1
|
Kong WZ, Zhang HY, Sun YF, Song J, Jiang J, Cui HY, Zhang Y, Han S, Cheng Y. Plasmodium vivax tryptophan-rich antigen reduces type I collagen secretion via the NF-κBp65 pathway in splenic fibroblasts. Parasit Vectors 2024; 17:239. [PMID: 38802961 PMCID: PMC11131192 DOI: 10.1186/s13071-024-06264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The spleen plays a critical role in the immune response against malaria parasite infection, where splenic fibroblasts (SFs) are abundantly present and contribute to immune function by secreting type I collagen (collagen I). The protein family is characterized by Plasmodium vivax tryptophan-rich antigens (PvTRAgs), comprising 40 members. PvTRAg23 has been reported to bind to human SFs (HSFs) and affect collagen I levels. Given the role of type I collagen in splenic immune function, it is important to investigate the functions of the other members within the PvTRAg protein family. METHODS Protein structural prediction was conducted utilizing bioinformatics analysis tools and software. A total of 23 PvTRAgs were successfully expressed and purified using an Escherichia coli prokaryotic expression system, and the purified proteins were used for co-culture with HSFs. The collagen I levels and collagen-related signaling pathway protein levels were detected by immunoblotting, and the relative expression levels of inflammatory factors were determined by quantitative real-time PCR. RESULTS In silico analysis showed that P. vivax has 40 genes encoding the TRAg family. The C-terminal region of all PvTRAgs is characterized by the presence of a domain rich in tryptophan residues. A total of 23 recombinant PvTRAgs were successfully expressed and purified. Only five PvTRAgs (PvTRAg5, PvTRAg16, PvTRAg23, PvTRAg30, and PvTRAg32) mediated the activation of the NF-κBp65 signaling pathway, which resulted in the production of inflammatory molecules and ultimately a significant reduction in collagen I levels in HSFs. CONCLUSIONS Our research contributes to the expansion of knowledge regarding the functional role of PvTRAgs, while it also enhances our understanding of the immune evasion mechanisms utilized by parasites.
Collapse
Affiliation(s)
- Wei-Zhong Kong
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Hang-Ye Zhang
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
- Case Room, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yi-Fan Sun
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jing Song
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jian Jiang
- Wuxi Red Cross Blood Center, Wuxi, 214000, China
| | - Heng-Yuan Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Yu Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Su Han
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China.
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China.
| |
Collapse
|
2
|
Tang X, Zhang T, Wang B, Mao B, Zhang Q, Zhao J, Chen W, Cui S. Biotransformation of Cacumen platycladi Extract by Lactiplantibacillus plantarum CCFM1348 Promotes Hair Growth in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11493-11502. [PMID: 38738816 DOI: 10.1021/acs.jafc.4c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Cacumen platycladi (CP) is a frequently used traditional Chinese medicine to treat hair loss. In this study, CP fermented by Lactiplantibacillus plantarum CCFM1348 increased the proliferation of human dermal papilla cells. In an in vivo assay, compared to nonfermented CP, postbiotics (fermented CP) and synbiotics (live bacteria with nonfermented CP) promoted hair growth in mice. The Wnt/β-catenin signaling pathway plays crucial roles in the development of hair follicles, including growth cycle restart and maintenance. Both postbiotics and synbiotics upregulated β-catenin, a major factor of the Wnt/β-catenin signaling pathway. Postbiotics and synbiotics also increased the vascular endothelial growth factor expression and decreased the BAX/Bcl2 ratio in the dorsal skin of mice. These results suggest that fermented CP by L. plantarum CCFM1348 may promote hair growth through regulating the Wnt/β-catenin signaling pathway, promoting the expression of growth factors and reducing apoptosis.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Tongtong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Botao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- Bloomage Biotechnology Co., Ltd, Jinan 250000, P. R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, P. R. China
| |
Collapse
|
3
|
Li A, Wei X, Xie Y, Ren Y, Zhu X, Liu M, Liu S. Light exposure and its applications in human health. JOURNAL OF BIOPHOTONICS 2024; 17:e202400023. [PMID: 38576140 DOI: 10.1002/jbio.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Light exposure has been proven to have a significant impact on human health. As a result, researchers are increasingly exploring its potential benefits and drawbacks. With advancements in understanding light and the manufacturing of light sources, modern health lighting has become widely utilized in daily life and plays a critical role in the prevention and treatment of various illnesses. The use of light in healthcare is a global trend, with many countries actively promoting the development and application of relevant scientific research and medical technology. This field has gained worldwide attention and support from scientists and doctors alike. In this review, we examine the application of lighting in human health and recent breakthroughs in light exposure related to pathology, therapeutic strategies, molecular changes, and more. Finally, we also discuss potential future developments and areas of application.
Collapse
Affiliation(s)
- Angze Li
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong Province, China
| | - Xiaoling Wei
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yajia Xie
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yi Ren
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong Province, China
| | - Xi Zhu
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong Province, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, Guangdong Province, China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Gui Q, Ding N, Yao Z, Wu M, Fu R, Wang Y, Zhao Y, Zhu L. Extracellular vesicles derived from mesenchymal stem cells: the wine in Hebe's hands to treat skin aging. PRECISION CLINICAL MEDICINE 2024; 7:pbae004. [PMID: 38516531 PMCID: PMC10955876 DOI: 10.1093/pcmedi/pbae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Owing to its constant exposure to the external environment and various stimuli, skin ranks among the organs most vulnerable to manifestations of aging. Preventing and delaying skin aging has become one of the prominent research subjects in recent years. Mesenchymal stem cells (MSCs) are multipotent stem cells derived from mesoderm with high self-renewal ability and multilineage differentiation potential. MSC-derived extracellular vesicles (MSC-EVs) are nanoscale biological vesicles that facilitate intercellular communication and regulate biological behavior. Recent studies have shown that MSC-EVs have potential applications in anti-aging therapy due to their anti-inflammatory, anti-oxidative stress, and wound healing promoting abilities. This review presents the latest progress of MSC-EVs in delaying skin aging. It mainly includes the MSC-EVs promoting the proliferation and migration of keratinocytes and fibroblasts, reducing the expression of matrix metalloproteinases, resisting oxidative stress, and regulating inflammation. We then briefly discuss the recently discovered treatment methods of MSC-EVs in the field of skin anti-aging. Moreover, the advantages and limitations of EV-based treatments are also presented.
Collapse
Affiliation(s)
- Qixiang Gui
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200001, China
| | - Neng Ding
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200001, China
| | - Zuochao Yao
- Department of Plastic and Reconstructive Surgery of Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Minjuan Wu
- Department of Histology and Embryology, Naval Medical University, Shanghai 200433, China
| | - Ruifeng Fu
- Shanghai Key Laboratory of Cell Engineering, Translational Medical Research Center, Naval Medical University, Shanghai 200433, China
| | - Yue Wang
- Department of Histology and Embryology, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Cell Engineering, Translational Medical Research Center, Naval Medical University, Shanghai 200433, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200092, China
| | - Yunpeng Zhao
- Shanghai Key Laboratory of Cell Engineering, Translational Medical Research Center, Naval Medical University, Shanghai 200433, China
| | - Lie Zhu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai 200001, China
| |
Collapse
|
5
|
Gupta N, El-Gawaad NSA, Mallasiy LO, Gupta H, Yadav VK, Alghamdi S, Qusty NF. Microbial dysbiosis and the aging process: a review on the potential age-deceleration role of Lactiplantibacillus plantarum. Front Microbiol 2024; 15:1260793. [PMID: 38440135 PMCID: PMC10909992 DOI: 10.3389/fmicb.2024.1260793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Gut microbiota dysbiosis has been a serious risk factor for several gastric and systemic diseases. Recently, gut microbiota's role in aging was discussed. Available preclinical evidence suggests that the probiotic bacteria Lactiplantibacillus plantarums (LP) may influence the aging process via modulation of the gut microbiota. The present review summarized compelling evidence of LP's potential effect on aging hallmarks such as oxidative stress, inflammation, DNA methylation, and mitochondrial dysfunction. LP gavage modulates gut microbiota and improves overall endurance in aging animal models. LP cell constituents exert considerable antioxidant potential which may reduce ROS levels directly. In addition, restored gut microbiota facilitate a healthy intestinal milieu and accelerate multi-channel communication via signaling factors such as SCFA and GABA. Signaling factors further activate specific transcription factor Nrf2 in order to reduce oxidative damage. Nrf2 regulates cellular defense systems involving anti-inflammatory cytokines, MMPs, and protective enzymes against MAPKs. We concluded that LP supplementation may be an effective approach to managing aging and associated health risks.
Collapse
Affiliation(s)
- Nishant Gupta
- Medical Research and Development, River Engineering, Noida, India
| | - N. S. Abd El-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - L. O. Mallasiy
- Department of Home Economics, Faculty of Science and Arts in Tihama, King Khalid University, Muhayil, Saudi Arabia
| | | | | | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naeem F. Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
6
|
Hiramoto K, Kubo S, Tsuji K, Sugiyama D, Iizuka Y, Hamano H. The Effect of Bacillus coagulans Induced Interactions among Intestinal Bacteria, Metabolites, and Inflammatory Molecules in Improving Natural Skin Aging. Dermatopathology (Basel) 2023; 10:287-302. [PMID: 37873804 PMCID: PMC10594509 DOI: 10.3390/dermatopathology10040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Lactic acid bacteria consumption serves several health benefits to humans. However, their effect on natural skin aging is still unclear. METHODS This study examined the effects of skin naturalization (particularly skin drying) by administering a spore-bearing lactic acid bacteria (Bacillus coagulans) in mice for 2 years. RESULTS B. coagulans administration improved the natural skin of mice and significantly increased proportions of the genera Bacteroides and Muribaculum, among other intestinal bacteria. As metabolites, increases in nicotinic acid, putrescin, and pantothenic acid levels and a decrease in choline levels were observed. Increased hyaluronic acid, interleukin-10, and M2 macrophage levels indicate aging-related molecules in the skin. Intestinal permeability was also suppressed. Thus, these changes together improved natural skin aging. CONCLUSIONS This study revealed that B. coagulans administration improved the natural skin aging in mice. This enhancement might be induced by the interaction of alterations in intestinal flora, metabolites, or inflammatory substances.
Collapse
Affiliation(s)
- Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Sayaka Kubo
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Tokyo 140-8170, Japan; (S.K.); (K.T.); (D.S.); (Y.I.); (H.H.)
| | - Keiko Tsuji
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Tokyo 140-8170, Japan; (S.K.); (K.T.); (D.S.); (Y.I.); (H.H.)
| | - Daijiro Sugiyama
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Tokyo 140-8170, Japan; (S.K.); (K.T.); (D.S.); (Y.I.); (H.H.)
| | - Yasutaka Iizuka
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Tokyo 140-8170, Japan; (S.K.); (K.T.); (D.S.); (Y.I.); (H.H.)
| | - Hideo Hamano
- Research Department, Daiichi Sankyo Healthcare Co., Ltd., Tokyo 140-8170, Japan; (S.K.); (K.T.); (D.S.); (Y.I.); (H.H.)
| |
Collapse
|
7
|
Dou J, Feng N, Guo F, Chen Z, Liang J, Wang T, Guo X, Xu Z. Applications of Probiotic Constituents in Cosmetics. Molecules 2023; 28:6765. [PMID: 37836607 PMCID: PMC10574390 DOI: 10.3390/molecules28196765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Over the past few decades, research on the benefits of beneficial microorganisms on skin health has expanded and attracted a lot of attention. Today, a wide range of probiotic products are becoming available. With their extensive component profiles and varied physiological effects, probiotics, as well as extracts of them, have a significant impact on cosmetics. However, the present boom in consumer interest in alternatives has broadened the probiotic industry's research and development frontiers. Considering the foregoing, it should come as no surprise that probiotics are highly valued for their proven anti-aging, skin whitening, anti-inflammatory, and photoprotective effects. This review aims to compile information on probiotics' properties, their extracts, and preparations used in cosmetics. It also further summarizes research and applications on probiotic fermentation to promote the use of probiotic fermentation products in cosmetics. Notably, this review also adds information on particular properties and mechanisms of action of probiotics, which fills a gap in the research and application of probiotics in skin treatment and care. Their antioxidant and anti-aging qualities have received particular consideration. This review provides a new basis for the broad application of probiotics in cosmetics.
Collapse
Affiliation(s)
- Jiaxin Dou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (J.D.); (F.G.); (Z.C.); (J.L.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Ning Feng
- Huaxi Biotechnology Co., Ltd., No. 678, Tianchen Road, Lixia District, Jinan 250000, China;
| | - Fangyu Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (J.D.); (F.G.); (Z.C.); (J.L.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Zouquan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (J.D.); (F.G.); (Z.C.); (J.L.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Jie Liang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (J.D.); (F.G.); (Z.C.); (J.L.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (J.D.); (F.G.); (Z.C.); (J.L.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Xueping Guo
- Zhucheng Dongxiao Biotechnology Co., Ltd., Zhucheng 262200, China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (J.D.); (F.G.); (Z.C.); (J.L.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| |
Collapse
|
8
|
Evaluation of Fermented Turmeric Milk by Lactic Acid Bacteria to Prevent UV-Induced Oxidative Stress in Human Fibroblast Cells. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The nutrition enhancement of turmeric using lactic acid bacteria (LAB) was studied. Among the 23 different LAB strains, Levilactobacillus brevis BCRC12247 was chosen due to its robustness. The fermentation of a turmeric drink from L. brevis significantly improved DPPH antioxidant activity (from 71.57% to 75.87%) and total reducing capacity (2.94 ± 0.03 mM Trolox/g dw) compared to the unfermented product. The fermented turmeric samples were subjected to liquid–liquid partition, producing four different fractions. An in vitro study was conducted by treating the fractions on human fibroblast cells (Hs68). The results indicated that hexane (Hex) and water residual (WA) samples could significantly attenuate UVA (15 J/cm2)-induced reactive oxygen species (ROS), reducing the oxidative damage from 16.99 ± 3.86 to 3.42 ± 2.53 and 3.72 ± 1.76 times, respectively. Real-time polymerase chain reaction (qPCR) results showed that Hex and WA inhibited the expression of c-jun and c-fos and lowered the mmp-1 value compared to the negative control group (by 2.72 and 2.58 times, respectively). Moreover, the expressions of Nrf2 and downstream antioxidant-related genes were significantly elevated in the Hex fraction. Therefore, fermentation using L. brevis can be an effective method to elevate the nutritional values of turmeric, protecting fibroblast cells from UVA-induced photoaging and oxidative stress.
Collapse
|
9
|
Role of PI3K-AKT Pathway in Ultraviolet Ray and Hydrogen Peroxide-Induced Oxidative Damage and Its Repair by Grain Ferments. Foods 2023; 12:foods12040806. [PMID: 36832881 PMCID: PMC9957031 DOI: 10.3390/foods12040806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
UV and external environmental stimuli can cause oxidative damage to skin cells. However, the molecular mechanisms involved in cell damage have not been systematically and clearly elucidated. In our study, an RNA-seq technique was used to determine the differentially expressed genes (DEGs) of the UVA/H2O2-induced model. Gene Oncology (GO) clustering and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway analysis were performed to determine the core DEGs and key signaling pathway. The PI3K-AKT signaling pathway was selected as playing a part in the oxidative process and was verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We selected three kinds of Schizophyllum commune fermented actives to evaluate whether the PI3K-AKT signaling pathway also plays a role in the resistance of active substances to oxidative damage. Results indicated that DEGs were mainly enriched in five categories: external stimulus response, oxidative stress, immunity, inflammation, and skin barrier regulation. S. commune-grain ferments can effectively reduce cellular oxidative damage through the PI3K-AKT pathway at both the cellular and molecular levels. Some typical mRNAs (COL1A1, COL1A2, COL4A5, FN1, IGF2, NR4A1, and PIK3R1) were detected, and the results obtained were consistent with those of RNA-seq. These results may give us a common set of standards or criteria for the screen of anti-oxidative actives in the future.
Collapse
|
10
|
Enhancement of Human Epidermal Cell Defense against UVB Damage by Fermentation of Passiflora edulis Sims Peel with Saccharomyces cerevisiae. Nutrients 2023; 15:nu15030501. [PMID: 36771204 PMCID: PMC9921891 DOI: 10.3390/nu15030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
The processing of Passiflora edulis Sims results in large amounts of wasted peel resources and environmental pollution. In order to improve the utilisation of natural plant resources and economic benefits, this study uses Saccharomyces cerevisiae to ferment Passiflora edulis Sims peel to obtain Passiflora edulis Sims peel fermentation broth (PF). The content of active substances in unfermented Passiflora edulis Sims peel water extract (PW) and PF is then determined, as well as their in vitro antioxidant capacity. The protective effects of PF and PW on UVB-induced skin inflammation and skin barrier damage in human immortalised epidermal keratinocytes (HaCaT) cells (including cell viability, ROS, HO-1, NQO1, IL-1β, IL-8, TNF-α, KLK-7, FLG, AQP3 and Caspase 14 levels) are investigated. Studies have shown that PF enhances the content of active substances more effectively compared to PW, showing a superior ability to scavenge free radical scavenging and antioxidants. PW and PF can effectively scavenge excess intracellular ROS, reduce the cellular secretion of pro-inflammatory factors, regulate the content of skin barrier-related proteins and possibly respond to UVB-induced cell damage by inhibiting the activation of the PI3K/AKT/mTOR signalling pathway. Studies have shown that both PW and PF are safe and non-irritating, with PF exploiting the efficacy of Passiflora edulis Sims peel more significantly, providing a superior process for the utilisation of Passiflora edulis Sims waste. At the same time, PF can be developed and used as a functional protective agent against ultraviolet damage to the skin, thereby increasing the value of the use of Passiflora edulis Sims waste.
Collapse
|