1
|
Mai X, Liu Y, Fan J, Xiao L, Liao M, Huang Z, Chen Z, Huang S, Sun R, Jiang X, Huang L, Sun J, Xie L, Chen H. Iron supplementation and iron accumulation promote adipocyte thermogenesis through PGC1α-ATGL-mediated lipolysis. J Biol Chem 2024; 300:107690. [PMID: 39159807 PMCID: PMC11420453 DOI: 10.1016/j.jbc.2024.107690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
Iron homeostasis is essential for maintaining metabolic health and iron disorder has been linked to chronic metabolic diseases. Increasing thermogenic capacity in adipose tissue has been considered as a potential approach to regulate energy homeostasis. Both mitochondrial biogenesis and mitochondrial function are iron-dependent and essential for adipocyte thermogenic capacity, but the underlying relationships between iron accumulation and adipose thermogenesis is unclear. Firstly, we confirmed that iron homeostasis and the iron regulatory markers (e.g., Tfr1 and Hfe) are involved in cold-induced thermogenesis in subcutaneous adipose tissues using RNA-seq and bioinformatic analysis. Secondly, an Hfe (Hfe-/-)-deficient mouse model, in which tissues become overloaded with iron, was employed. We found iron accumulation caused by Hfe deficiency enhanced mitochondrial respiratory chain expression in subcutaneous white adipose in vivo and resulted in enhanced tissue thermogenesis with upregulation of PGC-1α and adipose triglyceride lipase, mitochondrial biogenesis and lipolysis. To investigate the thermogenic capacity in vitro, stromal vascular fraction from adipose tissues was isolated, followed with adipogenic differentiation. Primary adipocyte from Hfe-/- mice exhibited higher cellular oxygen consumption, associated with enhanced expression of mitochondrial oxidative respiratory chain protein, while primary adipocytes or stromal vascular fractions from WT mice supplemented with iron citrate) exhibited similar effect in thermogenic capacity. Taken together, these findings indicate iron supplementation and iron accumulation (Hfe deficiency) can regulate adipocyte thermogenic capacity, suggesting a potential role for iron homeostasis in adipose tissues.
Collapse
Affiliation(s)
- Xudong Mai
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yifan Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jigang Fan
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lanling Xiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Miaomiao Liao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhipeng Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zijian Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shaojun Huang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Sun
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaowan Jiang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liujing Huang
- Medical Affairs Department, Guangzhou Betrue Technology Co, Ltd, Guangzhou, China
| | - Jia Sun
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liwei Xie
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; College of Life and Health Sciences, Guangdong Industry Polytechnic, Guangzhou, Guangdong, China.
| | - Hong Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Mo H, Zhang T, Zhang J, Peng S, Xiang F, Li H, Ge Y, Yao L, Hu L. Ferrous sulphate triggers ferroptosis in Candida albicans and cures vulvovaginal candidiasis in a mouse model. Microbiol Res 2024; 283:127704. [PMID: 38554652 DOI: 10.1016/j.micres.2024.127704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Candida albicans is the most leading cause of life-threatening fungal invasive infections, especially for vulvovaginal candidiasis (VVC). Resistance and tolerance to common fungicide has risen great demands on alternative strategies for treating C. albicans infections. In the present study, ferroptosis has been proven to occur in C. albicans by directly exposed to FeSO4 via induing hallmarks of ferroptosis, including Fe2+ overload burden, ROS eruption and lipid peroxidation. Transcriptomic profile gave the great hints of the possible mechanism for fungal ferroptosis that FeSO4 disturb pathways associated to ribosome, tyrosine metabolism, triglyceride metabolism and thiamine metabolism, thus mobilizing death-related gene synthesis. Inspired by the results, a FeSO4-loaded hydrogel was prepared as an antifungal agent to treat C. albicans infection. This hydrogel exhibited excellent dressing properties and maintained superior antifungal activity by characterization tests. Besides, mice treated by this composite hydrogel displayed excellent therapeutic efficacy. These results highlighted the potential therapeutic use of FeSO4 as an innovative strategy in treating C. albicans infections by targeting ferroptosis.
Collapse
Affiliation(s)
- Haizhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tao Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiayi Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shurui Peng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fukun Xiang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hongbo Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lishan Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Liangbin Hu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
3
|
Ba T, Zhao D, Chen Y, Zeng C, Zhang C, Niu S, Dai H. L-Citrulline Supplementation Restrains Ferritinophagy-Mediated Ferroptosis to Alleviate Iron Overload-Induced Thymus Oxidative Damage and Immune Dysfunction. Nutrients 2022; 14:4549. [PMID: 36364817 PMCID: PMC9655478 DOI: 10.3390/nu14214549] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 09/14/2023] Open
Abstract
L-citrulline (L-cit) is a key intermediate in the urea cycle and is known to possess antioxidant and anti-inflammation characteristics. However, the role of L-cit in ameliorating oxidative damage and immune dysfunction against iron overload in the thymus remains unclear. This study explored the underlying mechanism of the antioxidant and anti-inflammation qualities of L-cit on iron overload induced in the thymus. We reported that L-cit administration could robustly alleviate thymus histological damage and reduce iron deposition, as evidenced by the elevation of the CD8+ T lymphocyte number and antioxidative capacity. Moreover, the NF-κB pathway, NCOA4-mediated ferritinophagy, and ferroptosis were attenuated. We further demonstrated that L-cit supplementation significantly elevated the mTEC1 cells' viability and reversed LDH activity, iron levels, and lipid peroxidation caused by FAC. Importantly, NCOA4 knockdown could reduce the intracellular cytoplasmic ROS, which probably relied on the Nfr2 activation. The results subsequently indicated that NCOA4-mediated ferritinophagy was required for ferroptosis by showing that NCOA4 knockdown reduced ferroptosis and lipid ROS, accompanied with mitochondrial membrane potential elevation. Intriguingly, L-cit treatment significantly inhibited the NF-κB pathway, which might depend on restraining ferritinophagy-mediated ferroptosis. Overall, this study indicated that L-cit might target ferritinophagy-mediated ferroptosis to exert antioxidant and anti-inflammation capacities, which could be a therapeutic strategy against iron overload-induced thymus oxidative damage and immune dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan 430070, China
| |
Collapse
|