1
|
Nicoliche T, Bartolomeo CS, Lemes RMR, Pereira GC, Nunes TA, Oliveira RB, Nicastro ALM, Soares ÉN, da Cunha Lima BF, Rodrigues BM, Maricato JT, Okuda LH, de Sairre MI, Prado CM, Ureshino RP, Stilhano RS. Antiviral, anti-inflammatory and antioxidant effects of curcumin and curcuminoids in SH-SY5Y cells infected by SARS-CoV-2. Sci Rep 2024; 14:10696. [PMID: 38730068 PMCID: PMC11087556 DOI: 10.1038/s41598-024-61662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/08/2024] [Indexed: 05/12/2024] Open
Abstract
COVID-19, caused by SARS-CoV-2, affects neuronal cells, causing several symptoms such as memory loss, anosmia and brain inflammation. Curcuminoids (Me08 e Me23) and curcumin (CUR) are derived from Curcuma Longa extract (EXT). Many therapeutic actions have been linked to these compounds, including antiviral action. Given the severe implications of COVID-19, especially within the central nervous system, our study aims to shed light on the therapeutic potential of curcuminoids against SARS-CoV-2 infection, particularly in neuronal cells. Here, we investigated the effects of CUR, EXT, Me08 and Me23 in human neuroblastoma SH-SY5Y. We observed that Me23 significantly decreased the expression of plasma membrane-associated transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, consequently mitigating the elevated ROS levels induced by SARS-CoV-2. Furthermore, Me23 exhibited antioxidative properties by increasing NRF2 gene expression and restoring NQO1 activity following SARS-CoV-2 infection. Both Me08 and Me23 effectively reduced SARS-CoV-2 replication in SH-SY5Y cells overexpressing ACE2 (SH-ACE2). Additionally, all of these compounds demonstrated the ability to decrease proinflammatory cytokines such as IL-6, TNF-α, and IL-17, while Me08 specifically reduced INF-γ levels. Our findings suggest that curcuminoid Me23 could serve as a potential agent for mitigating the impact of COVID-19, particularly within the context of central nervous system involvement.
Collapse
Affiliation(s)
- Tiago Nicoliche
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil
| | - Cynthia Silva Bartolomeo
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil
| | - Robertha Mariana Rodrigues Lemes
- Department of Biological Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Gabriela Cruz Pereira
- Department of Biochemistry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Tamires Alves Nunes
- Department of Bioscience, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rafaela Brito Oliveira
- Department of Biological Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Arthur Luiz Miranda Nicastro
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | | | | | - Beatriz Moreira Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Juliana Terzi Maricato
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Liria Hiromi Okuda
- Biological Institute, Agriculture and Supply Department, São Paulo, SP, Brazil
| | - Mirela Inês de Sairre
- Human and Natural Sciences Center, Federal University of ABC (UFABC), São Paulo, Brazil
| | - Carla Máximo Prado
- Department of Bioscience, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Rodrigo Portes Ureshino
- Department of Biological Sciences, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Roberta Sessa Stilhano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 61 Dr. Cesário Mota Junior Street, São Paulo, SP, 01221-020, Brazil.
- Post-Graduation Program in Chemistry-Biology, Federal University of São Paulo (UNIFESP), Diadema, Brazil.
| |
Collapse
|
2
|
Cai L, Han F, Ji B, He X, Wang L, Niu T, Zhai J, Wang J. In Silico Screening of Natural Flavonoids against 3-Chymotrypsin-like Protease of SARS-CoV-2 Using Machine Learning and Molecular Modeling. Molecules 2023; 28:8034. [PMID: 38138524 PMCID: PMC10745665 DOI: 10.3390/molecules28248034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The "Long-COVID syndrome" has posed significant challenges due to a lack of validated therapeutic options. We developed a novel multi-step virtual screening strategy to reliably identify inhibitors against 3-chymotrypsin-like protease of SARS-CoV-2 from abundant flavonoids, which represents a promising source of antiviral and immune-boosting nutrients. We identified 57 interacting residues as contributors to the protein-ligand binding pocket. Their energy interaction profiles constituted the input features for Machine Learning (ML) models. The consensus of 25 classifiers trained using various ML algorithms attained 93.9% accuracy and a 6.4% false-positive-rate. The consensus of 10 regression models for binding energy prediction also achieved a low root-mean-square error of 1.18 kcal/mol. We screened out 120 flavonoid hits first and retained 50 drug-like hits after predefined ADMET filtering to ensure bioavailability and safety profiles. Furthermore, molecular dynamics simulations prioritized nine bioactive flavonoids as promising anti-SARS-CoV-2 agents exhibiting both high structural stability (root-mean-square deviation < 5 Å for 218 ns) and low MM/PBSA binding free energy (<-6 kcal/mol). Among them, KB-2 (PubChem-CID, 14630497) and 9-O-Methylglyceofuran (PubChem-CID, 44257401) displayed excellent binding affinity and desirable pharmacokinetic capabilities. These compounds have great potential to serve as oral nutraceuticals with therapeutic and prophylactic properties as care strategies for patients with long-COVID syndrome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Junmei Wang
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; (L.C.); (F.H.); (B.J.); (X.H.); (L.W.); (T.N.); (J.Z.)
| |
Collapse
|
3
|
Recaioglu H, Kolk SM. Developing brain under renewed attack: viral infection during pregnancy. Front Neurosci 2023; 17:1119943. [PMID: 37700750 PMCID: PMC10493316 DOI: 10.3389/fnins.2023.1119943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/26/2023] [Indexed: 09/14/2023] Open
Abstract
Living in a globalized world, viral infections such as CHIKV, SARS-COV-2, and ZIKV have become inevitable to also infect the most vulnerable groups in our society. That poses a danger to these populations including pregnant women since the developing brain is sensitive to maternal stressors including viral infections. Upon maternal infection, the viruses can gain access to the fetus via the maternofetal barrier and even to the fetal brain during which factors such as viral receptor expression, time of infection, and the balance between antiviral immune responses and pro-viral mechanisms contribute to mother-to-fetus transmission and fetal infection. Both the direct pro-viral mechanisms and the resulting dysregulated immune response can cause multi-level impairment in the maternofetal and brain barriers and the developing brain itself leading to dysfunction or even loss of several cell populations. Thus, maternal viral infections can disturb brain development and even predispose to neurodevelopmental disorders. In this review, we discuss the potential contribution of maternal viral infections of three relevant relative recent players in the field: Zika, Chikungunya, and Severe Acute Respiratory Syndrome Coronavirus-2, to the impairment of brain development throughout the entire route.
Collapse
Affiliation(s)
| | - Sharon M. Kolk
- Faculty of Science, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
4
|
Bowen DR, Pathak S, Nadar RM, Parise RD, Ramesh S, Govindarajulu M, Moore A, Ren J, Moore T, Dhanasekaran M. Oxidative stress and COVID-19-associated neuronal dysfunction: mechanisms and therapeutic implications. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1153-1167. [PMID: 37357527 PMCID: PMC10465323 DOI: 10.3724/abbs.2023085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 06/27/2023] Open
Abstract
Severe acute respiratory syndrome (SARS)-CoV-2 virus causes novel coronavirus disease 2019 (COVID-19), and there is a possible role for oxidative stress in the pathophysiology of neurological diseases associated with COVID-19. Excessive oxidative stress could be responsible for the thrombosis and other neuronal dysfunctions observed in COVID-19. This review discusses the role of oxidative stress associated with SARS-CoV-2 and the mechanisms involved. Furthermore, the various therapeutics implicated in treating COVID-19 and the oxidative stress that contributes to the etiology and pathogenesis of COVID-19-induced neuronal dysfunction are discussed. Further mechanistic and clinical research to combat COVID-19 is warranted to understand the exact mechanisms, and its true clinical effects need to be investigated to minimize neurological complications from COVID-19.
Collapse
Affiliation(s)
- Dylan R. Bowen
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Suhrud Pathak
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Rishi M. Nadar
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Rachel D. Parise
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Sindhu Ramesh
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Austin Moore
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Jun Ren
- Department of CardiologyZhongshan Hospital Fudan UniversityShanghai200032China
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWA98195USA
| | - Timothy Moore
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | | |
Collapse
|
5
|
Alves de Araujo Junior D, Motta F, Fernandes GM, Castro MECD, Sasaki LMP, Luna LP, Rodrigues TS, Kurizky PS, Soares AADSM, Nobrega ODT, Espindola LS, Zaconeta AM, Gomes CM, Martins-Filho OA, de Albuquerque CP, da Mota LMH. Neuroimaging assessment of pediatric cerebral changes associated with SARS-CoV-2 infection during pregnancy. Front Pediatr 2023; 11:1194114. [PMID: 37292371 PMCID: PMC10244818 DOI: 10.3389/fped.2023.1194114] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/26/2023] [Indexed: 06/10/2023] Open
Abstract
Background SARS-CoV-2 infection and perinatal neurologic outcomes are still not fully understood. However, there is recent evidence of white matter disease and impaired neurodevelopment in newborns following maternal SARS-CoV-2 infection. These appear to occur as a consequence of both direct viral effects and a systemic inflammatory response, with glial cell/myelin involvement and regional hypoxia/microvascular dysfunction. We sought to characterize the consequences of maternal and fetal inflammatory states in the central nervous system of newborns following maternal SARS-CoV-2 infection. Methods We conducted a longitudinal prospective cohort study from June 2020 to December 2021, with follow-up of newborns born to mothers exposed or not exposed to SARS-CoV-2 infection during pregnancy. Brain analysis included data from cranial ultrasound scans (CUS) with grayscale, Doppler studies (color and spectral), and ultrasound-based brain elastography (shear-wave mode) in specific regions of interest (ROIs): deep white matter, superficial white matter, corpus callosum, basal ganglia, and cortical gray matter. Brain elastography was used to estimate brain parenchymal stiffness, which is an indirect quantifier of cerebral myelin tissue content. Results A total of 219 single-pregnancy children were enrolled, including 201 born to mothers exposed to SARS-CoV-2 infection and 18 from unexposed controls. A neuroimaging evaluation was performed at 6 months of adjusted chronological age and revealed 18 grayscale and 21 Doppler abnormalities. Predominant findings were hyperechogenicity of deep brain white matter and basal ganglia (caudate nuclei/thalamus) and a reduction in the resistance and pulsatility indices of intracranial arterial flow. The anterior brain circulation (middle cerebral and pericallosal arteries) displayed a wider range of flow variation than the posterior circulation (basilar artery). Shear-wave US elastography analysis showed a reduction in stiffness values in the SARS-CoV-2 exposed group in all analyzed regions of interest, especially in the deep white matter elasticity coefficients (3.98 ± 0.62) compared to the control group (7.76 ± 0.77); p-value < 0.001. Conclusion This study further characterizes pediatric structural encephalic changes associated with SARS-CoV-2 infection during pregnancy. The maternal infection has been shown to be related to cerebral deep white matter predominant involvement, with regional hyperechogenicity and reduction of elasticity coefficients, suggesting zonal impairment of myelin content. Morphologic findings may be subtle, and functional studies such as Doppler and elastography may be valuable tools to more accurately identify infants at risk of neurologic damage.
Collapse
Affiliation(s)
- David Alves de Araujo Junior
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Felipe Motta
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | - Geraldo Magela Fernandes
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | - Maria Eduarda Canellas De Castro
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | - Lizandra Moura Paravidine Sasaki
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | - Licia Pacheco Luna
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Patricia Shu Kurizky
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | | | | | | | | | - Ciro Martins Gomes
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | | | - Cleandro Pires de Albuquerque
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| | - Licia Maria Henrique da Mota
- Department of Medicine, University of Brasilia (UnB), Brasilia, Brazil
- Hospital Universitario de Brasília (HUB), Brasilia, Brazil
- Medical Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
6
|
Lye P, Bloise E, Matthews SG. Effects of bacterial and viral pathogen-associated molecular patterns (PAMPs) on multidrug resistance (MDR) transporters in brain endothelial cells of the developing human blood-brain barrier. Fluids Barriers CNS 2023; 20:8. [PMID: 36721242 PMCID: PMC9887585 DOI: 10.1186/s12987-023-00409-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The multidrug resistance (MDR) transporters, P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2) contribute to the blood-brain barrier (BBB), protecting the brain from drug exposure. The impact of infection on MDR in the developing human BBB remains to be determined. We hypothesized that exposure to bacterial and viral pathogen-associated molecular patterns (PAMPs) modify MDR expression and activity in human fetal brain endothelial cells (hfBECs) isolated from early and mid-gestation brain microvessels. METHODS We modelled infection (4 h and 24 h) using the bacterial PAMP, lipopolysaccharide (LPS; a toll-like receptor [TLR]-4 ligand) or the viral PAMPs, polyinosinic polycytidylic acid (Poly I:C; TLR-3 ligand) and single-stranded RNA (ssRNA; TLR-7/8 ligand). mRNA expression was assessed by qPCR, whereas protein expression was assessed by Western blot or immunofluorescence. P-gp and BCRP activity was evaluated by Calcein-AM and Chlorin-6 assays. RESULTS TLRs-3,4 and 8 were expressed by the isolated hfBECs. Infection mimics induced specific pro-inflammatory responses as well as changes in P-gp/ABCB1 or BCRP/ABCG2 expression (P < 0.05). LPS and ssRNA significantly decreased P-gp activity at 4 and 24 h in early and mid-gestation (P < 0.03-P < 0.001), but significantly increased BCRP activity in hfBECs in a dose-dependent pattern (P < 0.05-P < 0.002). In contrast, Poly-IC significantly decreased P-gp activity after 4 h in early (P < 0.01) and mid gestation (P < 0.04), but not 24 h, and had no overall effect on BCRP activity, though BCRP activity was increased with the highest dose at 24 h in mid-gestation (P < 0.05). CONCLUSIONS Infectious PAMPs significantly modify the expression and function of MDR transporters in hfBECs, though effects are PAMP-, time- and dose-specific. In conclusion, bacterial and viral infections during pregnancy likely have profound effects on exposure of the fetal brain to physiological and pharmacological substrates of P-gp and BCRP, potentially leading to altered trajectories of fetal brain development.
Collapse
Affiliation(s)
- Phetcharawan Lye
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Building Room 3207, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Enrrico Bloise
- Departamento de Morfologia, Instituto de Ciências Biológicas, N3-292, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| | - Stephen G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Building Room 3207, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Department of Obstetrics & Gynaecology, University of Toronto, Toronto, Canada.
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|