupled receptors. The main SCFAs produced by the gut microbiota are acetate, propionate, and butyrate, which are absorbed in varying degrees from the large intestine, with some acting mainly locally and others systemically. Diet has the potential to influence the gut microbial composition, as well as the type and amount of SCFAs produced. High fiber-containing foods and supplements increase the production of SCFAs and SCFA-producing bacteria in the gut and have been shown to have bodyweight-lowering effects. Dietary supplements, which increase SCFA production, could open the way for novel approaches to weight loss interventions. The aim of this review is to analyze the variations of fecal and blood SCFAs in obesity and metabolic syndrome through a systematic search and analysis of existing literature.
Collapse
Affiliation(s)
| | - Ciprian N. Silaghi
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| | | |
Collapse
|
8
|
Gut Microbiota Patterns Predicting Long-Term Weight Loss Success in Individuals with Obesity Undergoing Nonsurgical Therapy. Nutrients 2022; 14:nu14153182. [PMID: 35956358 PMCID: PMC9370776 DOI: 10.3390/nu14153182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Background: The long-term success of nonsurgical weight reduction programs is variable; thus, predictors of outcome are of major interest. We hypothesized that the intestinal microbiota known to be linked with diet and obesity contain such predictive elements. Methods: Metagenome analysis by shotgun sequencing of stool DNA was performed in a cohort of 15 adults with obesity (mean body mass index 43.1 kg/m2) who underwent a one-year multidisciplinary weight loss program and another year of follow-up. Eight individuals were persistently successful (mean relative weight loss 18.2%), and seven individuals were not successful (0.2%). The relationship between relative abundancies of bacterial genera/species and changes in relative weight loss or body mass index was studied using three different statistical modeling methods. Results: When combining the predictor variables selected by the applied statistical modeling, we identified seven bacterial genera and eight bacterial species as candidates for predicting success of weight loss. By classification of relative weight-loss predictions for each patient using 2–5 term models, 13 or 14 out of 15 individuals were predicted correctly. Conclusions: Our data strongly suggest that gut microbiota patterns allow individual prediction of long-term weight loss success. Prediction accuracy seems to be high but needs confirmation by larger prospective trials.
Collapse
|
9
|
Huh G, Kwon J, Kim SH, Lim HJ, Min SH, Park DH. Effect of Novel Gastro-Duodenal Flow Restrictor on Relative Weight Loss and Glucose Levels in a Porcine Model: A Pilot Randomized Study. Nutrients 2022; 14:2563. [PMID: 35807743 PMCID: PMC9268118 DOI: 10.3390/nu14132563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
Endoscopic bariatric and metabolic therapies are promising for obesity. We developed a novel gastro-duodenal flow restrictor (G-DFR) device for relative weight loss and lowering of glucose level and evaluated its safety and efficacy in a porcine model. The G-DFR comprised self-expandable gastro-duodenal partially covered polytetrafluoroethylene (PTFE) metal stent distally attached to a PTFE skirt. Eleven juvenile pigs were randomized into the evaluation of migration (n = 3), mid-term efficacy (n = 5), and control (n = 3) groups. Five pigs showed G-DFR migration at 2, 4, 7, and 10 weeks after placement in the migration and mid-term efficacy group. Compared to the control group, the mid-term efficacy group showed up to 55.4% relative weight loss in 12 weeks. Compared to the case group, the control group showed higher mean ghrelin hormone level from 6 to 12 weeks. Glucose level was significantly lower in the efficacy group than in the control group after 6 weeks. Serum alanine transferase levels and histological collagen deposition were lower in the liver of the case group than in the control group. Although it did not demonstrate consistent performance with respect to migration, a well-positioned G-DFR in the pyloroduodenal portion may lead to relative weight loss, lowering of glucose levels, and improved hepatic parameters.
Collapse
Affiliation(s)
- Gunn Huh
- Division of Gastroenterology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (G.H.); (J.K.); (S.H.K.); (H.J.L.)
| | - Jinhee Kwon
- Division of Gastroenterology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (G.H.); (J.K.); (S.H.K.); (H.J.L.)
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - So Hee Kim
- Division of Gastroenterology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (G.H.); (J.K.); (S.H.K.); (H.J.L.)
| | - Ha Jong Lim
- Division of Gastroenterology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (G.H.); (J.K.); (S.H.K.); (H.J.L.)
| | - Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| | - Do Hyun Park
- Division of Gastroenterology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (G.H.); (J.K.); (S.H.K.); (H.J.L.)
- Digestive Diseases Research Center, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|