1
|
Zong Y, Mao T, Yao P, Liang J, Lai Y, Chen Z, Chen S, Huang L, Guo Y, Zhu M, Zhao J, Liu Y, Li Y, Guo K, Tang H, Ke X, Zhou Y. Effects of Guizhi and Erxian Decoction on menopausal hot flashes: insights from the gut microbiome and metabolic profiles. J Appl Microbiol 2024; 135:lxae016. [PMID: 38253409 DOI: 10.1093/jambio/lxae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
AIMS To examine the influence of GED on the gut microbiota and metabolites using a bilateral ovariectomized (OVX) rat model. We tried to elucidate the underlying mechanisms of GED in the treatment of menopausal hot flashes. METHODS AND RESULTS 16S rRNA sequencing, metabonomics, molecular biological analysis, and fecal microbiota transplantation (FMT) were conducted to elucidate the mechanisms by which GED regulates the gut microbiota. GED significantly reduced OVX-induced hot flashes and improved disturbances in the gut microbiota metabolites. Moreover, FMT validated that the gut microbiota can trigger hot flashes, while GED can alleviate hot flash symptoms by modulating the composition of the gut microbiota. Specifically, GED upregulated the abundance of Blautia, thereby increasing l(+)-ornithine levels for the treatment of menopausal hot flashes. Additionally, GED affected endothelial nitric oxide synthase and heat shock protein 70 (HSP70) levels in the hypothalamic preoptic area by changing the gut microbiota composition. CONCLUSIONS Our study illuminated the underlying mechanisms by which GED attenuated the hot flashes through modulation of the gut microbiota and explored the regulatory role of the gut microbiota on HSP70 expression in the preoptic anterior hypothalamus, thereby establishing a foundation for further exploration of the role of the gut-brain axis in hot flashes.
Collapse
Affiliation(s)
- Yun Zong
- The First Clinical College of Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510403, China
| | - Ting Mao
- The First Clinical College of Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510403, China
| | - Peixun Yao
- The First Clinical College of Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510403, China
| | - Jingtao Liang
- The First Clinical College of Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510403, China
| | - Yawei Lai
- The First Clinical College of Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510403, China
| | - Zhenyue Chen
- The First Clinical College of Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510403, China
| | - Siyang Chen
- The First Clinical College of Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510403, China
| | - Lei Huang
- The First Clinical College of Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510403, China
| | - Yong Guo
- The First Clinical College of Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510403, China
| | - Min Zhu
- The First Clinical College of Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510403, China
| | - Jingbing Zhao
- The First Clinical College of Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510403, China
| | - Yaqian Liu
- Gynecology, Dongguan Maternal and Child Health Hospital, Dongguan 523057, China
| | - Yanfang Li
- The First Clinical College of Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510403, China
| | - Kaixin Guo
- The First Clinical College of Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510403, China
| | - Hui Tang
- The First Clinical College of Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510403, China
| | - Xuehong Ke
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Ying Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 16 Jichang Road, Baiyun District, Guangzhou 510405, China
| |
Collapse
|
2
|
Saadati S, Naseri K, Asbaghi O, Yousefi M, Golalipour E, de Courten B. Beneficial effects of the probiotics and synbiotics supplementation on anthropometric indices and body composition in adults: A systematic review and meta-analysis. Obes Rev 2024; 25:e13667. [PMID: 38030409 DOI: 10.1111/obr.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 09/10/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Studies have suggested that probiotics and synbiotics can improve body weight and composition. However, randomized controlled trials (RCTs) demonstrated mixed results. Hence, we performed a systematic review and meta-analysis to evaluate the effectiveness of probiotics and synbiotics on body weight and composition in adults. We searched PubMed/Medline, Ovid/Medline, Scopus, ISI Web of Science, and Cochrane library up to April 2023 using related keywords. We included all RCTs investigating the effectiveness of probiotics and/or synbiotics supplementation on anthropometric indices and body composition among adults. Random-effects models were applied for performing meta-analyses. In addition, we conducted subgroup analyses and meta-regression to explore the non-linear and linear relationship between the length of follow-up and the changes in each outcome. We included a total of 200 trials with 12,603 participants in the present meta-analysis. Probiotics or synbiotics intake led to a significant decrease in body weight (weighted mean difference [WMD]: -0.91 kg; 95% CI: -1.08, -0.75; p < 0.001), body mass index (BMI) (WMD: -0.28 kg/m2 ; 95% CI: -0.36, -0.21; p < 0.001), waist circumference (WC) (WMD: -1.14 cm; 95% CI: -1.42, -0.87; p < 0.001), waist-to-hip ratio (WHR) (WMD: -0.01; 95% CI: -0.01, -0.00; p < 0.001), fat mass (FM) (WMD: -0.92 kg; 95% CI: -1.05, -0.79; p < 0.001), and percentage of body fat (%BF) (WMD: -0.68%; 95% CI: -0.94, -0.42; p < 0.001) compared to controls. There was no difference in fat-free mass (FFM) and lean body mass (LBM). Subgroup analyses indicated that probiotics or synbiotics administered as food or supplement resulted in significant changes in anthropometric indices and body composition. However, compared to controls, FM and %BF values were only reduced after probiotic consumption. Our results showed that probiotics or synbiotics have beneficial effects on body weight, central obesity, and body composition in adults and could be useful as an add on to weight loss products and medications.
Collapse
Affiliation(s)
- Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Kaveh Naseri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yousefi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Golalipour
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| |
Collapse
|
3
|
Kim BY, Ryu JH, Park J, Ji B, Chun HS, Kim MS, Shin YI. Fermented Lettuce Extract Induces Immune Responses through Polarization of Macrophages into the Pro-Inflammatory M1-Subtype. Nutrients 2023; 15:2750. [PMID: 37375653 PMCID: PMC10303209 DOI: 10.3390/nu15122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
It has been reported that lettuce and its bioactive compounds enhance the host immune system by acting as immune modulators. This study aimed to identify the immunological effect of fermented lettuce extract (FLE) on macrophages. To evaluate the efficacy of FLE in enhancing macrophage function, we measured and compared the levels of macrophage activation-related markers in FLE- and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Treatment with FLE activated RAW 264.7 macrophages, increased their phagocytic ability, and increased the production of nitric oxide (NO) and pro-inflammatory cytokine levels-similar to LPS. The effects of FLE on M1/M2 macrophage polarization were investigated by determining M1 and M2 macrophage transcript markers in mouse peritoneal macrophages. The FLE-related treatment of peritoneal macrophages enhanced the expression of M1 markers but reduced IL-4 treatment-induced M2 markers. After the generation of tumor-associated macrophages (TAMs), alterations in the levels of M1 and M2 macrophage markers were measured after treatment with FLE. The FLE-related treatment of TAMs increased the expression and production of pro-inflammatory cytokines and also led to the enhanced apoptosis of pancreatic cancer cells. These findings suggest that FLE may be useful for macrophage-targeted cancer therapy because of its ability to regulate the activation and polarization of macrophages in the tumor microenvironment.
Collapse
Affiliation(s)
- Bo-Young Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (B.-Y.K.); (J.H.R.); (J.P.)
| | - Ji Hyeon Ryu
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (B.-Y.K.); (J.H.R.); (J.P.)
| | - Jisu Park
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (B.-Y.K.); (J.H.R.); (J.P.)
| | - Byeongjun Ji
- HumanEnos LLC, Wanju 55347, Republic of Korea; (B.J.); (H.S.C.)
| | - Hyun Soo Chun
- HumanEnos LLC, Wanju 55347, Republic of Korea; (B.J.); (H.S.C.)
| | - Min Sun Kim
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan 54538, Republic of Korea;
| | - Yong-Il Shin
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (B.-Y.K.); (J.H.R.); (J.P.)
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
4
|
Park J, Ryu JH, Kim BY, Chun HS, Kim MS, Shin YI. Fermented Lettuce Extract Containing Nitric Oxide Metabolites Attenuates Inflammatory Parameters in Model Mice and in Human Fibroblast-Like Synoviocytes. Nutrients 2023; 15:1106. [PMID: 36904105 PMCID: PMC10005524 DOI: 10.3390/nu15051106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Lettuce (Lactuca sativa L.) contains various bioactive compounds that can reduce the severity of inflammatory diseases. This study aimed to identify therapeutic effects and underlying mechanisms of fermented lettuce extract (FLE) containing stable nitric oxide (NO) on collagen-induced arthritis (CIA) in mice and fibroblast-like synoviocytes (MH7A line) from patients with rheumatoid arthritis (RA). DBA/1 mice were immunized with bovine type II collagen and orally administered FLE for 14 days. On day 36, mouse sera and ankle joints were collected for serological and histological analysis, respectively. Consuming FLE inhibited RA development, suppressing pro-inflammatory cytokine productions, synovial inflammation, and cartilage degradation. The therapeutic effects of FLE in CIA mice were similar to those of methotrexate (MTX), which is typically used to treat RA. In vitro, FLE suppressed the transforming growth factor-β (TGF-β)/Smad signaling pathway in MH7A cells. We also demonstrated that FLE inhibited TGF-β-induced cell migration, suppressed MMP-2/9 expression, inhibited MH7A cell proliferation, and increased the expression of autophagy markers LC3B and p62 in a dose-dependent manner. Our data suggest that FLE could induce autophagosome formations in the early of stages of autophagy while inhibiting their degradation in the later stages. In conclusion, FLE is a potential therapeutic agent for RA.
Collapse
Affiliation(s)
- Jisu Park
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Ji Hyeon Ryu
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Bo-Young Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | | | - Min Sun Kim
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan 54538, Republic of Korea
| | - Yong-Il Shin
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|